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Partly based on earlier work with Jon Borwein (1951-2016)

Karl Dilcher Tornheim zeta function



1. Introduction

One of the best-known multiple zeta functions:

1 1 1

m,n>1
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One of the best-known multiple zeta functions:
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Converges for r, s, t € C with

Re(r+1t)>1, Re(s+1t)>1, Re(r+s+1t)>2.
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One of the best-known multiple zeta functions:

1 1 1

m,n>1
Converges for r, s, t € C with
Re(r+1t)>1, Re(s+1t)>1, Re(r+s+1t)>2.

First investigated for r, s, t € N by Tornheim (1950),
independently by Mordell (1958) for the special case r = s = t.
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1. Introduction

One of the best-known multiple zeta functions:

1 1 1

m,n>1
Converges for r, s, t € C with
Re(r+1t)>1, Re(s+1t)>1, Re(r+s+1t)>2.

First investigated for r, s, t € N by Tornheim (1950),
independently by Mordell (1958) for the special case r = s = t.

Therefore often called a Tornheim (double) sum or
Mordell-Tornheim (double) sum or series.
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1. Introduction

One of the best-known multiple zeta functions:

1 1 1

m,n>1
Converges for r, s, t € C with
Re(r+1t)>1, Re(s+1t)>1, Re(r+s+1t)>2.

First investigated for r, s, t € N by Tornheim (1950),
independently by Mordell (1958) for the special case r = s = t.

Therefore often called a Tornheim (double) sum or
Mordell-Tornheim (double) sum or series.

Witten (1991) studied a wider class; Zagier (1993) called them
Witten zeta functions. Also often called
Mordell-Tornheim-Witten sums.
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W(r, s, t) can be analytically continued, separately in each of
the three variables, to all of C3; poles at

r+s+t=2 r+t=1-0 s+t=1—( (£c€NU{0}).

(Akiyama, Egami, Matsumoto, 1999, independently).
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W(r, s, t) can be analytically continued, separately in each of
the three variables, to all of C3; poles at

r+s+t=2, r+t=1-4¢ s+t=1-¢ (£e€NU{0}).
(Akiyama, Egami, Matsumoto, 1999, independently).

Romik (preprint, 2015) studied the analytic properties of
W(r, s, t) and its analytic continutation in greater detail;
introduced the function

w3(s) :=W(s, s, s).
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W(r, s, t) can be analytically continued, separately in each of
the three variables, to all of C3; poles at

r+s+t=2, r+t=1-4¢ s+t=1-¢ (£e€NU{0}).
(Akiyama, Egami, Matsumoto, 1999, independently).

Romik (preprint, 2015) studied the analytic properties of
W(r, s, t) and its analytic continutation in greater detail;
introduced the function

w3(s) :=W(s, s, s).
Already known to Mordell:
w3(2n) = cym®, creQ (n>1),

where ¢, can be given explicitly,
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W(r, s, t) can be analytically continued, separately in each of
the three variables, to all of C3; poles at

r+s+t=2, r+t=1-4¢ s+t=1-¢ (£e€NU{0}).
(Akiyama, Egami, Matsumoto, 1999, independently).

Romik (preprint, 2015) studied the analytic properties of
W(r, s, t) and its analytic continutation in greater detalil;
introduced the function

w3(s) :=W(s, s, s).
Already known to Mordell:
wa(@2n) = com®", cheQ (n=1),
where ¢, can be given explicitly, e.g.,

= 273648375 "
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Further properties:

wy(-n)=0 (n=1,2,3,...),
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Further properties:
w3(—n) =0 (n=1,2,3,...),

and for n > 0,

w3(2n+1) = —42

k=0

(Zagier, 1994; Huard, Williams, and Nan-Yue, 1996);

(4n 2k +1

i >§(2k)<(6n — 2k +3)
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Further properties:
w3(—n) =0 (n=1,2,3,...),

and for n > 0,

w3(2n+1) = —42

k=0

(Zagier, 1994; Huard, Williams, and Nan-Yue, 1996); e.g.,

(4n 2k +1

i >§(2k)<(6n — 2k +3)

?%g(w) + 252 ¢(15).

wa(5) = ~ (1) -
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Further properties:
w3(—n) =0 (n=1,2,3,...),
and for n > 0,

w3(2n+1) = —42

k=0
(Zagier, 1994; Huard, Williams, and Nan-Yue, 1996); e.g.,

(4n 2k +1

i >§(2k)<(6n — 2k +3)

ws(5) = —gw“g(ﬁ) - (13) + 252¢(15).

