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The Ring of Integer-Valued Polynomials

The set
Int(Z) = {f ∈ Q[x ] : f (Z) ⊆ Z}

of rational polynomials taking integer values over the integers
forms a subring of Q[x ] called the ring of integer-valued
polynomials (IVPs).

Int(Z) is a polynomial ring and has basis
{(x

k

)
: k ∈ Z>0

}
as a

Z-module, with(
x

k

)
:=

x(x − 1) · · · (x − (k − 1))

k!
,

(
x

0

)
= 1 ,

(
x

1

)
= x .

This basis is a regular basis, meaning that the basis contains
exactly one polynomial of degree k for k ≥ 1.
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p-orderings

The study of IVPs on subsets of the integers greatly benefited from
the introduction of p-orderings by Bhargava [1].

Definition

Let S be a subset of Z and p be a fixed prime. A p-ordering of S
is a sequence {ai}∞i=0 ⊆ S defined as follows: choose an element
a0 ∈ S arbitrarily. Further elements are defined inductively where,
given a0, a1, . . . , ak−1, the element ak ∈ S is chosen so as to
minimize the highest power of p dividing

k−1∏
i=0

(ak − ai ) .
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p-sequences

The choice of a p-ordering gives a corresponding sequence:

Definition

The associated p-sequence of S , denoted {αS,p(k)}∞k=0, is the
sequence wherein the kth term αS,p(k) is the power of p
minimized at the kth step of the process defining a p-ordering.
More explicitly, given a p-ordering {ai}∞i=0 of S ,

αS ,p(k) = νp

(
k−1∏
i=0

(ak − ai )

)
=

k−1∑
i=0

νp(ak − ai ) .
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An Example of p-orderings and p-sequences

Let p = 2 and S = {1, 2, 3, 5, 8, 13}. What is a possible p-ordering
for S?

k 0 1 2 3 4 5

ak 1 2 3 8 5 13

αS ,p(k) 0 0 1 1 3 6

What happens if we make a different choice for a0?

k 0 1 2 3 4 5

ak 5 8 2 3 1 13

αS ,p(k) 0 0 1 1 3 6

Though the choice of a p-ordering of S is not unique, the
associated p-sequence of a subset S ⊆ Z is independent of the
choice of p-ordering [1].
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These p-orderings can be used to define a generalization of the
binomial polynomials to a specific set S ⊆ Z which serve as a basis
for the integer-valued polynomials of S over Z ,

Int(S ,Z) = {f ∈ Q[x ] : f (S) ⊆ Z} .

An analogous definition of P-orderings and P-sequences exists for
a subset E of a Dedekind domain D where P is a nonzero prime
ideal of D. As for Int(S ,Z), the P-ordering plays a role in
determining a regular basis for Int(E ,D), should one exist.
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Polynomials over Noncommutative Rings

Let R be any ring, with R[x ] the associated polynomial ring, where
the variable x commutes elementwise with all of R. Note that
though

f (x) =
n∑

i=0

aix
i =

n∑
i=0

x iai ,

the evaluation of these two expressions at an element r ∈ R may
be different – that is, it is possible that

∑n
i=0 ai r

i 6=
∑n

i=0 r
iai .

For this reason, the standard definition of evaluation of a function
f (x) at r ∈ R requires f to be expressed in the form

∑n
i=0 aix

i ,
and then substituting r for x .
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Polynomials over Division Rings

Theorem (Gordon-Motzkin, [5] 16.4)

Let D be a division ring, and let f be a polynomial of degree n in
D[x ]. Then the roots of f lie in at most n conjugacy classes of D.
This means that if f (x) = (x − a1) · · · (x − an) with
a1, . . . , an ∈ D, then any root of f is conjugate to some ai .

Theorem (Dickson’s Theorem, [5] 16.8)

Let D be a division ring and F its centre. Let a, b ∈ D be two
elements that are algebraic over F . Then a and b are conjugate in
D if and only if they have the same minimal polynomial over F .
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A theorem of Bray-Whaples ([5], 16.13) purports that there is such
thing as a minimal polynomial over a set of elements in a division
ring. The construction for such a polynomial is given by the
following proposition.

Proposition ([4], 2.4)

Let D be a subring of a division algebra, and c1, . . . , cn be n
pairwise nonconjugate elements of D. Then the minimal
polynomial is given inductively by

f (a0)(x) = (x − a0)

f (a0, . . . , an)(x) = (x − a
f (a0,...,an−1)(an)
n ) · f (a0, . . . , an−1)(x) .



