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1. Introduction

An interesting topic in the theory of partitions is that of
restricted partitions:

Given a vector
d := (d1,d2, . . . ,dm)

of positive integers, let W (s,d) be the number of partitions of
the integer s with parts in d,

i.e., W (s,d) is the number of solutions of

d1x1 + d2x2 + · · ·+ dmxm = s (1)

in nonnegative integers x1, . . . , xm.
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Example: Let d = (1,2,3) and s = 6.

Then the restricted partitions are

3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1.

So W (6, (1,2,3)) = 7.

Remark: When d = (1,2, . . . ,m), one usually writes

W (s,d) = p(s,m).
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Euler introduced generating functions in the study of
questions of this type.
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In our example: Consider

1
1− t1 ×

1
1− t2 ×

1
1− t3
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The next major advance was made by Sylvester (1857, 1882):

J. J. Sylvester (1814–1897)
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He wrote W (s,d) as a sum of “waves",

W (s,d) =
∑
j≥1

Wj(s,d),

the sum taken over all distinct divisors j of the components of d.

Only W1(s,d) is a polynomial, called the polynomial part of
the restricted partition function W (s,d).

The Wj(s,d) for j ≥ 1 are quasipolynomials, i.e., polynomials
separately for s in each residue class modulo j .

Purpose of this talk:
• To give an elementary expression for W1(s,d).
• In the process, introduce a symbolic notation for Bernoulli
numbers and polynomials.
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2. The Main Result

Sylvester (1882) showed that for each such j , Wj(s,d) is the
residue of

Fj(s, t) :=
∑

0≤ν<j
gcd(ν,j)=1

ρ−νs
j est(

1− ρνd1
j e−d1t

)
. . .
(

1− ρνdm
j e−dmt

) ,
where ρj is a primitive j-th root of unity, e.g., ρj = e2πi/j .
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Restricted partitions were also studied by A. Cayley (1856/58),
and Sylvester waves by J. W. L. Glaisher (1908, 1910).

A. Cayley J. W. L. Glaisher
(1821–1895) (1848–1928)
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More recently, restricted partitions and Sylvester waves were
investigated in detail by

• M. Beck, I. M. Gessel, and T. Komatsu (2001),

• L. G. Fel and B. Y. Rubinstein (2002, 2006),

• B. Y. Rubinstein (2008),

• J. S. Dowker (preprints, 2011, 2013),

• A. V. Sills and D. Zeilberger (2012),

• C. O’Sullivan (2015),

• M. Cimpoeas and F. Nicolae (2017).
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Consider Sylvester’s formula

Fj(s, t) :=
∑

0≤ν<j
gcd(ν,j)=1

ρ−νs
j est(

1− ρνd1
j e−d1t

)
. . .
(

1− ρνdm
j e−dmt

)
for j = 1:

Very close to the generating function of a higher-order
Bernoulli polynomial.

This fact was used by Rubinstein and Fel (2006) to write
W1(s,d) in a very compact form in terms of a single
higher-order Bernoulli polynomial. (See later).

A version of this result, given in two different forms, was earlier
obtained by Beck, Gessel and Komatsu (2001).
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Similarly, for j = 2 we have ρj = −1, and

∑
0≤ν<j

gcd(ν,j)=1

ρ−νs
j est(

1− ρνd1
j e−d1t

)
. . .
(

1− ρνdm
j e−dmt

)
leads to a convolution sum of
• higher-order Bernoulli polynomials and
• higher-order Euler polynomials.

(Rubinstein and Fel, 2006).

Rubinstein (2008):
All the Wj(s,d) can be written as linear combinations of the first
wave (j = 1) alone, with modified integers s and vectors d.
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This last result makes it worthwhile to give further consideration
to W1(s,d).

Theorem 1 (D & Vignat)

Let d := (d1,d2, . . . ,dm), and denote d := d1 . . . dm and
d̃i := d/di , i = 1, . . . ,m. Then

W1(s,d) =
1

(m − 1)!dm

×
∑

0≤`1≤d̃1−1
...

0≤`m≤d̃m−1

m−1∏
j=1

(s + jd − `1d1 − · · · − `mdm) .