Also, w3(s) has simple poles at

2 1
s:g and S:§—k, k=0,12,...

and no other singularities.
(Romik, 2015, who also determined the residues).
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Main purpose of this talk:
Study the behaviour at the origin of

e w3(9),
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o wiy(s),
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* w3(s),

. W(s),
e and some generalizations.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:
Study the behaviour at the origin of

e w3(s),
. W(s),
e and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r,s,t) =(0,0,0) in W(r, s, t).
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Main purpose of this talk:
Study the behaviour at the origin of

e w3(s),
. W(s),
e and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r,s,t) =(0,0,0) in W(r, s, t).

1. Romik (2015) showed:

w3(0) = %
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Main purpose of this talk:
Study the behaviour at the origin of

e w3(s),
. W(s),
e and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r,s,t) =(0,0,0) in W(r, s, t).

1. Romik (2015) showed:
1

Here, we'll give a different proof.
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Dan Romik (UC Davis)
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2. In the same paper, Romik showed:

wh(0) = 5(1+7) + Slog(2r) - 24"’(—1)

C + it)¢( ———/t)dt
3 + it) cosh(nt)

= 1.83787706640934548356 . . .
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2. In the same paper, Romik showed:

“4(0) = 15(1+7) + - log(2r) - 2c’(—1)

C + it)(( ———/t)dt
3 + it) cosh(nt)

= 1.83787706640934548356 . ...

Jon Borwein used high-precision evaluations
and the integer relation algorithm PSLQ
to conjecture the stunningly simple expression
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2. In the same paper, Romik showed:

“4(0) = 15(1+7) + - log(2r) - 2c’(—1)

C + it)(( ———/t)dt
3 + it) cosh(nt)

= 1.83787706640934548356 . ...

Jon Borwein used high-precision evaluations
and the integer relation algorithm PSLQ
to conjecture the stunningly simple expression

ws(0) = log(27).
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2. In the same paper, Romik showed:

wh(0) = 5(1+7) + Slog(2r) - 2@'(—1)

C + it)(( ———/t)dt
3 + it) cosh(nt)

= 1.83787706640934548356 . ...

Jon Borwein used high-precision evaluations
and the integer relation algorithm PSLQ
to conjecture the stunningly simple expression

ws(0) = log(27).

The main part of this talk concerns proving this and a
generalization.
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2. Some special functions

For each s € C, the polylogarithm of order s is defined by

. — 2"
Lig(2) := s (Iz] < 1).

n=1
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2. Some special functions

For each s € C, the polylogarithm of order s is defined by

Lig(2) := iz (Jz| < 1).
n=1
Special cases:
Lip(2) = 3 fz’
Li1(2) = —log(1 - 2),
Lis(1) = {(s) (Re(s) > 1).
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2. Some special functions

For each s € C, the polylogarithm of order s is defined by

. o= Z"
Lig(2) := s (Iz] < 1).
n=1
Special cases:
, z
Lip(2) = ——

Lif(2) = —log(1 - 2),
Lis(1) = ¢(s)  (Re(s) > 1).

Fors e C\ N, and for|log z| < 2,

—1

Lig(z) = Zg(s— 'Og 4+ T(1 — s)(—log 2)°
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e This is a well-known representation;
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e This is a well-known representation;
e There is a (more complicated) variant that holds also for
seN.
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e This is a well-known representation;
e There is a (more complicated) variant that holds also for
seN.

Connection with Tornheim zeta function:

Fort>0andr,s > 1,

r(H)W(r,s,t) = / h xLi (e ¥)Lis(e™¥)dx.
0
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e This is a well-known representation;
e There is a (more complicated) variant that holds also for
seN.

