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Abstract. The asymptotics of eigenvalues of Toeplitz operators has received a lot of attention
in the mathematical literature and has been applied in several disciplines. This paper describes
two of such application disciplines and provides refinements of existing asymptotic results using new
methods of proof. The following result is typical: Let T (ϕ) be a selfadjoint band limited Toeplitz
operator with a (real valued) symbol ϕ, which is a nonconstant trigonometric polynomial. Consider
finite truncations Tn(ϕ) of T (ϕ), and a finite union of finite intervals of real numbers E. We prove
a refinement of the Szegö asymptotic formula

lim
n→∞

Nn(E)

n
=

1

2π
m(F ).

Indeed, we show that

Nn(E)−
1

2π
m(F )n = O(1).

Here m(F ) denotes the measure of F = ϕ−1(E) on the unit circle, and Nn(E) denotes the number
of eigenvalues of Tn(ϕ) inside E. We prove similar results for singular values of general Toeplitz
operators involving a refinement of the Avram-Parter theorem.
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1. Introduction. The eigenvalue distribution of Toeplitz matrices and operators
has been a fascinating and abundant source of topics of mathematical inquiries. The
prominent monographs [9] and [10] respectively provide extensive analysis of Toeplitz
matrices and operators. Among key historical papers are [11] (on operators), [19]
(on matrices) and [20] (on block matrices). A comprehensive account on the theory
involved is provided in [12].

From the interdisciplinary point of view, the above field also possesses a consider-
able potential, especially in terms of a wide range of applications and connections to
disciplines outside mathematics. In the first part of this section, two application areas
(see (I) and (II) below) are addressed which have motivated the authors to study the
asymptotics of Toeplitz eigenvalues.

In the second part of the introduction, the mathematical contribution of this
paper to the asymptotics of eigenvalues and singular values shall be outlined. We
conclude the introduction with some clarification on notation used in the paper.

(I) Vast uncharted regions lie between mathematics and chemistry on the map
of science. Communication across the border of these disciplines is still generally
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sporadic and uncoordinated, despite modern trends of cross-disciplinary investigations
in each of these fields. In the present work, we have for the first time formed a linkage
between:

(i) The mathematical branch of Toeplitz matrices, and
(ii) The ”repeat space theory” (RST) in theoretical chemistry, which originates

in the study of the zero-point vibrational energies of hydrocarbons having
repeating identical moieties [1].

Namely, in dealing with Toeplitz matrices in the proof of our main theorem, Theorem
2.3, we have recalled, sharpened, and applied a mathematical technique developed in
the RST (to estimate quantum boundary effects in polymeric molecules). It is also
remarkable that the sharpened technique in the proof of Theorem 2.3 can be applied
to molecular problems by embedding the technique into the RST. In our opinion,
researchers investigating in areas of (i) and (ii) can mutually benefit. The reader who
is interested in cross-disciplinary mathematical investigations in chemistry is referred
to Refs. [1, 2, 3, 4, 5, 6] and references therein, where he can find the genesis of the
RST (in conjunction with experimental chemistry) and a variety of applications of
the RST to quantum, thermodynamic, and structural chemistry.

Sequences of band circulant matrices are called ”Alpha sequences” and play a
dominant role in the RST [1, 2, 3, 4, 5, 6]. The band circulant matrix associated
with a band Toeplitz matrix has been used in the proof of the present paper based on
the approach and technique originally developed in the RST, especially in [1] and [6].
Further, we remark that the study of asymptotic spectra of band Toeplitz matrices in
[7] arises from the analysis of difference approximations of partial differential equations
and that in [7] the asymptotic spectra of the band Toeplitz matrix and its associated
circulant matrix were studied.

(II) The asymptotics of eigenvalues of Toeplitz operators is an important issue
in the study of time-frequency localization of signals. Essentially time- and band-
limited functions can be studied by means of Toeplitz matrix eigenvalue asymptotics;
see [15, 17]. Quite recently, these results have been used in the analysis of seismic
records [16].

It is hoped that the present work provides researchers of the asymptotic eigen-
value distribution of Toeplitz matrices with a fresh insight into the theme, and that it
contributes to dissolving the traditional boundary between the mathematical branch
of Toeplitz matrices and other research areas such as quantum chemistry of molecules
having repeating identical moieties, and time-frequency localization of (seismic) sig-
nals.

