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• Introduction: Statement of the Original Problem

Find f (x) such that

g(1
2) =

∫ 1

0
f (x)g(x)dx

where f (x) and g(x) are polynomials of degree ≤ 2.
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To solve let
f (x) = ax2 + bx + c

and
g(x) = αx2 + βx + γ

Now we simply multiply these and integrate from 0 to 1. The
result of this must be equal to g(1

2).

Then we just allow the coefficients of α, β,andγ to be equal
and solve a system of equations.
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The leads to the solution

f (x) = −15x2 + 15x − 3
2

After finding this solution I wanted to have some fun and see
how the answer changed if I made a small change to the
original problem.
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Here is the problem I answered next.

Find f (x) such that

g(1
2) =

∫ 1

0
f (x)g(x)dx

where g(x) and f (x) are polynomials of degree ≤ 3.
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This problem is of course solved in the exact same way as the
previous, however I did not want to solve the system of
equations by hand, and so I taught Maple how to solve the
problem and asked for some help.

To test if Maple understood, I asked what if deg ≤ 2?

Maple responds f (x) = −15x2 + 15x − 3
2 .

Good. So then what if deg ≤ 3?

Maple responds f (x) = −15x2 + 15x − 3
2 .

?

I must have somehow accidently told Maple to assume that the
degree was always ≤ 2.
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Before checking my work I first decided to ask Maple one more
question.

What if deg ≤ 4?

Maple responds f (x) = 945
4 x4 − 945

2 x3 + 1155
4 x2 − 105

2 x + 15
8 .

Oh? deg ≤ 5?

Maple responds f (x) = 945
4 x4 − 945

2 x3 + 1155
4 x2 − 105

2 x + 15
8 .

Same thing again.
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I continued for a few more degrees, and the pattern continued
as well.

I thought maybe it is somehow possible that I made a mistake
that only appears for odd degrees, so I checked if the answer
held up with the original problem.

I asked Maple for a random polynomial of degree ≤ 3, and
integrated it against f (x) = −15x2 + 15x − 3

2 .

The answer was the random polynomial at x = 1
2 . Perhaps no

mistake was made.

But why is this happening?

To answer this we will state the question again, but in more
general terms.
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• Generalizing the Problem

Find fn(x) such that

g(c) =

∫ 1

0
fn(x)g(x)dx

where g(x) and fn(x) are polynomials of degree ≤ n.

Now let us write our question in terms of the following
proposition.
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Proposition

Let fn(x) be as previously defined. Then when c = 1
2 we have

f2m+1(x) = f2m(x) for m ∈ N.

So then let

fn(x) =
n∑

k=0

akxk

and

g(x) =
n∑

k=0

bkxk

Solving in the same manner leads to
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
1 1

2
1
3 . . . 1

n+1
1
2

1
3

1
4 . . . 1

n+2
1
3

1
4

1
5 . . . 1

n+3
...

...
...

. . .
...

1
n+1

1
n+2

1
n+3 . . . 1

2n+1




a0
a1
a2
...

an

 =


1
c
c2

...
cn



Now write this as
Ha = c.

The choice of H is because matrices of this form (Hi,j = 1
i+j−1 )

are known as Hilbert matrices.
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To continue we need to know the inverse of the matrix H.

Luckily Hilbert matrices have a known formula for the entries of
their inverse.

(Hi,j)
−1 = (−1)i+j−1(i+j−1)

(
n + i

i + j − 1

)(
n + j

i + j − 1

)(
i + j − 2

i − 1

)2

.

Before continuing we need a definition.
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Definition
Let hn,i(c) be the polynomial created by taking the dot product
of the i th row of H−1 and c.

These polynomials determine the coefficients of fn(x). That is,

hn,i(c) = ai−1, or fn(x) =
n+1∑
k=1

hn,k (c)xk−1

Let’s do an example to clarify.
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Example: If n = 2, then

H =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 .

Using our formula,

H−1 =

 9 −36 30
−36 192 −180
30 −180 180

 .
So we have n = 2 and can see that 1 ≤ i ≤ 3. Thus

h2,1(c) = 9− 36c + 30c2,

h2,2(c) = −36 + 192c − 180c2,

h2,3(c) = 30− 180c + 180c2,

fn(x) =h2,1(c) + h2,2(c)x + h2,3(c)x2
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Now back to our problem.

If n is odd, and fn(x) = fn−1(x) when c = 1
2 , then the degree of

fn(x) is n − 1. This means that an = 0 in fn(x).

This would correspond to the polynomial formed by the bottom
row of H−1 having a root at c = 1

2 . Using our definition, this can
be written as hn,n+1(c) having a root at c = 1

2 .

