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Non-Locality, Contextuality, and (Pre)sheaves
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Topology is about ...
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e From partial data covering “wide enough” subdomain,
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{\N\} f»:(1,3) = Rextend to
continuous f : [0,3] — R uniquely.

L ]

0" 3




The same idea applies to Bell (Non-) Locality.



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

ap or aj bo or b]



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:

Oorl Oorl
meas meas
dp Or a; prep bo or b[




The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

ap or aj bo or b]



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

i

ap or aj by or b,
For each context (a;, b)), ‘ (0,0) (0,1) (1,0) (1,1)
a distribution (ao,bo) | 1/ 0 0 h
p(0,0"|ai, b)) (ap,br) | Pk s s
over joint outcomes (ai,bo) | ks s O

(ai, bj) = (0,0") (ai,by) | 'k Gk Sk s



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

i

agp or a by or b,
For each context (a;, b)), ‘ (0,0) (0,1) (1,0) (1,1)
a distribution (a0, bo) i 0 0 h
p(o,0" | ai, b)) (ao,by) | ks s s
over joint outcomes (ai,bo) | Pk s s
(ai, b)) = (0,0") (ai,by) | ' Gk Sk s

AN



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

i

agp or a by or b,
For each context (a;, b)), ‘ (0,0) (0,1) (1,0) (1,1)
a distribution (a0, bo) i 0 0 h
p(o,0" | ai, b)) (ao,by) | ks s s
over joint outcomes (ai,bo) | Pk s s
(ai, b)) = (0,0") (ai,by) | ' Gk Sk s

r\N\) ... having the same marginal



The same idea applies to Bell (Non-) Locality.
E.g. input-output box for the 2-party, 2-input, 2-output scenario:
Oorl Oorl

1 f

i

agp or a by or b,
For each context (a;, b)), ‘ (0,0) (0,1) (1,0) (1,1)
a distribution (a0, bo) i 0 0 h
p(o,0"aj, b)) (ao,by) | ks s s
over joint outcomes (ai,bo) | Pk s s
(ai, b)) = (0,0") (ai,by) | ' Gk Sk s

r\N\) ... having the same marginal = No-Signalling



Do these pieces of data over contexts extend to a distribution
p(-|ao,ay, by, by) for all measurements (g, a, bg, b1)
that gives back each p(-|a;, b;) as a marginal?

(0,0)(0, 1) (1,0) (1, 1)
(ao,bo)| 'L O 0O A
(ap,br)| ks s s
(ai,bo)| ko 'k
(ai,b)| ' 3k ks




Do these pieces of data over contexts extend to a distribution
p(-|ao,ay, by, by) for all measurements (g, a, bg, b1)
that gives back each p(-|a;, b;) as a marginal?

0,0,0,0) (0,0,0,1) --- (1,1,1,0) (1, 1,1, 1)
(ao,ar,bo,b1) | pi p2 0 Pis Pi6

(0,0)(0, 1) (1,0) (1, 1)
(ao,bo)| 'L O 0O A
(ap,br)| ks s s
(ai,bo)| ko 'k
(ai,b)| ' 3k ks




Do these pieces of data over contexts extend to a distribution
p(-|ao,ay, by, by) for all measurements (g, a, bg, b1)
that gives back each p(-|a;, b;) as a marginal?

0,0,0,0) (0,0,0,1) --- (1,1,1,0) (1, 1,1, 1)

(ao,ar,bo,b1) | pi p2 pis Pi6

(0,0)(0,1)(1,0)(1,1)J
(ao,bo)| ' O 0 '

(ao,br)| 3 s
(ai,bo)| ko s
(ai,b)| ' Gk Gk




Do these pieces of data over contexts extend to a distribution
p(-|ao,ay, by, by) for all measurements (g, a, bg, b1)
that gives back each p(-|a;, b;) as a marginal?

0,0,0,0) (0,0,0,1) --- (1,1,1,0) (1, 1,1, 1)
(ao,ar,bo,b1) | pi p2 0 Pis Pi6

(0,0)(0,1)(1,0)(1,1)J
(ap,bo)| ' 0 0 1)

|
(ao,br)| 3 s
(ai,bo)| ko s
(ai,b)| ' Gk Gk

Local causality =4 Admits a hidden variable model
A Admits a deterministic hidden variable model
Factorizable (Fine 1982, Abramsky-Brandenburger 2011)



Do these pieces of data over contexts extend to a distribution
p(-|ao,ay, by, by) for all measurements (g, a, bg, b1)
that gives back each p(-|a;, b;) as a marginal?