Connection with Tornheim zeta function:

Fort>0andr,s > 1,

r(H)W(r,s,t) = / h xLi (e ¥)Lis(e™¥)dx.
0

Proof: Use Euler’s integral for I'(s) with an easy substitution:
oo
r(s) = ns/ e ™ x5 1dx.
0

Replace s by t and nby n+ m:
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(n+m) — T(t) /OOO Ao (Rel(t) > 0)
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: 1o
i = I‘(t)/o X e(MmMXgx  (Re(t) > 0),

Plug into definition of W(r, s, t) and change order of summation
and integration (legitimate):

WAr, 5. ) = rgt) /0 T xt <Z “"n) (r; emm> dx

n=1
1

- 76 /0 XLy (e ) Lis(6~)dx.

QED

Karl Dilcher Tornheim zeta function



3. Crandall’s free parameter formula

The main tool for our results is a remarkable identity due to
Richard Crandall (1947—-2012).
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3. Crandall’s free parameter formula

The main tool for our results is a remarkable identity due to
Richard Crandall (1947—-2012).
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It uses a free parameter and is convenient for both
e theoretical results, and

e computations.
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It uses a free parameter and is convenient for both
e theoretical results, and
e computations.

We first need another special function:
The (upper) incomplete Gamma function is defined by

M(a, z) ::/ ya e Vay.
z
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It uses a free parameter and is convenient for both
e theoretical results, and
e computations.

We first need another special function:
The (upper) incomplete Gamma function is defined by

M(a, z) ::/ ya e Vay.
z

Obviously, '(a,0) = I'(a).
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Theorem (Crandall)

Letr,s, t be complex variables withr ¢ N and s ¢ N. Then for
any real 6 > 0 we have

(s = 3 mtnb)

m'ns(m+ n)t

m,n>1
u+vC )C(S — V)9u+v+t
* u;o u!v!(u+ v+1)
B B qC(S_ q)9r+q+t—1
+1(1=1)2 (1) Qr+qg+t—1)

=0

C(f _ q)93+q+t71
+ (1 = S)qzz%(_”qq!(er g+t—1)

9r+s+t—2
r-nNrM-s)——————.
+T( N )r+s+t—2
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Remarks:

1. Identity looks complicated at first, but is remarkably useful.
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Remarks:
1. Identity looks complicated at first, but is remarkably useful.

2. r ¢ Nand s € N must be exluded since this would lead to
¢(1) and I'(z) at negative integers.
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Remarks:
1. Identity looks complicated at first, but is remarkably useful.

2. r ¢ Nand s € N must be exluded since this would lead to
¢(1) and I'(z) at negative integers.

3. However, these singularities cancel, and a careful analysis
gives a (more complicated) identity valid for all r, s, t € C.
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Remarks:
1. Identity looks complicated at first, but is remarkably useful.

2. r ¢ Nand s € N must be exluded since this would lead to
¢(1) and I'(z) at negative integers.

3. However, these singularities cancel, and a careful analysis
gives a (more complicated) identity valid for all r, s, t € C.

4. This, and the above theorem, gives another analytic
continuation to all of C3, with the exception of the known
singularities.
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Sketch of proof: Use defining integral of I'(a, z). A simple
substitution gives

/OO xt-1 ef(m+n)xdx _ F(t, (m + n)G)
0 (m+n)t
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Sketch of proof: Use defining integral of I'(a, z). A simple
substitution gives

/OO -1 g-(menpx g, _ (L. (m+ n)d)
0 (m+n)t

Use same argument as in the 2nd Lemma; break up integral:

F(OW(r,s,1) = mrns < / / > X Te(menxgy

mn>1

m+n0) 0 =17 - _ . _
= Z mrsim ) /0 x1Li (e7)Lis(e7¥)dx.

m,n>1
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Sketch of proof: Use defining integral of I'(a, z). A simple
substitution gives

/OO -1 g-(menpx g, _ (L. (m+ n)d)
0 (m+n)t

Use same argument as in the 2nd Lemma; break up integral:

F(OW(r,s,1) = mrns < / / > X Te(menxgy

mn>1

m+n0) 0 =17 - _ . _
= Z m,ns mrsim ) /0 x!=1Li, (e ¥)Lis(e ¥)dx.

