Valuative Capacity of some compact subsets of \mathbb{Z}_p

Anne Johnson

February 4, 2019
A p-ordering of an infinite set, $S \subseteq \mathbb{Z}_p$, is a sequence in S such that for $\forall n > 0$, a_n minimizes

$$v_p((x - a_{n-1}) \ldots (x - a_0))$$
Background: \(p \)-orderings, \(p \)-sequences

A \(p \)-\textbf{ordering} of an infinite set, \(S \subseteq \mathbb{Z}_p \), is a sequence in \(S \) such that for \(\forall n > 0 \), \(a_n \) minimizes

\[
v_p((x - a_{n-1}) \ldots (x - a_0))
\]

cf: A \(\rho \)-\textbf{ordering} of \(S \), a (compact) subset of an ultrametric space \((M, \rho)\), is a sequence in \(S \) such that \(\forall n > 0 \), \(a_n \) maximizes

\[
\prod_{i=0}^{n-1} \rho(x, a_i)
\]
Background: p-orderings, p-sequences

The p-sequence of S is the sequence whose 0^{th}-term is 1 and whose n^{th} term, for $n > 0$, is

$$v_p((a_n - a_{n-1}) \ldots (a_n - a_0))$$
Background: p-orderings, p-sequences

The p-sequence of S is the sequence whose 0^{th}-term is 1 and whose n^{th} term, for $n > 0$, is

\[v_p((a_n - a_{n-1}) \ldots (a_n - a_0)) \]

cf: The ρ-sequence of S is the sequence whose 0^{th}-term is 1 and whose n^{th} term, for $n > 0$, is

\[\prod_{i=0}^{n-1} \rho(a_n, a_i) \]
The **valuative capacity** of an infinite set, $S \subseteq \mathbb{Z}_p$, is

$$L_p(S) := \lim_{n \to \infty} \frac{w_S(n, p)}{n}$$

where $w_S(n, p)$ is the p–sequence of S.

\[nb:\text{this is the Robin's constant and can be found via the equilibrium measure:}\]

$$L_p(S) = \inf_{\mu \in \mathcal{P}(\overline{S})} \int \int v_p(x - y) \, d\mu(x) \, d\mu(y)$$
The **valuative capacity** of an infinite set, $S \subseteq \mathbb{Z}_p$, is

$$L_p(S) := \lim_{n \to \infty} \frac{w_S(n, p)}{n}$$

where $w_S(n, p)$ is the p–sequence of S.

nb: this is the Robin’s constant and can be found via the equilibrium measure:

$$L_p(S) = \inf_{\mu \in \mathcal{P}(\bar{S})} \int \int v_p(x - y) d\mu(x) d\mu(y)$$
The **logarithm capacity** of an infinite set, $S \subseteq \mathbb{Z}_p$, is

$$V_p(E) := p^{-L_p(E)}$$

nb: this is equal to the transfinite diameter and the Chebychev constant.
The **logarithm capacity** of an infinite set, $S \subseteq \mathbb{Z}_p$, is

$$V_p(E) := p^{-L_p(E)}$$

nb: this is equal to the transfinite diameter and the Chebychev constant.
Let $A = \{0, 1, \ldots, d - 1\}$ be a finite alphabet and $A^\mathbb{N}$ be the collection of infinite sequences with values in A.

Let $p \geq d$ be a prime number and let ϕ be the canonical embedding of $A^\mathbb{N}$ into \mathbb{Z}_p via the following continuous map:

$$
\phi : A^\mathbb{N} \rightarrow \mathbb{Z}_p \text{ by } (x_n)_{n \geq 0} \mapsto \sum_{k=0}^{\infty} x_k p^k
$$
Lemma

Let w_1, w_2, \ldots, w_s be $s \geq 2$ words with the same length l such that all the first letters are distinct. Let $X \subset A^\mathbb{N}$ be the set of sequences such that any factor is a factor of a concatenation of the words w_1, w_2, \ldots, w_s. Then the set $E := \phi(X) \subset \mathbb{Z}_p$ satisfies:

$$E = \bigcup_{i=1}^s x_i + p^l E,$$

with $x_i = \phi(w_i0^n)$

It is a regular compact set and its valuative capacity is

$$L_p(E) = \frac{l}{s - 1}$$

Notice that this provides examples of sets with empty interiors but with positive capacities.
An example:

\[w_1 = 0, \; w_2 = 2, \; A = \{0, 1, 2\}, \; p = d = 3 \]

Then \(\{x_n\}_{n \geq 0} \in X \) if each term in \(\{x_n\}_{n \geq 0} \) is either 0 or 2. We have

\[
E = 0 + 3E \cup 2 + 3E \quad \text{and} \quad L_p(E) = \frac{1}{2 - 1} = 1
\]
Digression: projective k-space

Let k be a field that is complete with respect to a non-archimedean valuation.