0,0,0,0) (0,0,0,1) --- (1,1,1,0) (1, 1,1, 1)
(ao,ar,bo,b1) | pi P2 o DPIs Pi6

((),0)(0,1)(1,0)(1,1)J
(ao,bo)| ' OO L2

(ao,br)| 3k ks
(ai,bo)| 3k ' s
(ai,b)| ' Gk Gk

Local causality =4 Admits a hidden variable model
A Admits a deterministic hidden variable model
Factorizable (Fine 1982, Abramsky-Brandenburger 2011)



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V V'V
aob1 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V V'V
aob1 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

ao

by

ai



“Possibility distributions” *
Hardy 1993:
|00 01 10 11
abo| V' vV VvV V
aob1 0 \/ \/ \/
aibg| 0 vV VvV V
a1b1 \/ \/ \/ 0




“Possibility distributions” *
Hardy 1993:
|00 01 10 11
Clobo \/ \/ \/ \/
a0b1 0 \/ \/ \/
aibg| 0 vV VvV V
a1b1 \/ \/ \/ 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V-V V V
abi| 0 vV VvV V
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V V'V
a0b1 0 \/ \/ \/
atbg| 0 vV VvV V
a1b1 \/ \/ \/ 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V V'V
a0b1 0 \/ \/ \/
atbg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V V'V
aob1 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
abo| V'V VvV
a()b] 0 \/ v \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(aOa ai, b09 bl) = (1, 0’ 19 0)9



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apbo| V'V V V
aob1 0 \/ \/ \/
abgl 0 vV VvV V
a1b1 \/ \/ \/ 0
Some ,e.g.

(ao,ai, by, by) = (1,0,1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a0b1 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apbo| V'V V V
aob1 0 \/ \/ \/
abgl 0 vV VvV V
a1b1 \/ \/ \/ 0
Some ,e.g.

(ao,ai, by, by) = (1,0,1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a0b1 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but...



“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, a1, bo, b1) — (1,0, 1,0);
but not all sections extend to global ones.




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, ar, bo, b1) = (1,0, 1,0);
but not all sections extend to global ones.

| 0000 --- 0011 --- 1001 1010 1011 --- 1111
aparbob| 0 -~ vV - 0V ¥V - 0




“Possibility distributions”

Hardy 1993:

|00 01 10 11
apho| V.V VvV V
a()b] 0 \/ \/ \/
aibg| 0 vV VvV VvV
a1b1 \/ \/ \/ 0

Some global sections, e.g.
(a0, ar, bo, b1) = (1,0, 1,0);
but not all sections extend to global ones.

| 0000 --- 0011 --- 1001 1010 1011 --- 1111
aparbob| 0 -~ vV - 0V ¥V - 0

... “Logical Non-Locality”.



Logical non-locality: Not all sections extend to global ones.



PR box:

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.



b

Logical non-locality: Not all sections extend to global ones.

Strong non-locality: No global section at all.



b

Logical contextuality: Not all sections extend to global ones.

Strong contextuality: No global section at all.



b

Logical contextuality: Not all sections extend to global ones.
Strong contextuality: No global section at all.
Slogan:

Contextuality = Local consistency + global inconsistency
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Bell local = Logically local,
Logically non-local = Bell non-local.

Hieararchy of contextuality:

Probabilistic ;zb Logical ;:b Strong contextuality



Formally, a (possibilistic) empirical model over contexts C is . ..

by

a C
ap



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets

by

a; C°?
ap

bo

@ apresheaf A : C°? — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

Oe . . 0
: : . . 1 Sets
A
co®

bo

@ apresheaf A : C°P° — Sets

A, = the set of
outcomes of x.



Formally, a (possibilistic) empirical model over contexts C is . ..

°0

A, = the set of
outcomes of x.

. | Sets

Ay = the set of possible
A combinations of
outcomes of x € U.

a; C°?

@ apresheaf A : C°P° — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

A, = the set of
outcomes of x.

Sets

Ay = the set of possible
A combinations of
outcomes of x € U.

@ apresheaf A : C°P° — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

A, = the set of
outcomes of x.

Sets

: Ay = the set of possible
o1 A combinations of

: outcomes of x € U.

bo

=

a; C°?
ap

@ apresheaf A : C°P° — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

A, = the set of
outcomes of x.

Sets

Ay = the set of possible
A combinations of
outcomes of x € U.

c®

@ apresheaf A : C°P° — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

A, = the set of
outcomes of x.