m,n>1

Use the first Lemma, namely

o0
Iog z

Lis(z ¢(s—m)

M

+ (1 —s)(—logz)*"

m=0
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Sketch of proof: Use defining integral of I'(a, z). A simple
substitution gives

/OO xt-1 ef(m+n)xdx _ F(t, (m + n)G)
0 (m+n)t

Use same argument as in the 2nd Lemma; break up integral:

F(OW(r,s,1) = mrns < / / > X Te(menxgy

mn>1

m+n0) 0 =17 - _ . _
= Z m,ns e +/0 x!=1Li, (e ¥)Lis(e ¥)dx.

m,n>1

Use the first Lemma, namely

o0
Iog z

Lis(z ¢(s—m)

M

+ (1 —s)(—logz)*"

m=0

Expand and then integrate. QED



First application: Set r = s = t; then

r(husls) = 3 W

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq|23+q_1)
s 033 2
+I(1-9) 35>
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First application: Set r = s = t; then

r(husls) = 3 W

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq|23+q_1)
s 033 2
+I(1-9) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.
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First application: Set r = s = t; then

r(husls) = 3 W

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq|23+q_1)
s 033 2
+I(1-9) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.

LHS: sl'(s) — 1.
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First application: Set r = s = t; then

r(husls) = 3 w

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq|23+q_1)
s 033 2
+I(1-9) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.

LHS: s'(s) — 1. RHS: Almost all terms disappear, except
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First application: Set r = s = t; then

r(husls) = 3 w

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq|23+q_1)
s 033 2
+I(1-9) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.

LHS: s'(s) — 1. RHS: Almost all terms disappear, except
—2nd row for u = v = 0; get ¢(0)% = (—1/2)?> = 1/4;
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First application: Set r = s = t; then

r(s,(m+ n)o)
F(s)ws(s) = mz; mn(m+ n))*

P AR IVEZS ) ek Lot
o u!v!(u+ V+S)
C S— )928—}-(]—1
+2r(1 )9
(;J( q'(2s+q—-1)
s 033 2
+IM(1-15) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.

LHS: s'(s) — 1. RHS: Almost all terms disappear, except
—2nd row for u = v = 0; get ¢(0)% = (—1/2)?> = 1/4;
—3rdrow for g = 1; get 2 (0)(—1)¢(—1)/2 = —((—1) = 1/12.
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First application: Set r = s = t; then

r(husls) = 3 w

m,n>1
R SR Gl SRt
o u!v!(u+ V+S)
(s — q)p2s+a-
+2r(1 q;)( qq,23+q_1)
s 033 2
+I(1-9) 355"

Fix 6 > 0, multiply both sides by s and let s — 0.

LHS: s'(s) — 1. RHS: Almost all terms disappear, except
—2nd row for u = v = 0; get ¢(0)% = (—1/2)?> = 1/4;
—3rdrow for g = 1; get 2 (0)(—1)¢(—1)/2 = —((—1) = 1/12.

Together: w3(0) = 1/3.
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Remarks:

1. This last identity also immediately gives the singularities of
ws(s) and their residues.
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Remarks:

1. This last identity also immediately gives the singularities of
ws(s) and their residues.

2. With only a small variation we can prove a more general
result: Define
w3(s; 7) :=W(s, s, 78).
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Remarks:

1. This last identity also immediately gives the singularities of
ws(s) and their residues.

2. With only a small variation we can prove a more general
result: Define
w3(s; 7) :=W(s, s, 78).

Then for any 7 > 0 we have

2T 1 57+3
C(_1)7E T+1

w3(0:7) = ¢(0)% —

)

Karl Dilcher Tornheim zeta function



Remarks:

1. This last identity also immediately gives the singularities of
ws(s) and their residues.

2. With only a small variation we can prove a more general
result: Define
w3(s; 7) :=W(s, s, 78).

Then for any 7 > 0 we have

2T 1 57+3
C(_1)7E T+1

w3(0:7) = ¢(0)% —

)

and in particular,
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4. Derivative at the origin

Let’s return to Crandall’s identity; multiply both sides by s:

