Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case

Integer-Valued Polynomials on 3×3 Matrices

Asmita Sodhi

Dalhousie University

acsodhi@dal.ca

February 12, 2018

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 × 3 Case
00000	000	0000	00000000	000000000000000
Overview				

- The ring of integer-valued polynomials
- p-orderings and p-sequences
- 2 Polynomials over Noncommutative Rings
- 3 Maximal Orders
- IVPs over Matrix Rings
 - Moving the problem to maximal orders
 - An analogue to *p*-orderings

5 The 3×3 Case

- Subsets of Δ
- The ν -sequence of Δ
- Characteristic polynomials
- Towards computing ν -sequences

The Ring of Integer-Valued Polynomials

The set

$$\mathsf{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[x] : f(\mathbb{Z}) \subseteq \mathbb{Z} \}$$

of rational polynomials taking integer values over the integers forms a subring of $\mathbb{Q}[x]$ called the *ring of integer-valued polynomials* (IVPs).

Int(\mathbb{Z}) is a polynomial ring and has basis $\left\{\binom{x}{k}: k \in \mathbb{Z}_{>0}\right\}$ as a \mathbb{Z} -module, with

$$\binom{x}{k} := \frac{x(x-1)\cdots(x-(k-1))}{k!} , \qquad \binom{x}{0} = 1 , \qquad \binom{x}{1} = x .$$

This basis is a *regular basis*, meaning that the basis contains exactly one polynomial of degree k for $k \ge 1$.

oeooo	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings 000000000	The 3 × 3 Case 0000000000000000
p-ordering	gs			

The study of IVPs on subsets of the integers greatly benefited from the introduction of p-orderings by Bhargava [1].

Definition

Let S be a subset of \mathbb{Z} and p be a fixed prime. A p-ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ defined as follows: choose an element $a_0 \in S$ arbitrarily. Further elements are defined inductively where, given $a_0, a_1, \ldots, a_{k-1}$, the element $a_k \in S$ is chosen so as to minimize the highest power of p dividing

$$\prod_{i=0}^{k-1} (a_k - a_i) \; .$$

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 × 3 Case
○0●00	000	0000	000000000	00000000000000
n_sequer				

The choice of a *p*-ordering gives a corresponding sequence:

Definition

The associated *p*-sequence of *S*, denoted $\{\alpha_{S,p}(k)\}_{k=0}^{\infty}$, is the sequence wherein the k^{th} term $\alpha_{S,p}(k)$ is the power of *p* minimized at the k^{th} step of the process defining a *p*-ordering. More explicitly, given a *p*-ordering $\{a_i\}_{i=0}^{\infty}$ of *S*,

$$\alpha_{\mathcal{S},p}(k) = \nu_p\left(\prod_{i=0}^{k-1} (a_k - a_i)\right) = \sum_{i=0}^{k-1} \nu_p(a_k - a_i)$$

 Intro to IVPs
 Noncomm Rings
 Maximal Orders
 IVPs over Matrix Rings
 The 3 x 3 Case

 cooleo
 oo
 ooo
 ooo
 performance
 cooleo
 cooleo
 The 3 x 3 Case

 An Example of p-orderings and p-sequences
 performance
 cooleo
 coooleo
 <td

Let p = 2 and $S = \{1, 2, 3, 5, 8, 13\}$. What is a possible *p*-ordering for *S*?

k	0	1	2	3	4	5
a _k	1	2	3	8	5	13
$\alpha_{S,p}(k)$	0	0	1	1	3	6

What happens if we make a different choice for a_0 ?

	k	0	1	2	3	4	5
	a _k	5	8	2	3	1	13
·	$\alpha_{S,p}(k)$	0	0	1	1	3	6

Though the choice of a *p*-ordering of *S* is not unique, the associated *p*-sequence of a subset $S \subseteq \mathbb{Z}$ is independent of the choice of *p*-ordering [1].