Intro to IVPs Noncomm Rings Maximal Orders IVPs over Matrix Rings The 3× 3 Case

Maximal Orders

Definition ([6], Section 8)

Let R be a Noetherian integral domain with quotient field K , and
A a finite-dimensional K -algebra. An R-order in A is a subring Λ of
A which has the same unit element as A, and is such that Λ is a
finitely-generated R-submodule with K · Λ = A.

Note that every finite-dimensional K -algebra A contains R-orders,
since there exist y1, y2, . . . , yn ∈ A such that A =

∑n
i=1 Kyi , and so

∆ =
∑n

i=1 Ryi will satisfy the definition of an R-order.

Definition ([6])

A maximal R-order in A is an R-order which is not properly
contained in any other R-order in A.
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Constructing a Maximal Order

When R is a complete DVR with unique maximal ideal P, R/P is
finite, K is the quotient field of R, D is a division ring with centre
containing K , and [D : K ] = n2, then D contains a unique
maximal R-order ∆ and we can explicitly describe the structures of
the division ring D and maximal order ∆, via a construction given
in Reiner [6]. Furthermore, the description of the structure can be
chosen to only depend on n.

For the sake of simplicity and future reference, here we describe
the construction only in the case that |R/P| = 2 and n = 3, and in
minimal detail.
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Let ω be a primitive 7th root of unity, and let W = Q2(ω). Define
elements

ω∗ =

ω 0 0
0 ω2 0
0 0 ω4

 π∗D =

0 1 0
0 0 1
2 0 0

 .

Then the map generated by ω 7→ ω∗ defines a Q2-isomorphism
W →W ∗ = Q2(ω∗) ⊆ M3(Q2(ω)), under which scalars λ ∈ Q2

are identified with λI3 ∈ M3(Q2).
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The following relations exist between ω∗ and π∗D :

(π∗D)3 = 2I3 π∗D · ω∗ = (ω∗)2 · π∗D

We then define
D = Q2[ω∗, π∗D ] ,

which is a division ring with centre containing Q2 and
[D : Q2] = 9 = 32. The maximal order in D is

∆ = Z2[ω∗, π∗D ] .
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IVPs over Matrix Rings

We are particularly interested in studying IVPs over matrix rings.

We denote the set of rational polynomials mapping integer
matrices to integer matrices by

IntQ(Mn(Z)) = {f ∈ Q[x ] : f (M) ∈ Mn(Z) for all M ∈ Mn(Z)} .

We know from Cahen and Chabert [2] that IntQ(Mn(Z)) has a
regular basis, but it is not easy to describe using a formula in
closed form [3].
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Finding a regular basis for IntQ(Mn(Z)) is related to finding a
regular basis for its integral closure. In order to study the latter
object, we would like to describe the localizations of the integral
closure of IntQ(Mn(Z)) at rational primes. To do this, we can use
results about division algebras over local fields.

Theorem (in appendix of [7])

If D is a division algebra of degree n2 over a local field K and F is
a field extension of degree n of K , then F can be embedded as a
maximal commutative subfield of D.
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If p is a fixed prime, D is a division algebra of degree n2 over
K = Qp, and Rn is its maximal order, then we obtain the following
useful result:

Proposition ([3], 2.1)

The integral closure of IntQ(Mn(Z)(p)) is IntQ(Rn).

Thus, the problem of describing the integral closure of
IntQ(Mn(Z)(p)) is exactly that of describing IntQ(Rn), and so we
move our attention towards studying IVPs over maximal orders.
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An Analogue to p-orderings

Definition ([4], 1.1)

Let K be a local field with valuation ν, D be a division algebra
over K to which ν extends, R the maximal order in D, and S a
subset of R. Then a ν-ordering of S is a sequence
{ai : i = 0, 1, 2, . . . } ⊆ S such that for each k > 0, the element ak
minimizes the quantity ν(fk(a0, . . . , ak−1)(a)) over a ∈ S , where
fk(a0, . . . , ak−1)(x) is the minimal polynomial of the set
{a0, a1, . . . , ak−1}, with the convention that f0 = 1. We call the
sequence of valuations {ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, . . . } the
ν-sequence of S .
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Proposition ([4], 1.2)