Y (_1)u+vC( IU? (s —v)prrvrs

S vi(u+v+s)
C(S_ q)92s+qf1
+2I(1 —s —-1)4
( )qzz;)( ) q!(23+q—1)
s 93372
+r(1-1s) 33_2]
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4. Derivative at the origin

Let’s return to Crandall’s identity; multiply both sides by s:

r(s,(m+ n)o)
Z (mn(m+ n))s

m,n>1

sl(S)ws(s) =s {

Y (_1)u+vC( IU? (s —v)prrvrs

S vi(u+v+s)
C(S_ q)92s+qf1
+2I(1 —s —-1)4
( )qzz;)( ) q!(23+q—1)
s 93372
+r(1-1s) 33_2]

Now isolate the singularies in s in the large brackets on the
RHS; bring them to the left:
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sT(s)ws(s)

— ()67 + (1 — 8)((s — 1)0%

_s Zr(s,(mm)?)

S
gl (mn(m+ n)

2s—1 5 3s5—-2
r( —
251 U= 355

_ u+v+s
+ Z u+vC( U)C(S V)@

+2r(1 — s)¢(s)

Iyl
u,v>0 utvi(u+ v +s)

(u,v)#(0,0)

C(s — g)o*era
+2r(1 —s) q;(—nq 0@+ g 1)
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sF(s)ws(s) — ¢(8)%0% + T (1 — s)¢(s — 1)62¢

_s Zr(s,(mm)?)

(mn(m+ n))s

m,n>1
25—1 5 3s5-2
+2r(1 — s)g(s)2 — +IM(1-15) 352
B ] TN Gl Gl kil
i ulvi(u+v+s)
(u,v)#(0,0)

¢(s— g)peera

+2r(1—s)>» (-1)9 0@+ g 1)

g>2

Derivative at s = 0 of LHS becomes

wj(0) — 57 — slog2r — Slog 6 + ¢'(—1).
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Derivative at s = 0 of RHS amounts to evaluating [...] at s = 0.
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Derivative at s = 0 of RHS amounts to evaluating [...] at s = 0.

Since 6 > 0 is a free variable, we consider § — 0.
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Derivative at s = 0 of RHS amounts to evaluating [...] at s = 0.
Since 6 > 0 is a free variable, we consider § — 0.

There are singularities at # = 0; however, they cancel.
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Derivative at s = 0 of RHS amounts to evaluating [...] at s = 0.
Since 6 > 0 is a free variable, we consider § — 0.
There are singularities at # = 0; however, they cancel.

Some key ingredients:

> d
> (0, (m+ n)p) = /1(e=9“—u1)2u

m,n>1

(Easy manipulation using definition of '(a, z)).
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Derivative at s = 0 of RHS amounts to evaluating [...] at s = 0.
Since 6 > 0 is a free variable, we consider § — 0.
There are singularities at # = 0; however, they cancel.

Some key ingredients:

> d
> (0, (m+ n)p) = /1(e=9“—u1)2u

m,n>1
(Easy manipulation using definition of '(a, z)).
00 ta71
| ot =@ - -c@)  (Re(e) > 2)

(An integral in Gradshteyn & Ryzhik).
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Everything put together, we get (after some work)

> T(0,(m+ n)o)

m,n>1

1 1 1
= L l0g(2r) — 2 4 () §

2 12 g+ ogz 121090+ 00).
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Everything put together, we get (after some work)

> T(0,(m+ n)o)

m,n>1

1 5y 1 1 5
EIog(27r)—ﬁ+§( 1) — YR 12Iog€+O(9)

Finally:

wy(0) = log(27).
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Everything put together, we get (after some work)

> T(0,(m+ n)o)

m,n>1

1 5~ 1 1 5

Finally:

wy(0) = log(27).

As before, with small modifications we get more generally

T+1 (r—1)7

ws(0;7) = log(27) +

(Recall: ws(s; 1) :=W(s,s,1S).)
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1. A multi-dimensional analogue:

For n > 2 define

1
W(r, ... t) = >

1 'n t
e g MM (my +...mp)

Studied by Matsumoto (2000), Bailey & Borwein (2015), and
others.
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1. A multi-dimensional analogue:

For n > 2 define

1
I t) =
m1) 2 my ...omp(my + ... mp)t

my,...,mMp>1

W(H,..