We shall now discuss the asymptotics of eigenvalues of Toeplitz matrices in fur-
ther detail. Let ϕ be a real valued continuous function defined on the unit cir-
cle T = {z ∈ C : |z| = 1}. The Fourier coefficients of ϕ are given by ϕk =
(2πi)−1

∫
T ϕ(z)z−k−1 dz, k ∈ Z. The corresponding Toeplitz operator T (ϕ) =

(ϕi−j)i,j∈Z+ is selfadjoint and its finite truncations Tn(ϕ) = (ϕi−j)n−1
i,j=0 are Hermi-

tian matrices. The spectrum of the operator T (ϕ) coincides with the closed interval
I = {ϕ(z) : z ∈ T }. In particular, the norm of T (ϕ) is given by ‖T (ϕ)‖ = sup{|ϕ(z)| :
z ∈ T }.

Moreover, the eigenvalues of the truncations Tn(ϕ) are contained in the closed
interval I; see for example Section 5.2b in [13] and Proposition 2.17 in [9]. However,
much more can be said about the eigenvalue distribution of Tn(ϕ). As a first step, we
mention that the asymptotic behaviour of the eigenvalues is expressed by the well-
known Szegö formula (cf. Theorem 5.2 in [13] and Theorem 5.10 in [9]): If f is a
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continuous function on the closed interval I, and if {λi,n}n
i=1 are the eigenvalues of

Tn(ϕ), then

lim
n→∞

1
n

n∑
i=1

f(λi,n) =
1
2π

∫ π

−π

f(ϕ(eiθ)) dθ.

Moreover, if ϕ is smooth, e.g., C1+ε with ε > 0 and f is analytic in an open neigh-
borhood of I, then one has a second order formula

1
n

n∑
i=1

f(λi,n) =
1
2π

∫ π

−π

f(ϕ(eiθ)) dθ +
Ef (ϕ)
n

+ o

(
1
n

)
with some completely identified constant Ef (ϕ) (see [20] or Theorem 5.6 in [9]).

We shall now make the further assumption that ϕ is actually a nonconstant
trigonometric polynomial of degree r ≥ 1, i.e., ϕ(z) =

∑r
k=−r ϕkz

k. In this manner,
T (ϕ) becomes a selfadjoint band limited Toeplitz operator. Let E denote a finite
union of compact intervals on the real line and let χE be its characteristic function.
Let m denote the Lebesgue measure on the unit circle. Since m(ϕ−1(∂E)) = 0, the
Szegö formula can be extended to f = χE (see [22]) and we get:

lim
n→∞

Nn(E)
n

=
1
2π
m(F ),(1.1)

where Nn(E) denotes the number of eigenvalues of Tn(ϕ) in the set E and F =
ϕ−1(E). The purpose of this paper is to sharpen the formula for the case of band lim-
ited Toeplitz operators. Indeed, formula (1.1) states that Nn(E)− 1

2πm(F )n = o(n).
The main result of this paper refines this asymptotic result to Nn(E)− 1

2πm(F )n =
O(1). In addition to such results for eigenvalues of selfadjoint Toeplitz operators, we
prove similar results for singular values of general Toeplitz operators.

In the remaining part of this paper, trA denotes the trace of the square matrix
A. The space BV (I) consists of functions of bounded variation on the closed interval
I = [a, b]. For such a function f , there exists a constant V > 0, such that for each
partition a = x0 < x1 < . . . < xm = b, we get

m∑
j=1

|f(xj)− f(xj−1)| ≤ V.

The minimum V > 0 which satisfies this condition is called the total variation of f
on I and is denoted by VI(f). If the natural domain of f contains I and f |I is of
bounded variation on I, then VI(f) = VI(f |I). If g : T → R, let f(t) = g(eit), for
t ∈ R, and let VT(g) = V[−π,π](f). Denote the eigenvalues of a Hermitian n×n matrix
H by λ1(H) ≤ λ2(H) ≤ . . . ≤ λn(H). The singular values of an arbitrary complex
m×n matrix M are equal to the eigenvalues of the Hermitian matrix (M∗M)1/2 and
labeled so that σ1(M) ≤ σ2(M) ≤ . . . ≤ σn(M). The spectral norm ‖M‖ of M is
equal to σn(M).