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 \times 3 Case 000000000000000000000000000000000000
○000●	000	0000	000000000	

These *p*-orderings can be used to define a generalization of the binomial polynomials to a specific set $S \subseteq \mathbb{Z}$ which serve as a basis for the integer-valued polynomials of *S* over *Z*,

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subseteq \mathbb{Z}\}$$
.

An analogous definition of *P*-orderings and *P*-sequences exists for a subset *E* of a Dedekind domain *D* where *P* is a nonzero prime ideal of *D*. As for $Int(S, \mathbb{Z})$, the *P*-ordering plays a role in determining a regular basis for Int(E, D), should one exist.

Let R be any ring, with R[x] the associated polynomial ring, where the variable x commutes elementwise with all of R. Note that though

$$f(x) = \sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} x^i a_i$$
,

the *evaluation* of these two expressions at an element $r \in R$ may be different – that is, it is possible that $\sum_{i=0}^{n} a_i r^i \neq \sum_{i=0}^{n} r^i a_i$.

For this reason, the standard definition of evaluation of a function f(x) at $r \in R$ requires f to be expressed in the form $\sum_{i=0}^{n} a_i x^i$, and then substituting r for x.

Theorem (Gordon-Motzkin, [5] 16.4)

Let D be a division ring, and let f be a polynomial of degree n in D[x]. Then the roots of f lie in at most n conjugacy classes of D. This means that if $f(x) = (x - a_1) \cdots (x - a_n)$ with $a_1, \ldots, a_n \in D$, then any root of f is conjugate to some a_i .

Theorem (Dickson's Theorem, [5] 16.8)

Let D be a division ring and F its centre. Let $a, b \in D$ be two elements that are algebraic over F. Then a and b are conjugate in D if and only if they have the same minimal polynomial over F.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
	000			

A theorem of Bray-Whaples ([5], 16.13) purports that there is such thing as a minimal polynomial over a set of elements in a division ring. The construction for such a polynomial is given by the following proposition.

Proposition ([4], 2.4)

Let *D* be a subring of a division algebra, and c_1, \ldots, c_n be *n* pairwise nonconjugate elements of *D*. Then the minimal polynomial is given inductively by

$$f(a_0)(x) = (x - a_0)$$

$$f(a_0, \dots, a_n)(x) = (x - a_n^{f(a_0, \dots, a_{n-1})(a_n)}) \cdot f(a_0, \dots, a_{n-1})(x)$$

Maximal	Orders			
Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 × 3 Case
00000	000	●○○○	000000000	

Definition ([6], Section 8)

Let *R* be a Noetherian integral domain with quotient field *K*, and *A* a finite-dimensional *K*-algebra. An *R*-order in *A* is a subring Λ of *A* which has the same unit element as *A*, and is such that Λ is a finitely-generated *R*-submodule with $K \cdot \Lambda = A$.

Note that every finite-dimensional *K*-algebra *A* contains *R*-orders, since there exist $y_1, y_2, \ldots, y_n \in A$ such that $A = \sum_{i=1}^n Ky_i$, and so $\Delta = \sum_{i=1}^n Ry_i$ will satisfy the definition of an *R*-order.

Definition ([6])

A maximal *R*-order in *A* is an *R*-order which is not properly contained in any other *R*-order in *A*.

When *R* is a complete DVR with unique maximal ideal *P*, *R*/*P* is finite, *K* is the quotient field of *R*, *D* is a division ring with centre containing *K*, and $[D: K] = n^2$, then *D* contains a unique maximal *R*-order Δ and we can explicitly describe the structures of the division ring *D* and maximal order Δ , via a construction given in Reiner [6]. Furthermore, the description of the structure can be chosen to only depend on *n*.