Studied by Matsumoto (2000), Bailey & Borwein (2015), and
others. In analogy to before, define

wpi1(8) = W(s,...,s,8).

Karl Dilcher Tornheim zeta function



1. A multi-dimensional analogue:

For n > 2 define

1
W(r, ... t) = >

I I'n t
st M M (my +...mp)

Studied by Matsumoto (2000), Bailey & Borwein (2015), and
others. In analogy to before, define

wn1(8) == W(s,...,s,8).
Hayley Tomkins (honours thesis, 2016) showed that

(=1)"
n+1

wnt1(0) =

holds for n < 7, and conjectured that it is true for all n.
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Meanwhile proved, using higher-order convolution identities for
Bernoulli numbers and polynomials.
(Joint with Armin Straub, 2016, unpublished).
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Meanwhile proved, using higher-order convolution identities for
Bernoulli numbers and polynomials.
(Joint with Armin Straub, 2016, unpublished).

A more complicated convolution identity shows that
Wn+1 (_k) =0

for all integers n > 2 and k > 1.
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Meanwhile proved, using higher-order convolution identities for
Bernoulli numbers and polynomials.
(Joint with Armin Straub, 2016, unpublished).

A more complicated convolution identity shows that
wp+1(—k) =0
for all integers n > 2 and k > 1.
This is analogous to the zeta function identity
((=k)=0
fork=2,4,6,....
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Also proved by Tomkins:

w4(0) = —log(2m) + ¢'(~2)

= —log(27) — i(:z)
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Also proved by Tomkins:

w4(0) = —log(2m) + ¢'(~2)

= —log(27) — i(:z)

How about w’

ny1(0) for n > 47

Karl Dilcher Tornheim zeta function



Recall:

wg(0) = log(2r),
wy(0) = —log(2m) + ¢'(~2).
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Recall:

w3(0) = log(2n),

wy(0) = —log(2m) + ¢'(-2).
Bailey & Borwein found experimentally:
wh(0) = log(2r) — 2¢(—2)
wg(0) = —log(27) + $3¢'(~2) + 75¢'(—4)
w7(0) = log(2m) — P¢'(~2) — 2¢'(—4)

wig(0) = log(27) — 33‘12346?39396307(?(/(_2) e 116237;216000C/(_16)‘
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Recall:

w3(0) = log(2n),
w4(0) = —log(2) + ¢'(—2).

Bailey & Borwein found experimentally:

4(0) = log(2) — 2'(~2)
w4(0) = — log(2m) + 3¢'(~2) + 15¢'(—4)
W4(0) = log(2m) — 18¢/(~2) — 1¢/(~4)

wig(0) = log(27) — 33%46?139396307(JSC/(_2) e 116237;216000</(_16)‘

What are the coefficients in these expressions?
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Theorem
For any n > 2 we have

12%51]

wWpi1(0) = (=1)"log(27) + 724y s(n,2j+1)¢'(-2j),

iy

1

~.
Il

where s(n, k) are the Stirling numbers of the first kind.
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Theorem
For any n > 2 we have

12%51]

s(n,2j+1)¢'(-2j),

iy

w;7+1(0) = (_1)n log(27) + (nE1)!
"

~.
Il

where s(n, k) are the Stirling numbers of the first kind.

(Note: ¢'(0) = —1 log(2n)).
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Theorem
For any n > 2 we have

12%51]

wWpi1(0) = (=1)"log(27) + 724y s(n,2j+1)¢'(-2j),

iy

1

~.
Il

where s(n, k) are the Stirling numbers of the first kind.

(Note: ¢'(0) = —1 log(2n)).

Proof uses similar methods as that of the original case n = 2.
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Theorem

For any n > 2 we have

12%51]

wWpi1(0) = (=1)"log(27) + 724y s(n,2j+1)¢'(-2j),

iy

1

-
Il

where s(n, k) are the Stirling numbers of the first kind.