Definition
The **projective line over** k, denoted $\mathbb{P}^1(k)$, is the space whose points are lines l in k^2 that intersect $(0,0)$.

Proposition
Let $\psi : k \to \mathbb{P}^1(k)$ be the map given by $\psi(\lambda_0) = [1, \lambda_0]$, where $[1, \lambda_0]$ is the line in k^2, $\{\lambda(1, \lambda_0); \lambda \in k^*\}$. Then the image of ψ is $\mathbb{P}^1(k) \setminus [0, 1]$ and is isomorphic to k, so that k is identified with projective space minus a distinguished point, $[0, 1]$, which is denoted by ∞.
Definition
We denote by $GL(2, k)$ the set of invertible 2×2 matrices over k. A fractional linear automorphism, ϕ, of $\mathbb{P}^1(k)$ is a map defined by $z \mapsto \frac{az+b}{cz+d}$ for some $(a \ b \ c \ d) \in GL(2, k)$. The set of fractional linear automorphisms of $\mathbb{P}^1(k)$ is denoted $PGL(2, k)$.

Note that $PGL(2, k) = GL(2, k)/\{\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}; \lambda \in k^*\}$. In homogeneous coordinates, we can represent the action of ϕ by $[x_0, x_1] \mapsto [cx_1 + dx_0, ax_1 + bx_0]$.

Digression: projective k-space
Digression: projective k-space

Definition
Suppose Γ is a subgroup of $\text{PGL}(2, k)$. A point $p \in \mathbb{P}^1(k)$ is a **limit point of** Γ, if there exists a point q in $\mathbb{P}^1(k)$ and a sequence $\{\gamma_n\}_{n \geq 1}$ in Γ such that $\lim_{n \to \infty} \gamma_n(q) = p$.
Let x_1, x_2, \ldots, x_s be $s \geq 2$ points in \mathbb{Z}_p such that $|x_i - x_j|_p = 1, \forall i, j \in 1, \ldots, s$. Suppose also that there exists an $l \in \mathbb{N}$ such that $\forall i$,

$$x_i = \sum_{i=0}^{\infty} a_i p^i = \sum_{i=0}^{l} a_i p^i$$
Let γ_i be the fractional linear automorphism of $\mathbb{P}^1(\mathbb{Q}_p)$ given by $\begin{pmatrix} p^l & x_i \\ 0 & 1 \end{pmatrix}$ and let Γ be the subgroup of $PGL(2, \mathbb{Q}_p)$ generated by the γ_i.

Then Γ has a subgroup H such that the limit set \mathcal{L} of H has the property that $Z = \psi^{-1}(\mathcal{L})$ is equal to $\phi(X)$ in the original lemma. In particular Z is a regular, compact subset of \mathbb{Z}_p satisfying

$$Z = \bigcup_{i=1}^s x_i + p^l Z = \bigcup_{i=1}^s B_{\frac{1}{p^l}}(x_i)$$

and with vaulative capacity

$$L_p(Z) = \frac{l}{s - 1}$$
Fares and Petite, Lemma 5.1, rephrased

Sketch of proof:

- We have to show that the set Z above is equal to $E = \phi(X)$ in the original lemma.
- That the w_i correspond to the x_i is not hard to see.
- What is the limit set of Γ?
Limit set of Γ

Let $\gamma \in \Gamma$.

- If γ is a product of the generators γ_i, then γ is represented by a matrix of the form: $\begin{pmatrix} p^l m & z \\ 0 & 1 \end{pmatrix}$, where $m \in \mathbb{N}$ and z is an element of \mathbb{Z}_p whose coefficient vector is a concatenation of the coefficient vectors of the x_i (for $0 \leq i \leq ml$ and 0 for $i > ml$).

