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1. Introduction

One of the best-known multiple zeta functions:

W(r , s, t) :=
∑

m,n≥1

1
mr

1
ns

1
(m + n)t .

Converges for r , s, t ∈ C with

Re(r + t) > 1, Re(s + t) > 1, Re(r + s + t) > 2.

First investigated for r , s, t ∈ N by Tornheim (1950),
independently by Mordell (1958) for the special case r = s = t .

Therefore often called a Tornheim (double) sum or
Mordell-Tornheim (double) sum or series.

Witten (1991) studied a wider class; Zagier (1993) called them
Witten zeta functions. Also often called
Mordell-Tornheim-Witten sums.
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W(r , s, t) can be analytically continued, separately in each of
the three variables, to all of C3; poles at

r + s + t = 2, r + t = 1− `, s + t = 1− ` (` ∈ N ∪ {0}).

(Akiyama, Egami, Matsumoto, 1999, independently).

Romik (preprint, 2015) studied the analytic properties of
W(r , s, t) and its analytic continutation in greater detail;
introduced the function

ω3(s) :=W(s, s, s).

Already known to Mordell:

ω3(2n) = cnπ
6n, cn ∈ Q (n ≥ 1),

where cn can be given explicitly, e.g.,

ω3(4) =
19

273648375
π12.
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Further properties:

ω3(−n) = 0 (n = 1,2,3, . . .),

and for n ≥ 0,

ω3(2n + 1) = −4
n∑

k=0

(
4n − 2k + 1

2n

)
ζ(2k)ζ(6n − 2k + 3)

(Zagier, 1994; Huard, Williams, and Nan-Yue, 1996); e.g.,

ω3(5) = −2
9
π4ζ(11)− 70

3
π2ζ(13) + 252 ζ(15).

Also, ω3(s) has simple poles at

s =
2
3

and s =
1
2
− k , k = 0,1,2, . . .

and no other singularities.
(Romik, 2015, who also determined the residues).
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Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),

• ω′3(s),
• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),
• ω′3(s),

• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),
• ω′3(s),
• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),
• ω′3(s),
• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),
• ω′3(s),
• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Main purpose of this talk:

Study the behaviour at the origin of

• ω3(s),
• ω′3(s),
• and some generalizations.

Important: As we shall see, care must be taken in how we
approach (r , s, t) = (0,0,0) inW(r , s, t).

1. Romik (2015) showed:

ω3(0) =
1
3
.

Here, we’ll give a different proof.

Karl Dilcher Tornheim zeta function



Dan Romik (UC Davis)
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2. In the same paper, Romik showed:

ω′3(0) =
1

12
(1 + γ) +

3
4

log(2π)− 2ζ ′(−1)

+
1
2

∫ ∞
−∞

ζ(3
2 + it)ζ(−3

2 − it)
(3

2 + it) cosh(πt)
dt

= 1.83787706640934548356 . . .

Jon Borwein used high-precision evaluations
and the integer relation algorithm PSLQ
to conjecture the stunningly simple expression

ω′3(0) = log(2π).

The main part of this talk concerns proving this and a
generalization.
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2. Some special functions

For each s ∈ C, the polylogarithm of order s is defined by

Lis(z) :=
∞∑

n=1

zn

ns (|z| < 1).

Special cases:

Li0(z) =
z

1− z
,

Li1(z) = − log(1− z),

Lis(1) = ζ(s) (Re(s) > 1).

Lemma
For s ∈ C \ N, and for | log z| < 2π,

Lis(z) =
∞∑

m=0

ζ(s −m)
logm z

m!
+ Γ(1− s)(− log z)s−1.
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• This is a well-known representation;

• There is a (more complicated) variant that holds also for
s ∈ N.

Connection with Tornheim zeta function:

Lemma
For t > 0 and r , s > 1,

Γ(t)W(r , s, t) =

∫ ∞
0

x t−1Lir (e−x )Lis(e−x )dx .

Proof: Use Euler’s integral for Γ(s) with an easy substitution:

Γ(s) = ns
∫ ∞

0
e−nxxs−1dx .

Replace s by t and n by n + m:
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1
(n + m)t =

1
Γ(t)

∫ ∞
0

x t−1e−(n+m)x dx (Re(t) > 0).

Plug into definition ofW(r , s, t) and change order of summation
and integration (legitimate):

W(r , s, t) =
1

Γ(t)

∫ ∞
0

x t−1

( ∞∑
n=1

e−nx

nr

)( ∞∑
m=1

e−mx

ms

)
dx

=
1

Γ(t)

∫ ∞
0

x t−1Lir (e−x )Lis(e−x )dx .

QED
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3. Crandall’s free parameter formula

The main tool for our results is a remarkable identity due to
Richard Crandall (1947–2012).
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It uses a free parameter and is convenient for both

• theoretical results, and

• computations.

We first need another special function:
The (upper) incomplete Gamma function is defined by

Γ(a, z) :=

∫ ∞
z

ya−1e−y dy .