Using the formula for H−1 we can write hn,n+1(c) as

hn,n+1(c) =

n+1∑
j=1

(−1)n+j+1(n + j)
(

2n + 1
n + j

)(
n + j
n + j

)(
n + j − 1

n

)2

c j−1
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row of H−1 having a root at c = 1

2 . Using our definition, this can
be written as hn,n+1(c) having a root at c = 1

2 .

Using the formula for H−1 we can write hn,n+1(c) as

hn,n+1(c) =

n+1∑
j=1

(−1)n+j+1(n + j)
(

2n + 1
n + j

)(
n + j
n + j

)(
n + j − 1

n

)2

c j−1
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Rearranging, simplifying, and shifting indicies gives us

hn,n+1(c) = (−1)n(2n + 1)

(
2n + 1

n

) n∑
k=0

(−1)k
(

n
k

)(
n + k

k

)
ck .

This form is exactly what we need. The sum is our polynomial,
and then we have a scaling factor outside.

All we need now is a definition to solve our problem.
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Definition

The shifted Legendre polynomials, denoted P̃n(x), are given by

P̃n(x) = (−1)n
n∑

k=0

(−1)k
(

n
k

)(
n + k

k

)
xk .

Looking back at our expresion for hn,n+1(c),

hn,n+1(c) = (−1)n(2n + 1)

(
2n + 1

n

) n∑
k=0

(−1)k
(

n
k

)(
n + k

k

)
ck ,

we can now see that hn,n+1(c) is just a multiple of P̃n(c).
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The shifted Legendre polynomials are so named because they
are, unsurprisingly, Legendre polynomials which have been
shifted.

The shift is given by sending x to 2x − 1. That is, if we denote
the Legendre polynomials by Pn(x), then Pn(2x − 1) = P̃n(x).

The Legendre polynomials are known to have x = 0 as a root
when their degree is odd. Therefore, the shifted Legendre
polynomials must have a root at x = 1

2 when their degree is
odd.
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So, hn,n+1(c) = an and these are just multiples of the shifted
Legendre polynomials.

The shifted Legendre polynomials have a root at 1
2 when their

degree is odd.

Therefore, if n is odd and c = 1
2 , then an = 0. This ends up

forcing fn(x) = fn−1(x), thus answering our question.
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The appearance of Legendre polynomials is unsurprising since
the original problem involves an inner product of polynomials.

However, when I found this solution, It gave me another
question.

If hn,n+1(c) is always just a multiple of a shifted Legendre
polynomial, what do other rows correspond to?

That is, how does hn,1(c) change as we change n? hn,2(c)?
etc.
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• Another Approach to the Problem and the Other
Rows of H−1

Until now, I have been using just basic calculus and matrix
operations to answer these questions. There is however a
better way.

Theorem
(Riesz Represention Theorem) If we have some finite
dimensional vector space, V , and some linear functional φ on
V, then there is a unique vector u ∈ V such that

φ(v) = 〈v ,u〉

for all v ∈ V.

We can interpret our problem in terms of this theorem. The
integral is an inner product, g(x) corresponds to v , fn(x)
corresponds to u, and evaluation at c is a linear functional.
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This theorem has the consequence of allowing us to write

fn(x) =
n∑

k=0

P̃k (c)P̃k (x)∫ 1

0
P̃k (x)2dx

=
n∑

k=0

(2k + 1)P̃k (c)P̃k (x)

It should be noted that this expression for fn(x) shows us that it
is actually a familier concept in the study of orthogonal
polynomials.

In this form fn(x) would be called the kernel of the shifted
Legendre polynomials. Therefore what I am studying can be
interpreted as looking at how the coefficients of this kernel
change with n, and with c.
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Moving back to hn,i(c), we can use the previous expression of
fn(x) and the fact that

fn(x) =
n+1∑
k=1

hn,k (c)xk−1

To find that

hn,i(c) =
n∑

k=i−1

(−1)k+i−1
(

k
i − 1

)(
k + i − 1

i − 1

)
(2k + 1)P̃k (c)

Using this equation, I wanted to find a generating function for
these polynomials.
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First let us focus on i = 1.

If i = 1 we have

hn,1(c) =
n∑

k=0

(−1)k (2k + 1)P̃k (c).

Now we need to make use of a relationship between the shifted
Legendre polynomials.

(n + 1)P̃n+1(x) = (2n + 1)(2x − 1)P̃n(x)− nP̃n−1(x)

Combining the two expressions, it can be shown that

hn,1(c) =
(−1)n(n + 1)

2c

(
P̃n(c) + P̃n+1(c)

)
Using this we can find a generating function for hn,1(c).
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Rearranging, multiplying by xn+1, and summing over n yields

∞∑
n=0

hn,1(c)xn+1

n + 1
= −

∞∑
n=0

1
2c

(
P̃n(c)(−x)n+1 + P̃n+1(c)(−x)n+1

)
= − 1

2c

(
−x

∞∑
n=0

P̃n(c)(−x)n +
∞∑

n=0

P̃n(c)(−x)n − P̃0(c)

)

= − 1
2c

(
(1− x)

∞∑
n=0

P̃n(c)xn − 1

)

= − 1
2c

(
1− x√

1 + 2(2c − 1)x + x2
− 1

)
.