Sets

Ay = the set of possible
A combinations of
outcomes of x € U.

c®

@ apresheaf A : C°P° — Sets



Formally, a (possibilistic) empirical model over contexts C is . ..

A, = the set of
outcomes of x.

Sets

Ay = the set of possible
A combinations of
outcomes of x € U.

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of
outcomes of x.

Ay = the set of possible
A combinations of
outcomes of x € U.

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of

>
outcomes of x.
Ay = the set of possible
T A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of

>
outcomes of x.
Ay = the set of possible
T A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of

>
outcomes of x.
Ay = the set of possible
T A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of

>
outcomes of x.
Ay = the set of possible
T A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



Formally, a (possibilistic) empirical model over contexts C is . ..

Sets A, = the set of

>
outcomes of x.
Ay = the set of possible
T A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



Formally, a (possibilistic) empirical model over contexts C is . ..

y Sets A, = the set of
outcomes of x.
Ay = the set of possible
n A combinations of
outcomes of x € U.
X CopP

© apresheaf A : C°P — Sets that is separated,
i.e., it assigns a relation Ay C [,y Ax to each context U.

® cquivalently, a non-degenerate simplicial map 7 : ) . cx Ay = X
from the simplicial complex A of possible joint outcomes.

9



... that is no-signalling, meaning that




... that is no-signalling, meaning that




... that is no-signalling, meaning that
each restriction Aycy : Ay — Ay is onto, i.e.,
s€eAyand U C V e Cimply s = /[y for some 7 € Ay.




... that is no-signalling, meaning that
each restriction Aycy : Ay — Ay is onto, i.e.,
s€eAyand U C V e Cimply s = /[y for some 7 € Ay.




... that is no-signalling, meaning that
each restriction Aycy : Ay — Ay is onto, i.e.,
s€eAyand U C V e Cimply s = /[y for some 7 € Ay.




... that is no-signalling, meaning that
each restriction Aycy : Ay — Ay is onto, i.e.,
s€eAyand U C V e Cimply s = /[y for some 7 € Ay.

A global section is then

e a family {sy}yec of sections
that is a “matching family”,
ie. (sy)ly=syforUCV;




... that is no-signalling, meaning that
each restriction Aycy : Ay — Ay is onto, i.e.,
s€eAyand U C V e Cimply s = /[y for some 7 € Ay.

A global section is then

e a family {sy}yec of sections
that is a “matching family”,
ie. (sy)ly=syforUCV;

e asimplicialmapg: X — X
s.th. rog = Ix.
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No-signalling tables then form a larger polytope.
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The polytopes are bounded by the CHSH and other inequalities.
E.g.in (2,2,2),

4

22
& 2
L

with the PR box being the only vertices of N'S.

What do possibilistic tables do?
—They capture the “combinatorial” structure of the polytope NS:
Theorem (Abramsky-Barbosa-KK-Lal-Mansfield 2016).

Take the supports of probabilistic tables in NS, and order them by
context-wise inclusion of supports. Then the poset obtained is
isomorphic to the face lattice of N'S.
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Spekkens’ notion of measurement contextuality
(due to Linde Wester and Shane Mansfield)

An “operational theory” talks about:
e preparations p, e transformations ¢,
e measurements 1, e aset O of outcomes k.
And the theory concerns probabilities Pr(k | p,m) and Pr(k | p,t,m).
Write m = m’ if m and m’ are “equivalent”, meaning
Pr(k|p,m)=Pr(k|p,m’) forallp.

To this theory, an “ontological model” adds:
e aset Q of “ontic states” A,
e for each p, a distribution u,, € D(Q),
e foreacht,amapl;: Q — D),
e for each m, amap &, : Q — D(0).
The model reproduces the theory if
Pr(k | p,t,m) = [dA'dA &u(A)(K) TADA) (D).
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Joint outcomes may satisfy
parity equations, e.g.:

0,0)Fx®y =0

O, DEx@y=1

(1,00 Fxey=1

(L) Ex®y=0
ag® by =0
ag®b; =0
ar®by=0
ar®b =1

P LHS’s # P RHS’s

The equations are inconsistent,
i.e. no global assignment consistent with the constraints,
i.e. strongly contextual!
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D LHS’s = 0 mod 3 D RHS’s = 2 mod 3

So let generalized all-vs-nothing argument use
any commutative ring R (e.g. Z,,) instead of Zj:

o koxo+ -+ +kpxy, =p for ko,...,ku,p€R.
e Equations are inconsistent if there is a subset of them s.th.,

e for each variable x, its coefficients £ in that subset of equations
add up to 0,

e parities p do not.