Note: New in this identity:
It does not contain Bernoulli numbers or polynomials.
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Examples:

We can obtain some well-known small cases, e.g.,

W1(s, (d1,d2)) =
1

d1d2
s +

d1 + d2

2d1d2
,

or, for m = 3,

W1(s, (d1,d2,d3)) =
1

2d1d2d3
s2 +

d1 + d2 + d3

2d1d2d3
s

+
1
12

(
(d1 + d2 + d3)

2

d1d2d3
+

1
d1

+
1
d2

+
1
d3

)
.

Note: Glaisher (1908) obtained these, and all cases m ≤ 7, by
a different method.

Other authors obtained explicit polynomial parts for
d = (1,2, . . . ,m) for small m.
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Figure 1: W1(s,d) (solid line) and W (s,d) (dots)
for d = (3,5) and s ≤ 200.
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Figure 2: W1(s,d) (solid line) and W (s,d) (dots)
for d = (3,5,7) and s ≤ 100.
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3. Higher-order Bernoulli Polynomials

The (ordinary) Bernoulli polynomials Bn(x), n = 0,1,2, . . . are
defined by

z
ez − 1

exz =
∞∑

n=0

Bn(x)
zn

n!
.

For an integer k ≥ 1, the Bernoulli polynomial of order k is
defined by (

z
ez − 1

)k

exz =
∞∑

n=0

B(k)
n (x)

zn

n!
.

(Note: Can also be defined for arbitrary k – not needed here).

Among numerous properties, they satisfy

B(m)
m−1(x) = (x − 1)(x − 2) . . . (x −m + 1) (m ≥ 2),

with B(1)
0 (x) = B0(x) = 1.
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A further generalization:
For m ≥ 1 and d = (d1, . . . ,dm) (dj ∈ N) we define the
polynomials B(m)

n (x |d), n = 0,1, . . ., by

exz
m∏

i=1

diz
edi z − 1

=
∞∑

n=0

B(m)
n (x |d)zn

n!
.

(Nörlund, “Differenzenrechnung", 1924).

By comparing generating functions:

B(m)
n (x |(1, . . . ,1)) = B(m)

n (x).

The B(m)
n (x |d) are also known as Bernoulli-Barnes polynomials.

(With different notation and normalization).
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Main lemma: An analogue of the identity

B(m)
m−1(x) = (x − 1)(x − 2) . . . (x −m + 1). (2)

Lemma 2 (D & Vignat)

Let m ∈ N and d := (d1, . . . ,dm), dj ∈ N. Denote d := d1 . . . dm

and d̃i := d/di , 1 ≤ i ≤ k. Then

B(m)
m−1(x |d) =

1
dm−1

∑
0≤`1≤d̃1−1

...
0≤`m≤d̃m−1

m−1∏
j=1

(x − jd + `1d1 + · · ·+ `mdm) .

(3)

Note: When d = (1, . . . ,1), sum on the right of (3) collapses to
`1 = . . . = `m = 0; we recover (2).
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Another lemma: Recall reflection formula for Bernoulli
polynomials:

Bn(x + 1) = (−1)nBn(−x).

Higher-order analogue:

Lemma 3
Let m and d1, . . . ,dm be as before, and d := (d1, . . . ,dm) and
σ := d1 + · · ·+ dm. Then for all n ≥ 0,

B(m)
n (x + σ|d) = (−1)nB(m)

n (−x |d).

Can be found in Nörlund’s “Differenzenrechnung" (1924).
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Proof of our theorem:

Rubinstein and Fel (2006) proved:

W1(s,d) =
1

(m − 1)!d
B(m)

m−1(s + σ|d), (4)

where, as before, d = (d1, . . . ,dm), d = d1 . . . dm, and
σ = d1 + · · ·+ dm.

A version of this can also be found in Beck & Robins,
“Computing the Continuous Discretely", 2nd ed., 2015.

Combining (4) with both lemmas immediately gives the
theorem.

Remark: Theorem 1 can be rewritten:
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Corollary 4

Let d := (d1,d2, . . . ,dm) and d := d1 . . . dm. Then

W1(s,d) =
1
d

∑
`

(
m − 1 + s−`

d
m − 1

)
, (5)

where the sum is taken over all ` with

` = `1d1 + · · ·+ `mdm, 0 ≤ `i ≤ d
di
− 1, i = 1, . . . ,m.

Independently proved by M. Cimpoeas and F. Nicolae (2017).