Let K be a local field with valuation ν, D be a division algebra
over K to which ν extends, R the maximal order in D, and S a
subset of R. Additionally, let π ∈ R be a uniformizing element,
meaning an element for which (πn) = (p), let
{ai : i = 0, 1, 2, . . . } ⊆ S be a ν-ordering, and let fk(a0, . . . , ak−1)
be the minimal polynomial of {a0, a1, . . . , ak−1}. Then the
sequence {αS(k) = ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, 2, . . . }
depends only on the set S , and not on the choice of ν-ordering.
The sequence of polynomials

{π−αS (k)fk(a0, . . . , ak−1)(x) : k = 0, 1, 2, . . . }

forms a regular R-basis for the R-algebra of polynomials which are
integer-valued on S .
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In order to use this proposition, we need to be able to construct a
ν-ordering for the maximal order Rn. A recursive method for
constructing ν-orderings for elements of a maximal order is based
on two lemmas.

Lemma (see [4], 6.2)

Let {ai : i = 0, 1, 2, . . . } be a ν-ordering of a subset S of R with
associated ν-sequence {αS(i) : i = 0, 1, 2, . . . } and let b be an
element in the centre of R. Then:

i) {ai + b : i = 0, 1, 2, . . . } is a ν-ordering of S + b, and the
ν-sequence of S + b is the same as that of S

ii) If p is the characteristic of the residue field of K (so that
(p) = (π)n in R), then {pai : i = 0, 1, 2, . . . } is a ν-ordering
for pS and the ν-sequence of pS is
{αS(i) + in : i = 0, 1, 2, . . . }
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Definition

The shuffle of two nondecreasing sequences of integers is their
disjoint union sorted into nondecreasing order. If the sequences are
{bi} and {ci}, their shuffle is denoted {bi} ∧ {ci}.

Lemma ([4], 5.1)

Let R be a commutative ring with S a subset of R. Let S1 and S2

be disjoint subsets of S with the property that ν(s1 − s2) = 0 for
any s1 ∈ S1 and s2 ∈ S2, and that S1 and S2 are each closed with
respect to conjugation by elements of R. If {bi} and {ci} are
ν-orderings of S1 and S2 respectively with associated ν-sequence
{αS1(i)} and {αS2(i)}, then the ν-sequence of S1 ∪ S2 is the
shuffle {αS1(i)} ∧ {αS2(i)}, and this shuffle applied to {bi} and
{ci} gives a ν-ordering of S1 ∪ S2.
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Lemma ([4], 5.2)

Let S1 and S2 be disjoint subsets of S with the property that there
is a non-negative integer k such that ν(s1 − s2) = k for any
s1 ∈ S1 and s2 ∈ S2, and that S1 and S2 are each closed with
respect to conjugation by elements of R. If {bi} and {ci} are
ν-orderings of S1 and S2 respectively with associated ν-sequence
{αS1(i)} and {αS2(i)}, then the ν-sequence of S1 ∪ S2 is the sum
of the linear sequence {ki : i = 0, 1, 2, . . . } with the shuffle
{αS1(i)− ki} ∧ {αS2(i)− ki}, and this shuffle applied to {bi} and
{ci} gives a ν-ordering of S1 ∪ S2.
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The theory presented in the previous slides is utilized by Evrard
and Johnson [3] to construct a ν-order for R2 and establish a
ν-sequence and regular basis for the IVPs on R2 when the division
algebra D is over the local field Q2.

We would like to extend these results to find a regular basis for
IVPs on R3 over the local field Q2, and further on to all Rn over
Q2.
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The Maximal Order

As introduced in previous slides, we are working within the division
algebra D and its maximal order ∆, defined as subsets of the 3× 3
complex matrices as

D = Q2[ω∗, π∗D ] ∆ = Z2[ω∗, π∗D ]

where Q2,Z2 denote the 2-adic numbers and integers, respectively,
and

ω∗ =

ω 0 0
0 ω2 0
0 0 ω4

 π∗D =

0 1 0
0 0 1
2 0 0


with ω = ζ7 a primitive 7th root of unity.
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We will abuse notation and use ω to refer to the 3× 3 matrix ω∗,
and use π to denote π∗D . Note that we have the relations π3 = 2I3
and π · ω · π−1 = ω2, and also that we work with the conventions
that, where ω is regarded as a root of unity,

ω + ω2 + ω4 ≡ 0 (mod 2) and ω3 + ω5 + ω6 ≡ 1 (mod 2) .