Obviously, Γ(a,0) = Γ(a).
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Theorem (Crandall)
Let r , s, t be complex variables with r 6∈ N and s 6∈ N. Then for
any real θ > 0 we have

Γ(t)W(r , s, t) =
∑

m,n≥1

Γ(t , (m + n)θ)

mr ns(m + n)t

+
∑

u,v≥0

(−1)u+v ζ(r − u)ζ(s − v)θu+v+t

u!v !(u + v + t)

+ Γ(1− r)
∑
q≥0

(−1)q ζ(s − q)θr+q+t−1

q!(r + q + t − 1)

+ Γ(1− s)
∑
q≥0

(−1)q ζ(r − q)θs+q+t−1

q!(s + q + t − 1)

+ Γ(1− r)Γ(1− s)
θr+s+t−2

r + s + t − 2
.

Karl Dilcher Tornheim zeta function



Remarks:

1. Identity looks complicated at first, but is remarkably useful.

2. r ∈ N and s ∈ N must be exluded since this would lead to
ζ(1) and Γ(z) at negative integers.

3. However, these singularities cancel, and a careful analysis
gives a (more complicated) identity valid for all r , s, t ∈ C.

4. This, and the above theorem, gives another analytic
continuation to all of C3, with the exception of the known
singularities.
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Sketch of proof: Use defining integral of Γ(a, z). A simple
substitution gives∫ ∞

θ
x t−1e−(m+n)x dx =

Γ(t , (m + n)θ)

(m + n)t .

Use same argument as in the 2nd Lemma; break up integral:

Γ(t)W(r , s, t) =
∑

m,n≥1

1
mr ns

(∫ θ

0
+

∫ ∞
θ

)
x t−1e−(m+n)x dx

=
∑

m,n≥1

Γ(t , (m + n)θ)

mr ns(m + n)t +

∫ θ

0
x t−1Lir (e−x )Lis(e−x )dx .

Use the first Lemma, namely

Lis(z) =
∞∑

m=0

ζ(s −m)
logm z

m!
+ Γ(1− s)(− log z)s−1.

Expand and then integrate. QED
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First application: Set r = s = t ; then

Γ(s)ω3(s) =
∑

m,n≥1

Γ(s, (m + n)θ)

(mn(m + n))s

+
∑

u,v≥0

(−1)u+v ζ(s − u)ζ(s − v)θu+v+s

u!v !(u + v + s)

+ 2Γ(1− s)
∑
q≥0

(−1)q ζ(s − q)θ2s+q−1

q!(2s + q − 1)

+ Γ(1− s)s θ
3s−2

3s − 2
.

Fix θ > 0, multiply both sides by s and let s → 0.

LHS: sΓ(s)→ 1. RHS: Almost all terms disappear, except
– 2nd row for u = v = 0; get ζ(0)2 = (−1/2)2 = 1/4;
– 3rd row for q = 1; get 2Γ(0)(−1)ζ(−1)/2 = −ζ(−1) = 1/12.

Together: ω3(0) = 1/3.
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Remarks:

1. This last identity also immediately gives the singularities of
ω3(s) and their residues.

2. With only a small variation we can prove a more general
result: Define

ω3(s; τ) :=W(s, s, τs).

Then for any τ > 0 we have

ω3(0; τ) = ζ(0)2 − 2 τ
τ + 1

ζ(−1) =
1

12
5 τ + 3
τ + 1

,

and in particular,

ω3(0) = ω3(0; 1) =
1
3
.
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4. Derivative at the origin

Let’s return to Crandall’s identity; multiply both sides by s:

sΓ(s)ω3(s) = s

 ∑
m,n≥1

Γ(s, (m + n)θ)

(mn(m + n))s

+
∑

u,v≥0

(−1)u+v ζ(s − u)ζ(s − v)θu+v+s

u!v !(u + v + s)

+ 2Γ(1− s)
∑
q≥0

(−1)q ζ(s − q)θ2s+q−1

q!(2s + q − 1)

+Γ(1− s)s θ
3s−2

3s − 2

]
.

Now isolate the singularies in s in the large brackets on the
RHS; bring them to the left:
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sΓ(s)ω3(s)− ζ(s)2θ2 + Γ(1− s)ζ(s − 1)θ2s

= s

 ∑
m,n≥1

Γ(s, (m + n)θ)

(mn(m + n))s

+2Γ(1− s)ζ(s)
θ2s−1

2s − 1
+ Γ(1− s)2 θ

3s−2

3s − 2

+
∑

u,v≥0
(u,v)6=(0,0)

(−1)u+v ζ(s − u)ζ(s − v)θu+v+s

u!v !(u + v + s)

+2Γ(1− s)
∑
q≥2

(−1)q ζ(s − q)θ2s+q−1

q!(2s + q − 1)

 .

Derivative at s = 0 of LHS becomes

ω′3(0)− 5
12γ −

1
2 log 2π − 5

12 log θ + ζ ′(−1).
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Derivative at s = 0 of RHS amounts to evaluating [. . .] at s = 0.

Since θ > 0 is a free variable, we consider θ → 0.