For the sake of simplicity and future reference, here we describe the construction only in the case that |R/P| = 2 and n = 3, and in minimal detail.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 \times 3 Case
00000	000	○○●○	00000000	

Let ω be a primitive 7th root of unity, and let $W = \mathbb{Q}_2(\omega)$. Define elements

$$\omega^* = \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega^4 \end{pmatrix} \qquad \qquad \pi_D^* = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

•

Then the map generated by $\omega \mapsto \omega^*$ defines a \mathbb{Q}_2 -isomorphism $W \to W^* = \mathbb{Q}_2(\omega^*) \subseteq M_3(\mathbb{Q}_2(\omega))$, under which scalars $\lambda \in \mathbb{Q}_2$ are identified with $\lambda I_3 \in M_3(\mathbb{Q}_2)$.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
		0000		

The following relations exist between ω^* and π_D^* :

$$(\pi_D^*)^3 = 2I_3 \qquad \qquad \pi_D^* \cdot \omega^* = (\omega^*)^2 \cdot \pi_D^*$$

We then define

$$D = \mathbb{Q}_2[\omega^*, \pi_D^*]$$
,

which is a division ring with centre containing \mathbb{Q}_2 and $[D:\mathbb{Q}_2]=9=3^2$. The maximal order in D is

$$\Delta = \mathbb{Z}_2[\omega^*, \pi_D^*] \; .$$

We are particularly interested in studying IVPs over matrix rings.

We denote the set of rational polynomials mapping integer matrices to integer matrices by

 $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})) = \{ f \in \mathbb{Q}[x] : f(M) \in M_n(\mathbb{Z}) \text{ for all } M \in M_n(\mathbb{Z}) \}$.

We know from Cahen and Chabert [2] that $Int_{\mathbb{Q}}(M_n(\mathbb{Z}))$ has a regular basis, but it is not easy to describe using a formula in closed form [3].

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 \times 3 Case 000000000000000000000000000000000000
00000	000	0000	0●0000000	

Finding a regular basis for $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z}))$ is related to finding a regular basis for its integral closure. In order to study the latter object, we would like to describe the localizations of the integral closure of $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z}))$ at rational primes. To do this, we can use results about division algebras over local fields.

Theorem (in appendix of [7])

If D is a division algebra of degree n^2 over a local field K and F is a field extension of degree n of K, then F can be embedded as a maximal commutative subfield of D.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
			0000000	

If p is a fixed prime, D is a division algebra of degree n^2 over $K = \mathbb{Q}_p$, and R_n is its maximal order, then we obtain the following useful result:

Proposition ([3], 2.1)

The integral closure of $Int_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is $Int_{\mathbb{Q}}(R_n)$.

Thus, the problem of describing the integral closure of $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is exactly that of describing $\operatorname{Int}_{\mathbb{Q}}(R_n)$, and so we move our attention towards studying IVPs over maximal orders.

An Analogue to *p*-orderings

Definition ([4], 1.1)

Let *K* be a local field with valuation ν , *D* be a division algebra over *K* to which ν extends, *R* the maximal order in *D*, and *S* a subset of *R*. Then a ν -ordering of *S* is a sequence $\{a_i : i = 0, 1, 2, ...\} \subseteq S$ such that for each k > 0, the element a_k minimizes the quantity $\nu(f_k(a_0, ..., a_{k-1})(a))$ over $a \in S$, where $f_k(a_0, ..., a_{k-1})(x)$ is the minimal polynomial of the set $\{a_0, a_1, ..., a_{k-1}\}$, with the convention that $f_0 = 1$. We call the sequence of valuations $\{\nu(f_k(a_0, ..., a_{k-1})(a_k)) : k = 0, 1, ...\}$ the ν -sequence of *S*.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
			00000000	

Proposition ([4], 1.2)

