Sequential Selection for Accelerated Life Testing via Approximate Bayesian Inference

Qiong Zhang School of Mathematical and Statistical Sciences Clemson University

Abstract

Approximate Bayesian inference has been proposed to construct computationally tractable statistical learning procedures for incomplete or censored data. In this talk, I will discuss a sequential model-updating procedure via approximate Bayesian inference for the Log-normal model with censored observations. We show that the proposed procedure leads to a consistent model parameter estimation. The developed model updating procedure also enables a closed form expression of a sequential design criterion. The proposed procedure is applied to accelerated life testing experiments, which aims at determining the material alternative with the best reliability performance.