2. Refined eigenvalue asymptotics. In this section, we prove a number of
estimates which lead to the refined asymptotics result in Corollary 2.5. This corollary
involves the characteristic function χE , while the preparatory results are stated for
general functions of bounded variation. First, we state Theorem 2.1 from [6]. For
convenience of the reader, and for reference later on, we include the proof.
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Theorem 2.1. Consider the integers 1 ≤ r < n and let K = {k1, . . . , kr} be a
subset of {1, 2, . . . , n} consisting of r distinct elements. Define L = {1, 2, . . . , n}\K.
Let M and M ′ be n× n Hermitian matrices such that the ijth entries of M and M ′

coincide for all (i, j) ∈ L× L, i.e. such that

(M −M ′)ij = 0

for all (i, j) ∈ L × L. Consider a closed interval I = [a, b] which contains all the
eigenvalues of both M and M ′. Then we have

|tr f(M)− tr f(M ′)| ≤ rVI(f)

for all f ∈ BV (I).

Proof Case 1: r = 1. We may and do assume that K = {n}, since this situation
can be achieved by transformingM−M ′ by means of a permutation similarity. LetM0

denote the (n−1)×(n−1) matrix given by (Mij)n−1
i,j=1. Observe that M0 = (M ′

ij)
n−1
i,j=1.

If we write λ0 = a, λj = λj(M0) for j = 1, . . . , n−1, and λn = b, then by the Sturmian
separation theorem [14], we get

λj−1 ≤ λj(M) ≤ λj , λj−1 ≤ λj(M ′) ≤ λj , j = 1, . . . , n.

Therefore, we arrive at

|tr f(M)− tr f(M ′)| =

∣∣∣∣∣∣
n∑

j=1

{f(λj(M))− f(λj(M ′))}

∣∣∣∣∣∣ ≤
n∑

j=1

|f(λj(M))− f(λj(M ′))| ≤ VI(f).

Case 2: r > 1. As in the first part of the proof, we may and do assume that K
has a specific form, say K = {n − r + 1, . . . , n}. Define n × n Hermitian matrices
M (0),M (1), . . . ,M (r) such that M (0) = M , M (r) = M ′, and such that the pairs
M (ν−1),M (ν) for ν = 1, . . . , r each satisfy the conditions of Case 1. This can be
achieved by setting (0 ≤ ν ≤ r)

M
(ν)
ij =

{
Mij , 1 ≤ i, j ≤ n− ν
M ′

ij , n− ν < i ≤ n or n− ν < j ≤ n
.

Let [ã, b̃] = Ĩ ⊇ I = [a, b] be an interval which contains all eigenvalues of M (ν) for
ν = 1, . . . , r − 1, and let f̃ be the extension of f to Ĩ given by

f̃(t) =


f(a), ã ≤ t ≤ a
f(t), a ≤ t ≤ b

f(b), b ≤ t ≤ b̃

.

We have obtained

|tr f(M)−tr f(M ′)| ≤
r∑

ν=1

∣∣∣∣∣∣
n∑

j=1

{
f̃(λj(M (ν−1)))− f̃(λj(M (ν)))

}∣∣∣∣∣∣ ≤ rVĨ(f̃) = rVI(f).
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We now state and prove two new results for functions of bounded variation f and
apply them to the characteristic function χE in the corollaries. If n is a positive
integer, let Pn denote the cyclic shift n × n matrix with (Pn)ij = 1 if i− j ≡ 1 mod
n and 0 otherwise. Let An = An(ϕ) =

∑r
k=−r ϕkP

k
n .

Theorem 2.2. For any f ∈ BV (I) and any positive integer n, we have

(i) |tr(f(Tn))− tr(f(An))| ≤ rVI(f),

(ii)
∣∣∣∣tr(f(An))− n

2π

∫ π

−π

f(ϕ(eiθ)) dθ
∣∣∣∣ ≤ 2rVI(f),

(iii)
∣∣∣∣tr(f(Tn))− n

2π

∫ π

−π

f(ϕ(eiθ)) dθ
∣∣∣∣ ≤ 3rVI(f).

Proof (i) If n ≤ r, then tr(f(Tn))− tr(f(An)) is just the sum of the differences of
the values of f at n pairs of points from I. Thus,

|tr(f(Tn))− tr(f(An))| ≤ nVI(f) ≤ rVI(f).