When d1 = · · · = dm = 1, (5) collapses to a single term:

W (s,d) = W1(s,d) =
(

m − 1 + s
m − 1

)
.

(A well-known elementary expression).
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4. Symbolic Notation

We define the Bernoulli symbol B by

Bn = Bn (n = 0,1, . . .),

where Bn is the nth Bernoulli number.

So we can rewrite the usual definition

Bn(x) =
n∑

j=0

(
n
j

)
Bjxn−j as Bn(x) = (x + B)n.

With the usual (generating function) definition of Bn we have

exp (Bz) =
∞∑

n=0

Bn zn

n!
=
∞∑

n=0

Bn
zn

n!
=

z
ez − 1

.

Note that

exp((B + 1)z) =
z

ez − 1
· ez =

−z
e−z − 1

= exp(−Bz),

and thus
B + 1 = −B.
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The uniform symbol U is defined by

f (x + U) =
∫ 1

0
f (x + u)du.

where f is a polynomial.

Thus,

Un =
1

n + 1
(n = 0,1, . . .),

which gives

exp (Uz) =
∞∑

n=0

Un zn

n!
=

ez − 1
z

.

Combining this with the analogous identity for exp (Uz),

1 =
z

ez − 1
· ez − 1

z
= exp (z (B + U)) =

∞∑
n=0

(B + U)n zn

n!
.
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Hence B and U annihilate each other, i.e.,

(B + U)n = 0 for all n > 0.

In other words,
f (x + B + U) = f (x)

for a polynomial f .

Also useful: independent Bernoulli symbols B1, . . . ,Bk .

Independence means: for any two Bernoulli symbols B1 and B2,

Bk
1B`2 = BkB`.

Related to this, we define the higher-order Bernoulli symbol
B(k) by

B(k) = B1 + · · ·+ Bk ,

where B1, . . . ,Bk are independent Bernoulli symbols.
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Application:

Recall: Bernoulli polynomial, defined by

exz z
ez − 1

=
∞∑

n=0

Bn(x)
zn

n!
,

can be written as
Bn(x) = (x + B)n.

Similarly, we can write

exz
m∏

i=1

diz
edi z − 1

=
∞∑

n=0

B(m)
n (x |d)zn

n!

symbolically as

B(m)
n (x |d) = (x + d1B1 + · · ·+ dmBm)

n .
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For instance, using
B + 1 = −B,

we get, with σ := d1 + · · ·+ dm,

B(m)
n (x + σ|d) = (x + d1(B1 + 1) + · · ·+ dm(Bm + 1))n

= (x − d1B1 − · · · − dmBm)
n

= (−1)n (−x + d1B1 + · · ·+ dmBm)
n

= B(m)
n (−x |d).

This is Lemma 3.

Lemma 2 can be obtained (and, in fact, was discovered) with
similar manipulations.
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5. Some Consequences of Theorem 1

Recall Theorem 1:

With d := (d1,d2, . . . ,dm), d := d1 . . . dm, and d̃i := d/di ,

W1(s,d) =
1

(m − 1)!dm

×
∑

0≤`1≤d̃1−1
...

0≤`m≤d̃m−1

m−1∏
j=1

(s + jd − `1d1 − · · · − `mdm) .
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By an easy expansion of the product in Theorem 1 we get:

Corollary 5

For d := (d1, . . .dm), d := d1 . . . dm, and σ := d1 + · · ·+ dm,

W1(s,d) =
1

(m − 1)!d
sm−1 +

σ

2(m − 2)!d
sm−2 + . . .

The leading coefficient has long been known.

The second coefficient was obtained by Rieger (1959) for
d = (1,2, . . . ,m).
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The second coefficient was obtained by Rieger (1959) for
d = (1,2, . . . ,m).
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By considering the m-fold sum in Theorem 1 as the Riemann
sum of a multiple integral, we obtain an asympotic expansion:

Corollary 6
With d and d as above, let λ > 0 and s ≥ λd, and let d grow
arbitrarily large in such a way that at least two of the
components dj , 1 ≤ j ≤ m, are unbounded. Then

W1(s,d) ∼
1

(m − 1)!d
sm−1.

In other words, W1(s,d) has the same asymptotic behaviour as
in the case of bounded d .
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Thank you
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