Let *K* be a local field with valuation ν , *D* be a division algebra over *K* to which ν extends, *R* the maximal order in *D*, and *S* a subset of *R*. Additionally, let $\pi \in R$ be a uniformizing element, meaning an element for which $(\pi^n) = (p)$, let $\{a_i : i = 0, 1, 2, ...\} \subseteq S$ be a ν -ordering, and let $f_k(a_0, ..., a_{k-1})$ be the minimal polynomial of $\{a_0, a_1, ..., a_{k-1}\}$. Then the sequence $\{\alpha_S(k) = \nu(f_k(a_0, ..., a_{k-1})(a_k)) : k = 0, 1, 2, ...\}$ depends only on the set *S*, and not on the choice of ν -ordering. The sequence of polynomials

$$\{\pi^{-\alpha_{\mathcal{S}}(k)}f_{k}(a_{0},\ldots,a_{k-1})(x):k=0,1,2,\ldots\}$$

forms a regular R-basis for the R-algebra of polynomials which are integer-valued on S.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
			00000000	

In order to use this proposition, we need to be able to construct a ν -ordering for the maximal order R_n . A recursive method for constructing ν -orderings for elements of a maximal order is based on two lemmas.

Lemma (see [4], 6.2)

Let $\{a_i : i = 0, 1, 2, ...\}$ be a ν -ordering of a subset S of R with associated ν -sequence $\{\alpha_S(i) : i = 0, 1, 2, ...\}$ and let b be an element in the centre of R. Then:

- i) $\{a_i + b : i = 0, 1, 2, ...\}$ is a ν -ordering of S + b, and the ν -sequence of S + b is the same as that of S
- ii) If p is the characteristic of the residue field of K (so that $(p) = (\pi)^n$ in R), then $\{pa_i : i = 0, 1, 2, ...\}$ is a ν -ordering for pS and the ν -sequence of pS is $\{\alpha_S(i) + in : i = 0, 1, 2, ...\}$

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
			00000000	

Definition

The *shuffle* of two nondecreasing sequences of integers is their disjoint union sorted into nondecreasing order. If the sequences are $\{b_i\}$ and $\{c_i\}$, their shuffle is denoted $\{b_i\} \land \{c_i\}$.

Lemma ([4], 5.1)

Let *R* be a commutative ring with *S* a subset of *R*. Let *S*₁ and *S*₂ be disjoint subsets of *S* with the property that $\nu(s_1 - s_2) = 0$ for any $s_1 \in S_1$ and $s_2 \in S_2$, and that S_1 and S_2 are each closed with respect to conjugation by elements of *R*. If $\{b_i\}$ and $\{c_i\}$ are ν -orderings of *S*₁ and *S*₂ respectively with associated ν -sequence $\{\alpha_{S_1}(i)\}$ and $\{\alpha_{S_2}(i)\}$, then the ν -sequence of $S_1 \cup S_2$ is the shuffle $\{\alpha_{S_1}(i)\} \wedge \{\alpha_{S_2}(i)\}$, and this shuffle applied to $\{b_i\}$ and $\{c_i\}$ gives a ν -ordering of $S_1 \cup S_2$.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
00000	000	0000	000000000	000000000000000000000000000000000000000

Lemma ([4], 5.2)

Let S_1 and S_2 be disjoint subsets of S with the property that there is a non-negative integer k such that $\nu(s_1 - s_2) = k$ for any $s_1 \in S_1$ and $s_2 \in S_2$, and that S_1 and S_2 are each closed with respect to conjugation by elements of R. If $\{b_i\}$ and $\{c_i\}$ are ν -orderings of S_1 and S_2 respectively with associated ν -sequence $\{\alpha_{S_1}(i)\}$ and $\{\alpha_{S_2}(i)\}$, then the ν -sequence of $S_1 \cup S_2$ is the sum of the linear sequence $\{ki : i = 0, 1, 2, ...\}$ with the shuffle $\{\alpha_{S_1}(i) - ki\} \land \{\alpha_{S_2}(i) - ki\}$, and this shuffle applied to $\{b_i\}$ and $\{c_i\}$ gives a ν -ordering of $S_1 \cup S_2$.

Intro to IVPs 00000	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 × 3 Case 000000000000000

The theory presented in the previous slides is utilized by Evrard and Johnson [3] to construct a ν -order for R_2 and establish a ν -sequence and regular basis for the IVPs on R_2 when the division algebra D is over the local field \mathbb{Q}_2 .