We also have a valuation ν in ∆ described by ν(z) = ν2(det(z)) for
z ∈ ∆ realized as a matrix, when ν2 denotes the 2-adic valuation.
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Conjugacy Classes mod π

Looking at all elements of ∆ = Z2[ω, πD ] modulo π, we obtain
four conjugacy classes:

T = {z ∈ ∆ : z ≡ 0 (mod π)}
T + 1 = {z ∈ ∆ : z ≡ I3 (mod π)}

S = {z ∈ ∆ : z ≡ ω or ω2 or ω4 (mod π)}
S + 1 = {z ∈ ∆ : z ≡ ω3 or ω6 or ω5 (mod π)}

= {z ∈ ∆ : z ≡ ω + I3 or ω2 + I3 or ω4 + I3 (mod π)}

Since T + 1 and S + 1 are translates of T and S , respectively, a
previous lemma states that they have the same ν-sequence, so we
only need to determine αT and αS in order to find a formula for
α∆.
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Conjugacy Classes mod π2

We can break the set T down further by considering conjugacy
classes modulo π2:

T1 = {z ∈ ∆ : z ≡ 0 (mod π2)} = π2∆

T2 = {z ∈ ∆ : z ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 6}

The set T1 can be broken down further still by looking at
conjugacy classes modulo π3 = 2:

T3 = {z ∈ ∆ : z ≡ 0 (mod π3)} = 2∆

T4 = {z ∈ ∆ : z ≡ ωiπ2 (mod π3) for some 0 ≤ i ≤ 6}
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From this analysis, we obtain the following tree of subsets of ∆:

These sets all satisfy the necessary lemmas pertaining to shuffles of
ν-sequences, and so we can derive a formula for α∆ that depends
only on itself, αS , αT2 , and αT4 .
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The ν-sequence of ∆

Based on the tree of subsets and the lemmas, we obtain the
following result.

Proposition

The ν-sequence of ∆, denoted α∆, satisfies and is determined by
the formula

α∆ =
([

([(α∆ + (n)) ∧ (αT4 − (2n))] + (n)) ∧ (αT2 − (n))
]

+ (n)
)∧2 ∧ (αS)∧2 ,

where (kn) denotes the linear sequence whose nth term is kn.

It remains to determine the ν-sequences for S , T2, and T4.
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Characteristic Polynomials

To do so, it is useful to describe the sets S , T2, and T4 in terms of
their characteristic polynomials.

Given a complex matrix A ∈ M3(C), we define the characteristic
polynomial of A to be

x3 − Tr(A)x2 + β(A)x − det(A)

where Tr(A) and det(A) are the usual trace and determinant of a
3× 3 matrix, and β(A) is defined in terms of the 2× 2 minors of A.
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Lemma

S = {z ∈ ∆ : Tr(z) ≡ 0 (mod 2), β(z) ≡ 1 (mod 2), det(z) ≡ 1 (mod 2)}
T2 = {z ∈ ∆ : Tr(z) ≡ 0 (mod 2), β(z) ≡ 0 (mod 2), det(z) ≡ 2 (mod 4)}
T4 = {z ∈ ∆ : Tr(z) ≡ 0 (mod 2), β(z) ≡ 0 (mod 4), det(z) ≡ 4 (mod 8)}

We can determine some useful facts about the valuation of certain
polynomials within S , T2, and T4, with the goal of establishing
these as the minimal polynomials within their respective sets. This
process is analogous to the one presented in Evrard and
Johnson [3] and Johnson [4].
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A Polynomial in S

Let us define the function

φ = (φ1, φ2, φ3) : Z≥0 → 2Z≥0 × (1 + 2Z≥0)× (1 + 2Z≥0)

φ(n) =

2
∑
i≥0

n3i2
i , 1 + 2

∑
i≥0

n3i+12i , 1 + 2
∑
i≥0

n3i+22i


where n =

∑
i≥0 ni2

i is the expansion of n in base 2. Let

fn(x) =
n−1∏
k=0

(
x3 − φ1(k)x2 + φ2(k)x − φ3(k)

)
.