(Note: ¢'(0) = —1 log(2n)).
Proof uses similar methods as that of the original case n = 2.

Recall:

> s(n kXK =x(x=1)...(x —n+1);
k=0
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Theorem

For any n > 2 we have

12%51]

wWpi1(0) = (=1)"log(27) + 724y s(n,2j+1)¢'(-2j),

iy

1

-
Il

where s(n, k) are the Stirling numbers of the first kind.

(Note: ¢'(0) = —1 log(2n)).
Proof uses similar methods as that of the original case n = 2.

Recall:

> s(n kXK =x(x=1)...(x —n+1);
k=0

s(n,k)=s(n—1,k—1)—(n—1)s(n—1,k).
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2. Character analogues

Introduced and studied by Bailey & Borwein (Math. Comp.
2016).

Karl Dilcher Tornheim zeta function



2. Character analogues

Introduced and studied by Bailey & Borwein (Math. Comp.
2016).

Easiest case: Alternating Tornheim zeta function, defined by

)My
Al 8.1) = z; ( mf) : ns) (m+ n)t’
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2. Character analogues

Introduced and studied by Bailey & Borwein (Math. Comp.
2016).

Easiest case: Alternating Tornheim zeta function, defined by

)My
Al 8.1) = z; ( mf) : ns) (m+ n)t’

In analogy to ws3(s), consider ag(s) := A(s, s, S).
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2. Character analogues

Introduced and studied by Bailey & Borwein (Math. Comp.
2016).

Easiest case: Alternating Tornheim zeta function, defined by

Arsty = Y EDTEDT T

m  ns (m+n)t

m,n>1
In analogy to ws3(s), consider ag(s) := A(s, s, S).

Analogue to Crandall’s formula is much simpler:

r(s)as(s) = Y N ED (s, (m+ n)o)

mr ns (m+ n)s

u+v (S — U)n(s — v)oUrvrs
T2 N ulvi(u+v+s)

Karl Dilcher Tornheim zeta function



Here

G (_1)n+1 1-s
n(s) =Y s— =(1-2""°)(s)
n=1

is the alternating zeta function.

Karl Dilcher Tornheim zeta function



Here
n+1

:Z —27%)¢(s)

n=1

is the alternating zeta function. Some special values:

_ oY — Viog "
n(1) = —log2, 77(0)—2|092-
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Here
n+1

—27%)¢(s)

o0
n=1

is the alternating zeta function. Some special values:

_ oY — Viog "
n(1) = —log2, 77(0)—2|092-

Following same procedure as before, we find
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Here
n+1

—27%)¢(s)

o0
n=1

is the alternating zeta function. Some special values:

_ oY — Viog "
n(1) = —log2, 77(0)—2|092-

Following same procedure as before, we find

Furthermore, using methods of before:

a5(0) = 27/(0) — 7/ (=1) — 37
= log(2r) — 3 log2 — v + 3¢'(—1).
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Character analogues in general:

e On the one hand it will be easier because the Crandall-like
formula will always be simpler than in the principal case.
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Character analogues in general:

e On the one hand it will be easier because the Crandall-like
formula will always be simpler than in the principal case.

¢ On the other hand, obtaining explicit values and derivatives at
the origin will be difficult if not impossible in general.
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Character analogues in general:

e On the one hand it will be easier because the Crandall-like
formula will always be simpler than in the principal case.

¢ On the other hand, obtaining explicit values and derivatives at
the origin will be difficult if not impossible in general.

General Remark:

Many of the results in this talk were first obtained
experimentally before they were proved.
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Character analogues in general:

e On the one hand it will be easier because the Crandall-like
formula will always be simpler than in the principal case.

¢ On the other hand, obtaining explicit values and derivatives at
the origin will be difficult if not impossible in general.

General Remark:

Many of the results in this talk were first obtained
experimentally before they were proved.

Knowing what to expect provides a great deal of guidance, as
well as certainty when it’s done.
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Thank you

I JUST INVENTED
&9 NumseRs!

AT —hn

NEAT! HOW
MANY

) C-rruit Bob Thavesibach com
B ©2004 Thaves / Dist. by NEA, Inc.

wwie Frankarelesnest oo
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