We would like to extend these results to find a regular basis for IVPs on R_3 over the local field \mathbb{Q}_2 , and further on to all R_n over \mathbb{Q}_2 .

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 × 3 Case
00000	000	0000	00000000	●000000000000000000000000000000000000
The Maxi	mal Order			

As introduced in previous slides, we are working within the division algebra D and its maximal order Δ , defined as subsets of the 3 \times 3 complex matrices as

$$D = \mathbb{Q}_2[\omega^*, \pi_D^*] \qquad \Delta = \mathbb{Z}_2[\omega^*, \pi_D^*]$$

where $\mathbb{Q}_2,\mathbb{Z}_2$ denote the 2-adic numbers and integers, respectively, and

$$\omega^* = \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega^4 \end{pmatrix} \qquad \qquad \pi_D^* = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

with $\omega = \zeta_7$ a primitive 7th root of unity.

Intro to IVPs 00000	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings 00000000	The 3 × 3 Case 000000000000000000000000000000000000

We will abuse notation and use ω to refer to the 3 × 3 matrix ω^* , and use π to denote π_D^* . Note that we have the relations $\pi^3 = 2I_3$ and $\pi \cdot \omega \cdot \pi^{-1} = \omega^2$, and also that we work with the conventions that, where ω is regarded as a root of unity,

$$\omega+\omega^2+\omega^4\equiv 0 \pmod{2}$$
 and $\omega^3+\omega^5+\omega^6\equiv 1 \pmod{2}$.

We also have a valuation ν in Δ described by $\nu(z) = \nu_2(\det(z))$ for $z \in \Delta$ realized as a matrix, when ν_2 denotes the 2-adic valuation.

Looking at all elements of $\Delta = \mathbb{Z}_2[\omega, \pi_D]$ modulo π , we obtain four conjugacy classes:

$$T = \{z \in \Delta : z \equiv 0 \pmod{\pi}\}$$

$$T + 1 = \{z \in \Delta : z \equiv I_3 \pmod{\pi}\}$$

$$S = \{z \in \Delta : z \equiv \omega \text{ or } \omega^2 \text{ or } \omega^4 \pmod{\pi}\}$$

$$S + 1 = \{z \in \Delta : z \equiv \omega^3 \text{ or } \omega^6 \text{ or } \omega^5 \pmod{\pi}\}$$

$$= \{z \in \Delta : z \equiv \omega + I_3 \text{ or } \omega^2 + I_3 \text{ or } \omega^4 + I_3 \pmod{\pi}\}$$

Since T + 1 and S + 1 are translates of T and S, respectively, a previous lemma states that they have the same ν -sequence, so we only need to determine α_T and α_S in order to find a formula for α_{Δ} .

We can break the set T down further by considering conjugacy classes modulo π^2 :

$$T_1 = \{z \in \Delta : z \equiv 0 \pmod{\pi^2}\} = \pi^2 \Delta$$
$$T_2 = \{z \in \Delta : z \equiv \omega^i \pi \pmod{\pi^2} \text{ for some } 0 \le i \le 6\}$$

The set T_1 can be broken down further still by looking at conjugacy classes modulo $\pi^3 = 2$:

$$T_3 = \{z \in \Delta : z \equiv 0 \pmod{\pi^3}\} = 2\Delta$$

$$T_4 = \{z \in \Delta : z \equiv \omega^i \pi^2 \pmod{\pi^3} \text{ for some } 0 \le i \le 6\}$$

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
				000000000000000000000000000000000000000

From this analysis, we obtain the following tree of subsets of Δ :

These sets all satisfy the necessary lemmas pertaining to shuffles of ν -sequences, and so we can derive a formula for α_{Δ} that depends only on itself, α_{5} , $\alpha_{T_{2}}$, and $\alpha_{T_{4}}$.