If r < n, then we make use of some auxiliary matrices. We have already introduced
Pn in order to define the circulant matrix An. Further, for |k| < n, let Sn(k) denote
the n × n matrix with (Sn(k))ij = 1 if i − j = k and 0 otherwise. Let Sn(k) = 0 if
|k| ≥ n. Clearly ((Pn)k)ij = (Sn(k))ij for 1 ≤ i, j ≤ n − |k|. Since Tn = Tn(ϕ) =∑r

k=−r ϕkSn(k), we get

Tn −An =
r∑

k=−r

ϕk(Sn(k)− P k
n ).

Since (Tn)ij = (An)ij for 1 ≤ i, j ≤ n− r, we get by Theorem 2.1,

|tr(f(Tn))− tr(f(An))| ≤ rVI(f).

(ii) Let h(θ) = f(ϕ(eiθ)), for θ ∈ R. Then

tr(f(An)) =
n∑

j=1

h(
2πj
n

).

This implies∣∣∣∣tr(f(An))− n

2π

∫ π

−π

f(ϕ(eiθ)) dθ
∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

h(
2πj
n

)− n

2π

∫ π

−π

h(θ) dθ

∣∣∣∣∣∣
≤ n

2π

n∑
j=1

∫ 2πj
n

2π(j−1)
n

∣∣∣∣h(2πj
n

)− h(θ)
∣∣∣∣ dθ ≤ n

2π

n∑
j=1

∫ 2πj
n

2π(j−1)
n

V
[
2π(j−1)

n , 2πj
n ]

(h) dθ = V[0,2π](h).

Now, let u(θ) = ϕ(eiθ). Since ϕ is a nonconstant trigonometric polynomial of degree
r, u′ has at least 2 and at most 2r distinct roots in [0, 2π). Let θ1 < θ2 < · · · < θl be
the roots of u′ in [0, 2π). Then

V[0,2π](h) = V[θ1,θ1+2π](f ◦ u) =
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V[θ1,θ2](f ◦ u) + V[θ2,θ3](f ◦ u) + · · ·+ V[θl,θ1+2π](f ◦ u) ≤ lVI(f).

It follows that ∣∣∣∣tr(f(An))− n

2π

∫ π

−π

f(ϕ(eiθ))dθ
∣∣∣∣ ≤ 2rVI(f).

Now (iii) follows immediately from (i) and (ii).

Theorem 2.3. If f ∈ BV (I) and if n is any positive integer, then

∣∣∣∣∣
n∑

i=1

f(λi,n)− n

2π

∫ π

−π

f(ϕ(eiθ)) dθ

∣∣∣∣∣ ≤ rVI(f) + VT (f ◦ ϕ) ≤ 3rVI(f).

Proof If we apply Theorem 2.2 (i) to the setting of this theorem, we get

|tr(f(Tn))− tr(f(An))| ≤ rVI(f),

and the proof of Theorem 2.2 (ii) yields∣∣∣∣tr(f(An))− n

2π

∫ π

−π

f(ϕ(eiθ) dθ
∣∣∣∣ ≤ VT (f ◦ ϕ) ≤ 2rVI(f).

This, together with tr(f(Tn)) =
∑n

i=1 f(λi,n), provides∣∣∣∣∣
n∑

i=1

f(λi,n)− n

2π

∫ π

−π

f(ϕ(eiθ) dθ

∣∣∣∣∣ ≤ rVI(f) + VT (f ◦ ϕ) ≤ 3rVI(f).

The following two corollaries are easy consequences of Theorem 2.3. We leave it
to the reader to check the necessary minor details. Let E be a subset of R that is a
finite union of compact intervals and let F = ϕ−1(E) be the corresponding subset of
T. Note that if E is a union of N compact intervals and I is an interval in R, then
VI(χE) ≤ 2N .

Corollary 2.4. Let T be a band limited selfadjoint Toeplitz operator with the
symbol ϕ, a real-valued trigonometric polynomial of degree r ≥ 1. Then∣∣∣∣Nn(E)− 1

2π
m(F )n

∣∣∣∣ ≤ rVI(χE) + VT (χF ) ≤ 3rVI(χE)

for every n ≥ 1.
Corollary 2.5. Let T be a band limited selfadjoint Toeplitz operator with the

symbol ϕ, a real-valued trigonometric polynomial of degree r ≥ 1. Then

Nn(E)− n

2π
m(F ) = O(1).
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3. Singular Values. The results proved in the previous section for the eigenval-
ues of selfadjoint band Toeplitz matrices can easily be generalized to results concerning
the singular values of arbitrary band Toeplitz matrices, although the constants in the
new estimates are slightly worse. In this section, the main steps of the proofs are
outlined. The analogue of Theorem 2.1 reads as follows:

Theorem 3.1. For 1 ≤ r < n, let K = {k1, . . . , kr} be a subset of {1, 2, . . . , n}
having exactly r elements, and put L = {1, 2, . . . , n}\K. Let M and M ′ be two complex
n×n matrices such that (M −M ′)ij = 0 for all (i, j) ∈ L×L. If I = [a, b] is a closed
interval which contains the singular values of both M and M ′ and if f ∈ BV (I), then

n∑
j=1

|f(σj(M))− f(σj(M ′))| ≤ 2rVI(f).