An empirical model is strongly contextual if
it “admits” generalized AvN argument, meaning that its sections
satisfy linear equations that are inconsistent in the way above.
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Argument works for
logical contextuality, too:

a v b a v b
=(ao A by) =(ap A by)
=(ar A by) =(ar A bo)

aop A by .o=(ag A bo)

1

No global assignment
(consistent with the other
constrants) satisfies ay A by,
i.e. logically contextual!

It is just like showing the above to be strongly contextual.

Not just linear equations, we may use other vocabulary;
e.g. Boolean formulas can deal with any instance of contextuality.

—But linear equations are nice.
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Cech-Cohomological Argument for Contextuality
Given an empirical model, consider Cech cohomology
using the following basic ingredients:
@ Family C of contexts U € C.

@® List “NC'” of intersecting pairs of contexts:
U, VeCsth.UNV # 2.

\/

So we are now taking a new simplicial complex, with
Ue(C asvertices,
(U,V) e NC" as edges.

20
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O As a very first approximation to a global section,
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each (nonempty) U € C.
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O As a very first approximation to a global section,
pick wy € F(U) for
each (nonempty) U € C.

Such a family
we ] rw
UeC,U+#2
is called a “O-cochain”. ?+2
e F= [] Fw

UeC,U+2

forms a group. \/

© Also take the group of “l-cochains”,
Cl(C,F) := 1_[ F{UNV).

U,veC,UNV#2
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@ The point is to take a group homomorphism
called a “O-coboundary map”,

§°: ¢, F) - Cl(C,F),
(W) = Pyay( @) = play(@y).
w s.th. 8%(w) = 0 is
e called a “O-cocycle”,

e our approximation
to a global section.

Caveat:

global section
N i
0-cocycle
The group of O-cocycles, i.e.
ker(6%), is written HO(C, F).
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= H°(C, F) 0-cochains © 1-cocycles = HY(C,F)

® For an answer to “Does s : U — R extend to a global section?”,
we take “relative cohomology” using a new presheaf F'[:

Fly(V):= FUNYV),
with pyv  F(V) > Fly(V) i re rlyay.
And another F: Fg(V) = ker(py).
So we have an exact sequence

0 Fy F—L sy
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o HY(C,Fy) —> H(C,F) —> H'(C, Fy)
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1 1 1
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So we have an exact sequence:

tricti v
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Each section s € Ay C F(U) has the “obstruction” y(s):

s extends to a cocycle & y(s) = 0.

T4

s extends to a global section

e False positives,
e.g. in Hardy model.

e Works for many cases;
e.g. PR box:
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AvN-Cohomology Theorem

In fact, this cohomological test works for all the previously known
examples of strong contextuality (GHZ, Kochen-Specker, . . .).
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In fact, this cohomological test works for all the previously known
examples of strong contextuality (GHZ, Kochen-Specker, . . .).

“Strongly contextual by AvN argument”
= “Strongly contextual by cohomology”:

Theorem (Abramsky, Barbosa, KK, Lal, Mansfield 2015).
Let M be a model over C. Then

e M admits a generalized AvN argument in a ring R
implies

e In Cech cohomology (using R), no section s in M has y(s) = 0.
Hence a hieararchy of strong contextuality:

— — —
AVN £ gen. AVN parid cohom. SC parid SC
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To prove this theorem, first observe:

Elements of the free module F(RY) are
“formal” linear combinations of sections s; : U — R,

aysy+ -+ ays, for «; €R.
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To prove this theorem, first observe:

Elements of the free module F(RY) are
“formal” linear combinations of sections s; : U — R,

aysy+ -+ ays, for «; €R.
But they can be seen as expressing sections:
(181 + -+ @psp)X) = a151(xX) + - - - + @pSp(x).
Formally, this defines a homomorphism € : F' (RY) —» RY.
In particular, affine combinations, with @) + --- + @, = 1, play arole.

Def. Given S C RY, write aff(S) C RY for its “affine closure”,

i.e. the set of ey(D;, @is;) for s; € S (with ;¢ @ = 1).

Def. Given an empirical model A, define a new one aff(A) by
aff(A)y = aff(Ay).

28









0,0=0,He(1,00e((1,1)
(1,1)=0,008 0, 1) (1,0)

29






Lemma. If an empirical model A admits gen. AvN argument in R,
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Lemma. If an empirical model A admits gen. AvN argument in R,
then so does aff(A) (with the same set of equations).