Based on the tree of subsets and the lemmas, we obtain the following result.

Proposition

The $\nu\text{-sequence}$ of $\Delta,$ denoted $\alpha_\Delta,$ satisfies and is determined by the formula

$$\alpha_{\Delta} = \left(\left[\left(\left[\left(\alpha_{\Delta} + (n)\right) \land \left(\alpha_{T_4} - (2n)\right)\right] + (n)\right) \land \left(\alpha_{T_2} - (n)\right)\right] + (n)\right)^{\land 2} \land \left(\alpha_{S}\right)^{\land 2},$$

where (kn) denotes the linear sequence whose n^{th} term is kn.

It remains to determine the ν -sequences for S, T_2 , and T_4 .

To do so, it is useful to describe the sets S, T_2 , and T_4 in terms of their characteristic polynomials.

Given a complex matrix $A \in M_3(\mathbb{C})$, we define the characteristic polynomial of A to be

$$x^3 - Tr(A)x^2 + \beta(A)x - \det(A)$$

where Tr(A) and det(A) are the usual trace and determinant of a 3×3 matrix, and $\beta(A)$ is defined in terms of the 2×2 minors of A.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
				000000000000000000000000000000000000000

Lemma

$$S = \{z \in \Delta : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 1 \pmod{2}, \det(z) \equiv 1 \pmod{2}\}$$

$$T_2 = \{z \in \Delta : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 0 \pmod{2}, \det(z) \equiv 2 \pmod{4}\}$$

$$T_4 = \{z \in \Delta : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 0 \pmod{4}, \det(z) \equiv 4 \pmod{8}\}$$

We can determine some useful facts about the valuation of certain polynomials within S, T_2 , and T_4 , with the goal of establishing these as the minimal polynomials within their respective sets. This process is analogous to the one presented in Evrard and Johnson [3] and Johnson [4].

A Polynomial in S

Let us define the function

$$\begin{split} \phi &= (\phi_1, \phi_2, \phi_3) : \mathbb{Z}_{\geq 0} \to 2\mathbb{Z}_{\geq 0} \times (1 + 2\mathbb{Z}_{\geq 0}) \times (1 + 2\mathbb{Z}_{\geq 0}) \\ \phi(n) &= \left(2\sum_{i\geq 0} n_{3i}2^i, 1 + 2\sum_{i\geq 0} n_{3i+1}2^i, 1 + 2\sum_{i\geq 0} n_{3i+2}2^i\right) \end{split}$$

where $n = \sum_{i \ge 0} n_i 2^i$ is the expansion of n in base 2. Let

$$f_n(x) = \prod_{k=0}^{n-1} \left(x^3 - \phi_1(k) x^2 + \phi_2(k) x - \phi_3(k) \right) \; .$$

Lemma

If $z \in S$ then $\nu(f_n(z)) \ge 3n + 3\sum_{i>0} \left\lfloor \frac{n}{8^i} \right\rfloor$ with equality if $Tr(z) = \phi_1(n)$, $\beta(z) = \phi_2(n)$, and $\det(z) = \phi_3(n)$.

A Polynomial in T_4

Let us define the function

$$\sigma = (\sigma_1, \sigma_2, \sigma_3) : \mathbb{Z}_{\geq 0} \to 2\mathbb{Z}_{\geq 0} \times 4\mathbb{Z}_{\geq 0} \times (4 + 8\mathbb{Z}_{\geq 0})$$
$$\sigma(n) = \left(2\sum_{i\geq 0} n_{3i}2^i, 4\sum_{i\geq 0} n_{3i+1}2^i, 4 + 8\sum_{i\geq 0} n_{3i+2}2^i\right)$$

where $n = \sum_{i \ge 0} n_i 2^i$ is the expansion of n in base 2. Let

$$h_n(x) = \prod_{k=0}^{n-1} \left(x^3 - \sigma_1(k) x^2 + \sigma_2(k) x - \sigma_3(k) \right)$$

Lemma

If $z \in T_4$ then $\nu(h_n(z)) \ge 7n + \sum_{i>0} \left\lfloor \frac{n}{2^i} \right\rfloor$ with equality if $Tr(z) = \sigma_1(n)$, $\beta(z) = \sigma_2(n)$, and $\det(z) = \sigma_3(n)$.