There are singularities at θ = 0; however, they cancel.

Some key ingredients:∑
m,n≥1

Γ(0, (m + n)θ) =

∫ ∞
1

du
(eθu − 1)2u

.

(Easy manipulation using definition of Γ(a, z)).∫ ∞
0

tα−1

(et − 1)2 dt = Γ(α)(ζ(α− 1)− ζ(α)) (Re(α) > 2).

(An integral in Gradshteyn & Ryzhik).
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Everything put together, we get (after some work)∑
m,n≥1

Γ(0, (m + n)θ)

=
1
2

log(2π)− 5γ
12

+ ζ ′(−1)− 1
θ

+
1

2θ2 −
5

12
log θ + O(θ).

Finally:

Theorem

ω′3(0) = log(2π).

As before, with small modifications we get more generally

ω′3(0; τ) =
τ + 1

2
log(2π) +

(τ − 1)τ

τ + 1
ζ ′(−1).

(Recall: ω3(s; τ) :=W(s, s, τs).)
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5. Extensions

1. A multi-dimensional analogue:

For n ≥ 2 define

W(r1, . . . , rn, t) :=
∑

m1,...,mn≥1

1
mr1

1 . . .m
rn
n (m1 + . . .mn)t

Studied by Matsumoto (2000), Bailey & Borwein (2015), and
others.

In analogy to before, define

ωn+1(s) :=W(s, . . . , s, s).

Hayley Tomkins (honours thesis, 2016) showed that

ωn+1(0) =
(−1)n

n + 1

holds for n ≤ 7, and conjectured that it is true for all n.
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Meanwhile proved, using higher-order convolution identities for
Bernoulli numbers and polynomials.
(Joint with Armin Straub, 2016, unpublished).

A more complicated convolution identity shows that

ωn+1(−k) = 0

for all integers n ≥ 2 and k ≥ 1.

This is analogous to the zeta function identity

ζ(−k) = 0

for k = 2,4,6, . . ..
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Also proved by Tomkins:

ω′4(0) = − log(2π) + ζ ′(−2)

= − log(2π)− ζ(3)

4π2 .

How about ω′n+1(0) for n ≥ 4?
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Recall:

ω′3(0) = log(2π),

ω′4(0) = − log(2π) + ζ ′(−2).

Bailey & Borwein found experimentally:

ω′5(0) = log(2π)− 2ζ ′(−2)

ω′6(0) = − log(2π) + 35
12ζ
′(−2) + 1

12ζ
′(−4)

ω′7(0) = log(2π)− 15
4 ζ
′(−2)− 1

4ζ
′(−4)

...

ω′19(0) = log(2π)− 344499373
33633600 ζ

′(−2)− . . .− 1
1162377216000ζ

′(−16).

What are the coefficients in these expressions?
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33633600 ζ

′(−2)− . . .− 1
1162377216000ζ

′(−16).

What are the coefficients in these expressions?
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Theorem
For any n ≥ 2 we have

ω′n+1(0) = (−1)n log(2π) + 2
(n−1)!

b n−1
2 c∑

j=1

s(n,2j + 1)ζ ′(−2j),

where s(n, k) are the Stirling numbers of the first kind.

(Note: ζ ′(0) = −1
2 log(2π)).

Proof uses similar methods as that of the original case n = 2.

Recall:
n∑

k=0

s(n, k)xk = x(x − 1) . . . (x − n + 1);

s(n, k) = s(n − 1, k − 1)− (n − 1)s(n − 1, k).
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2. Character analogues

Introduced and studied by Bailey & Borwein (Math. Comp.
2016).

Easiest case: Alternating Tornheim zeta function, defined by

A(r , s, t) :=
∑

m,n≥1

(−1)m

mr
(−1)n

ns
1

(m + n)t .

In analogy to ω3(s), consider α3(s) := A(s, s, s).

Analogue to Crandall’s formula is much simpler:

Γ(s)α3(s) =
∑

m,n≥1

(−1)m

mr
(−1)n

ns
Γ(s, (m + n)θ)

(m + n)s

+
∑

u,v≥0

(−1)u+v η(s − u)η(s − v)θu+v+s

u!v !(u + v + s)
.
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Here

η(s) :=
∞∑

n=1

(−1)n+1

ns = (1− 21−s)ζ(s)

is the alternating zeta function.

Some special values:

η(1) = − log 2, η′(0) =
1
2

log
π

2
.

Following same procedure as before, we find

α3(0) = η(0)2 =
1
4
.

Furthermore, using methods of before:

α′3(0) = 2η′(0)− η′(−1)− 1
4γ

= log(2π)− 5
3 log 2− 1

4γ + 3ζ ′(−1).
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Character analogues in general:

• On the one hand it will be easier because the Crandall-like
formula will always be simpler than in the principal case.

• On the other hand, obtaining explicit values and derivatives at
the origin will be difficult if not impossible in general.

General Remark:

Many of the results in this talk were first obtained
experimentally before they were proved.

Knowing what to expect provides a great deal of guidance, as
well as certainty when it’s done.
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Thank you
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