- For example,

$$\begin{pmatrix} p^l x_i \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} p^l x_j \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} p^l x_k \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} p^{3l} p^{2l} x_k + p^l x_j + x_i \\ 0 \\ 1 \end{pmatrix}$$

- The action of this map is given by

$$[a_0, a_1] \mapsto [a_0, p^{lm} a_1 + z a_0] \sim [1, p^{lm} \frac{a_1}{a_0} + z]$$
Let $\gamma \in \Gamma$.

- If γ is a product of the inverses of the generators γ_i^{-1}, then γ is represented by a matrix of the form: $\begin{pmatrix} p^{-lm} & -p^{-l}z^{-1} \\ 0 & 1 \end{pmatrix}$, where $m \in \mathbb{N}$ and z is as above.

- For example,

$$ \begin{pmatrix} p^{-l} & -p^{-l}x_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^{-l} & -p^{-l}x_j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p^{-l} & -p^{-l}x_k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{-3l} & -p^{-3l}x_k - p^{-2l}x_j - p^{-l}x_i \\ 0 & 1 \end{pmatrix} $$

- The action of this map is given by

$$ [a_0, a_1] \mapsto [a_0, p^{-lm}a_1 - p^{-l}z^{-1}a_0] \sim [1, p^{-l}(p^{-m}\frac{a_1}{a_0} - z^{-1})] $$
Limit set of Γ

Let $\gamma \in \Gamma$.

- If γ is of the form $\gamma_{\gamma}^{-1}\gamma_i$, for $i \neq j$, then γ is represented by a matrix of the form: \[
\begin{pmatrix}
1 & p^{-l}(x_i-x_j) \\
0 & 1
\end{pmatrix}
\]

- The action of this map is given by

\[
[a_0, a_1] \mapsto [a_0, a_1 + p^{-l}(x_i-x_j)a_0] \sim [1, \frac{a_1}{a_0} + p^{-l}(x_i-x_j)]
\]
Limit set of Γ

Let $\gamma \in \Gamma$.

- If γ is of the form $\gamma_j \gamma_i^{-1}$, for $i \neq j$, then γ is represented by a matrix of the form:
 $\begin{pmatrix}
 1 & x_j - x_i \\
 0 & 1
 \end{pmatrix}$

- The action of this map is given by

 $$[a_0, a_1] \mapsto [a_0, a_1 + (x_i - x_j)a_0] \sim [1, \frac{a_1}{a_0} + (x_i - x_j)]$$
Let $\gamma \in \Gamma$.

- If γ is of the form $\gamma_j \gamma_i^{-1}$, for $i \neq j$, then γ is represented by a matrix of the form:
 \[
 \begin{pmatrix}
 1 & x_j - x_i \\
 0 & 1
 \end{pmatrix}
 \]

- The action of this map is given by
 \[
 [a_0, a_1] \mapsto [a_0, a_1 + (x_i - x_j)a_0] \sim [1, \frac{a_1}{a_0} + (x_i - x_j)]
 \]

- We quotient the group Γ by the group generated by the translations to obtain H.
In fact, all of the translations commute with each other, so we can quotient by the entire translation subgroup, i.e., the subgroup generated by \(\{ \gamma_i \gamma_j^{-1}, \gamma_i^{-1} \gamma_j; \forall i, j \in 1, \ldots, s \} \). The resulting quotient group is discontinuous, finitely generated, and every element (\(\neq \text{id} \)) is hyperbolic, i.e., it is a Schottky group.
In fact, all of the translations commute with each other, so we can quotient by the entire translation subgroup, i.e., the subgroup generated by \(\{ \gamma_i \gamma_j^{-1}, \gamma_i^{-1} \gamma_j; \forall i, j \in 1, \ldots, s \} \)

The resulting quotient group is discontinuous, finitely generated and every element (\(\neq id \)) is hyperbolic, i.e., it is a Schottky group.
Consider the following:

\[
S \subseteq \mathbb{Z}_p \quad \rightarrow \quad \mathbb{Q}_p
\]

\[
\downarrow \quad \quad \quad \downarrow
\]

\[
\mathbb{P}(\mathbb{Z}_p) \quad \quad \mathbb{P}(\mathbb{Q}_p)
\]
references

Youssef Fares and Samuel Petite, The valuative capacity of subshifts of finite type.

Keith Johnson, P-orderings and Fekete sets