Proof We can proceed as in the proof of Theorem 2.1. The only difference is
that we need to replace the Sturmian separation theorem by the following interlacing
result (see e.g. [8], pp. 81-82). Let A = (aij)n

i,j=1 be a complex n× n matrix and let
B = (aij)n−1

i,j=1 be the (n− 1)× (n− 1) principal sub-matrix. Then

0 ≤ σ1(A) ≤ σ2(B),

σj−1(B) ≤ σj(A) ≤ σj+1(B), j = 2, . . . , n− 2,

and ‖B‖ ≤ ‖A‖. If we abbreviate σj = σj(M0) for j = 1, . . . , n − 1 (notation as in
Theorem 2.1), then in the case of r = 1, we get

n∑
j=1

|f(σj(M))− f(σj(M ′))| ≤

V[a,σ2](f) +
n−2∑
j=2

V[σj−1,σj+1](f) + V[σn−2,b](f) ≤ V[a,σn−1](f) + V[σ1,b](f) ≤ 2V[a,b](f).

The case of r > 1 is dealt with in the same fashion as in Theorem 2.1.
Theorem 3.2. Let ψ be a nonconstant trigonometric polynomial of degree r ≥ 1,

let I = [0, ‖ψ‖∞], and let g ∈ BV (I). Then for all n ≥ 1,∣∣∣∣∣∣
n∑

j=1

g(σj(Tn(ψ)))− n

2π

∫ π

−π

g(|ψ(eiθ)|) dθ

∣∣∣∣∣∣ ≤ 2rVI(g) + VT (g ◦ |ψ|) ≤ 6rVI(g).

Proof The singular values of the circulant matrix An introduced in the proof of
Theorem 2.2(ii) are given by |ψ(2πij/n)| (j = 1, . . . , n). Consequently, the reasoning
of the proof of Theorem 2.2(i), in conjunction with Theorem 3.1, gives∣∣∣∣∣∣

n∑
j=1

g(σj(Tn(ψ)))− n

2π

∫ π

−π

g(|ψ(eiθ)|) dθ

∣∣∣∣∣∣ ≤ 2rVI(g) + V[0,2π](g ◦ |ψ|).

Since |ψ(eiθ)|2 is a trigonometric polynomial of degree 2r, we obtain as in the proof of
Theorem 2.2(ii) that |ψ(eiθ)| has at most 4r local extrema in [0, 2π), whence V[0,2π)(g◦
|ψ|) ≤ 4rVI(g). This implies the assertion.
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While Theorem 2.3 is a refined version of Szegö’s formula, Theorem 3.2 may be
regarded as a refinement of the Avram-Parter theorem, which states that

lim
n→∞

1
n

n∑
i=1

g(σi(Tn(ψ))) =
1
2π

∫ π

−π

g(|ψ(eiθ)| dθ

if, for example, ψ is continuous on T and g is continuous on the range of |ψ| (see [9]
and [18] and the references therein). The counterpart of Corollaries 2.4 and 2.5 for
singular values is as follows.

Corollary 3.3. Let ψ be a trigonometric polynomial of degree r ≥ 1, let E ⊂ R
be a finite union of compact intervals, and let F = {t ∈ T : |ψ(t)| ∈ E}. If Nn(E)
denotes the number of singular values of Tn(ψ) in E, then∣∣∣Nn(E)− n

2π
m(F )

∣∣∣ ≤ 2rVI(χE) + VT (χF ) ≤ 6rVI(χE)

for every n ≥ 1. In particular,

Nn(E)− n

2π
m(F ) = O(1).

Acknowledgement The authors are indebted to professor A. Böttcher for pointing
out the extension of the main results from eigenvalues to singular values for arbitrary
band Toeplitz matrices, which has resulted in Section 3.
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