Pf. If all s; € S C RY satisfy a linear equation 2 kisi(x;) = p,
then so does every s € aff(S), because

2ikis(x) = Xk 2 iaisi(xg) = X kisi(g) = Yiaip = p. O
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Lemma. If a section s € RY is the U-component of
a matching family w = {wy € F(Ay) }yec (ie. 1 -5 = wy),
then eow = {ey(wy) € RV Jyec is a global section of aff(A)
with the U-component s.
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No-AvN Example of Strong Contextuality

Theorem (Abramsky-Barbosa-Caru-de Silva-KK-Mansfield 2017).

For a three-qubit state to be strongly non-local, it must be

e SLOCC-equivalent to the GHZ state
(so, SLOCC-non-equivalent to, e.g., the W state);

e (up to local unitaries) of the form

V& (161, 00162, 0)162,0) + ¢l — 6, 0l — 2, 0)r 63, 0))
with 8 + 6, + 65 < g

Moreover, for this state to exhibit strong non-locality,
only the “equatorial” measurements, i.e. local measurements
with eigenstates

T
5.0)
are relevant.
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The following family (n > 1) generalizing the GHZ model (n = 1) is
strongly contextual.
(n+1)7r >) .

State: \/7 (IO)lO)

Local measurements x; = ag, ..., a1, bo, - .., bau—1, o, Cn:

U222, 0) + 11|

X; = COS é—’:’UX + sin é—’;O'y
— : : noin
= measurement with +1 eigenstate |§, E>
Proof. Any global assignment of values to all x; must satisfy,
for all i,j < 2n, both
= +a7r+ +b7r+co7r¢7r mod 2,

2n+a7r+2 +bir+ (-1)"3- #nx mod 2.



€]

2
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Cn
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7T
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33



€]

2

2n+a[7r+2 +bjwr + cor # 1 mod 2n

& i+j+2n(a;+bj+co) #2n moddn

b8

2n+a7r+2 +bjm+ (=1)"4- # 7 mod 21

33



) 2n+a,7r+2 +bjwr + cor # 1 mod 2n
& i+j+2n(a;+bj+co) #2n moddn
{aieabj@cozo ifi+j=0,
ai®bjdco=1 ifi+j=2n

b8

2) 2n+a7r+2 +bjm+ (=1)"4- # 7 mod 21

33



) 2n+a[7r+2 +bjwr + cor # 1 mod 2n
& i+j+2n(a;+bj+co) #2n moddn
{aiEBbjGBC():O ifi+j=0,
ai®bjdco=1 ifi+j=2n
(aOEBboEBcon )
a;i®by,_i®co=1 (1<i<2n)

I8

2) 2n+a7r+2 +bjm+ (=1)"4- # 7 mod 2x

33



) 2n+a,7r+2 +bjwr + cor # 1 mod 2n
& i+j+2n(a;+bj+co) #2n moddn
{aieabj@cozo ifi+j=0,
ai®bjdco=1 ifi+j=2n
(aOEBboEBcon )
a;i®by,_i®co=1 (1<i<2n)

I8

(2) 2n+a7r+2 +bin+ (1)L #x mod 2x

& i+j+ (=D +2n(a; +bj) # 2n  mod 4n

33



) 2n+a,7r+2 +bjwr + cor # 1 mod 2n
& i+j+2n(a;+bj+co) #2n moddn
{aieabj@cozo ifi+j=0,
ai®bjdco=1 ifi+j=2n
(aOEBboEBcon )
a;i®by,_i®co=1 (1<i<2n)

T +#nx mod?2r

2 Iy am+ I+ b+ (D)L
& i+j+ (=D +2n(a; +bj) # 2n  mod 4n
{a,-eabjzo ifi+j+(=1)% =0
ai®bj=1 ifi+j+(=1) =2n

33



) 2n+a,7r+2 +bjwr + cor # 1 mod 2n
& i+j+2n(a;+bj+co) #2n moddn
{m@@@mzo ifi+j=0,
ai®bjdco=1 ifi+j=2n
(aOEBboEBcon )
a;i®by,_i®co=1 (1<i<2n)

T +n71 mod2n

2) 2n+a”+2 + b+ (=)
= i+j+(=1)"+2n(a; + b)) # 2n mod 4n
{m@@zo ifi+j+ (-1 =0
ai®bj=1 ifi+j+(=1)"=2n
ai®bj=1 ifi+j+1=2nandc, =0,
& {a;®bj=0 ifi+j-1=0andc, =1,
ai®bj=1 ifi+j—1=2nandc, =1

33



ap®by®dcy=0
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