Lemma

If z ∈ S then
ν(fn(z)) ≥ 3n + 3

∑
i>0

⌊ n
8i

⌋
with equality if Tr(z) = φ1(n), β(z) = φ2(n), and det(z) = φ3(n).
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A Polynomial in T4

Let us define the function

σ = (σ1, σ2, σ3) : Z≥0 → 2Z≥0 × 4Z≥0 × (4 + 8Z≥0)

σ(n) =

2
∑
i≥0

n3i2
i , 4
∑
i≥0

n3i+12i , 4 + 8
∑
i≥0

n3i+22i


where n =

∑
i≥0 ni2

i is the expansion of n in base 2. Let

hn(x) =
n−1∏
k=0

(
x3 − σ1(k)x2 + σ2(k)x − σ3(k)

)
.

Lemma

If z ∈ T4 then

ν(hn(z)) ≥ 7n +
∑
i>0

⌊ n
2i

⌋
with equality if Tr(z) = σ1(n), β(z) = σ2(n), and det(z) = σ3(n).



Intro to IVPs Noncomm Rings Maximal Orders IVPs over Matrix Rings The 3× 3 Case

A Polynomial in T2

Let us define the function

ψ = (ψ1, ψ2, ψ3) : Z≥0 → 2Z≥0 × 2Z≥0 × (2 + 4Z≥0)

ψ(n) =

2
∑
i≥0

n3i+12i , 2
∑
i≥0

n3i2
i , 2 + 4

∑
i≥0

n3i+22i


where n =

∑
i≥0 ni2

i is the expansion of n in base 2. Let

gn(x) =
n−1∏
k=0

(
x3 − ψ1(k)x2 + ψ2(k)x − ψ3(k)

)
.

Lemma

If z ∈ T2 then

ν(gn(z)) ≥ 4n +
∑
i>0

⌊ n
2i

⌋
with equality if Tr(z) = ψ1(n), β(z) = ψ2(n), and det(z) = ψ3(n).
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Extension to General n

This construction can of course be extended to any subset S of a
maximal order ∆ sitting in Mn(Q2) that is closed under
conjugation, but the practical use of the construction comes from
the fact that it is possible to achieve a known minimum when
taking the valuation of the polynomials generated.

For any valuation ν, if the valuation of n terms a1, . . . , an produces
a complete set of residues modulo n, then it must be the case that
ν(a1 + · · ·+ an) = min1≤i≤n ν(ai ). This fact is applied in the
valuation of the polynomial

f (z) = zn − φ1(k)zn−1 + φ2(k)zn−2 + · · ·+ (−1)nφn(k)

with z ∈ S to show that a minimum for ν(f ) can be determined
with certainty only when gcd(n, ν(z)) = 1.
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In particular, this means that this construction should work for the
case of the q × q matrices, where q = n is prime. It should also
work for some subsets of ∆ when n is composite. It remains to see
what adjustments must be made to this construction in the case
where n is composite, and if there is any difference between the
case where n is a power of a prime or n is squarefree.



Intro to IVPs Noncomm Rings Maximal Orders IVPs over Matrix Rings The 3× 3 Case

References

M. Bhargava.

The factorial function and generalizations.
The American Mathematical Monthly, 107(9):783–799, 2000.

P.-J. Cahen and J.-L. Chabert.

Integer-Valued Polynomials, volume 48 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, USA, 1997.

S. Evrard and K. Johnson.

The ring of integer valued polynomials on 2× 2 matrices and its integral closure.
Journal of Algebra, 441:660–677, 2015.

K. Johnson.

p-orderings of noncommutative rings.
Proceedings of the American Mathematical Society, 143(8):3265–3279, 2015.

T.Y. Lam.

A First Course in Noncommutative Rings.
Number 131 in Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 2001.

I. Reiner.

Maximal Orders.
London Mathematical Society. Academic Press, London, 1975.

J-P. Serre.

Local class field theory.
In J.W.S. Cassels and A. Frohlich, editors, Algebraic Number Theory, chapter VI, pages 128–161.
Thompson Book Company Inc., Washington, D.C., 1967.


	Intro to IVPs
	The ring of integer-valued polynomials
	p-orderings and p-sequences

	Polynomials over Noncommutative Rings
	Maximal Orders
	IVPs over Matrix Rings
	Moving the problem to maximal orders
	An analogue to p-orderings

	The 33 Case
	Subsets of 
	The -sequence of 
	Characteristic polynomials
	Towards computing -sequences