A Polynomial in T_2

Let us define the function

$$\begin{split} \psi &= (\psi_1, \psi_2, \psi_3) : \mathbb{Z}_{\ge 0} \to 2\mathbb{Z}_{\ge 0} \times 2\mathbb{Z}_{\ge 0} \times (2 + 4\mathbb{Z}_{\ge 0}) \\ \psi(n) &= \left(2\sum_{i\ge 0} n_{3i+1}2^i, 2\sum_{i\ge 0} n_{3i}2^i, 2 + 4\sum_{i\ge 0} n_{3i+2}2^i\right) \end{split}$$

where $n = \sum_{i \ge 0} n_i 2^i$ is the expansion of n in base 2. Let

$$g_n(x) = \prod_{k=0}^{n-1} \left(x^3 - \psi_1(k) x^2 + \psi_2(k) x - \psi_3(k) \right) \;.$$

Lemma

If $z \in T_2$ then $\nu(g_n(z)) \ge 4n + \sum_{i>0} \left\lfloor \frac{n}{2^i} \right\rfloor$ with equality if $Tr(z) = \psi_1(n)$, $\beta(z) = \psi_2(n)$, and $\det(z) = \psi_3(n)$.

This construction can of course be extended to any subset S of a maximal order Δ sitting in $M_n(\mathbb{Q}_2)$ that is closed under conjugation, but the practical use of the construction comes from the fact that it is possible to achieve a known minimum when taking the valuation of the polynomials generated.

For any valuation ν , if the valuation of *n* terms a_1, \ldots, a_n produces a complete set of residues modulo *n*, then it must be the case that $\nu(a_1 + \cdots + a_n) = \min_{1 \le i \le n} \nu(a_i)$. This fact is applied in the valuation of the polynomial

$$f(z) = z^{n} - \phi_{1}(k)z^{n-1} + \phi_{2}(k)z^{n-2} + \dots + (-1)^{n}\phi_{n}(k)$$

with $z \in S$ to show that a minimum for $\nu(f)$ can be determined with certainty only when $gcd(n, \nu(z)) = 1$.

Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case
				000000000000000000000000000000000000000

In particular, this means that this construction should work for the case of the $q \times q$ matrices, where q = n is prime. It should also work for some subsets of Δ when n is composite. It remains to see what adjustments must be made to this construction in the case where n is composite, and if there is any difference between the case where n is a power of a prime or n is squarefree.

00000	000	0000	00000000	000000000000000000000000000000000000000		
Intro to IVPs	Noncomm Rings	Maximal Orders	IVPs over Matrix Rings	The 3 $ imes$ 3 Case		

References

M. Bhargava.

The factorial function and generalizations. The American Mathematical Monthly, 107(9):783–799, 2000.

P.-J. Cahen and J.-L. Chabert.

Integer-Valued Polynomials, volume 48 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, USA, 1997.

S. Evrard and K. Johnson.

The ring of integer valued polynomials on 2 \times 2 matrices and its integral closure. *Journal of Algebra*, 441:660–677, 2015.

K. Johnson.

p-orderings of noncommutative rings. Proceedings of the American Mathematical Society, 143(8):3265–3279, 2015.

T.Y. Lam.

A First Course in Noncommutative Rings.

Number 131 in Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 2001.

I. Reiner.

Maximal Orders.

London Mathematical Society. Academic Press, London, 1975.

J-P. Serre.

Local class field theory.

In J.W.S. Cassels and A. Frohlich, editors, *Algebraic Number Theory*, chapter VI, pages 128–161. Thompson Book Company Inc., Washington, D.C., 1967.