Now we take the derivative with respect to x of both sides
which gives us the generating function.
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Let H1(x) be the generating function for hn,1(c).

Then we have from the previous slide

H1(x) = − 1
2c

d
dx

(
1− x√

1 + 2(2c − 1)x + x2
− 1

)

=
1 + x

(1 + 2(2c − 1)x + x2)
3
2
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Now using our expression for H1(x), along with

hn,i(c) =
n∑

k=i−1

(−1)k+i−1
(

k
i − 1

)(
k + i − 1

i − 1

)
(2k + 1)P̃k (c)

we can find an expression for the generating function of any
hn,i(c), denoted Hi(x).
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Sparing the details of the calculation, as it is more complicated
but similar to the derivation of H1(x), the final final result is
given by

Hi(x) =
(−x)i−1

(1− x)((i − 1)!)2
d2i−2

dx2i−2

(
x i−1(1− x)(1 + x)

(1 + 2(2c − 1)x + x2)
3
2

)

If we let j = i − 1 then this takes on a nicer form of

Hj+1(x) =
(−x)j

(1− x)(j!)2
d2j

dx2j

(
x j(1− x)(1 + x)

(1 + 2(2c − 1)x + x2)
3
2

)

So we have accomplished our goal of finding the generating
function for the polynomials hn,i(c).
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Here are the first couple generating functions.

H1(x) =
1 + x

(1 + 2(2c − 1)x + x2)
3
2

H2(x) =
12x(1 + x)

(
(c − 1

2)x2 − (c2 − c − 1)x + c − 1
2

)
(1 + 2(2c − 1)x + x2)

7
2

H3(x) is a bit long so I will break it up a bit.

The denominator is the same as the others but with exponent
11
2 .

There is also the term 180x2(1 + x) which is also similar to the
others.

The part I want to show however, is the polynomial in the
numerator.
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There is also the term 180x2(1 + x) which is also similar to the
others.

The part I want to show however, is the polynomial in the
numerator.
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For H1(x) the polynomial would just be 1.

For H2(x) the polynomial would be(
(c − 1

2)x2 − (c2 − c − 1)x + c − 1
2

)
.

And for H3(x)

(
c2 − c + 1

6

)
x4 +

(
−4

3c3 + 2c2 + 2
3c − 2

3

)
x3

−1
3(c2 − c + 3)(c2 − c − 1)x2

+
(
−4

3c3 + 2c2 + 2
3c − 2

3

)
x +

(
c2 − c + 1

6

)
.
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• Other Results

Now I will quickly state some other results and properties of
these polynomials.

First, the polynomials hn,i(c) have an interesting property with
the inner product from which they came.∫ 1

0
hn,i(c)cndc =

{
1 if i = n + 1
0 otherwise

In other words, integrating hn,i(c) against another polynomial in
c of degree at least n, will be equal to the coefficient of c i−1 of
the polynomial.
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Another representation for these polynomials is

hn,i(c) = (−1)i i
(

n + i
i

)(
n + 1

i

)
3F2(−n,n + 2, i ; 1, i + 1; c)

This just gives us another representation of the polynomials
which can be investigated. Given this representation I was also
able to prove the following identity∫ 1

0
3F2(−n,n + 2, i ; 1, i + 1; c)3F2(−m,m + 2, i ; 1, i + 1; c)dc

=
i2Γ(n + i + 1)Γ(m + 2− i)

(2i − 1)(n + 1)(m + 1)Γ(n + 2− i)Γ(m + i + 1)

Scott Cameron A Linear Algebra Problem Related to Legendre Polynomials



Another representation for these polynomials is

hn,i(c) = (−1)i i
(

n + i
i

)(
n + 1

i

)
3F2(−n,n + 2, i ; 1, i + 1; c)

This just gives us another representation of the polynomials
which can be investigated.

Given this representation I was also
able to prove the following identity∫ 1

0
3F2(−n,n + 2, i ; 1, i + 1; c)3F2(−m,m + 2, i ; 1, i + 1; c)dc

=
i2Γ(n + i + 1)Γ(m + 2− i)

(2i − 1)(n + 1)(m + 1)Γ(n + 2− i)Γ(m + i + 1)

Scott Cameron A Linear Algebra Problem Related to Legendre Polynomials



Another representation for these polynomials is

hn,i(c) = (−1)i i
(

n + i
i

)(
n + 1

i

)
3F2(−n,n + 2, i ; 1, i + 1; c)

This just gives us another representation of the polynomials
which can be investigated. Given this representation I was also
able to prove the following identity∫ 1

0
3F2(−n,n + 2, i ; 1, i + 1; c)3F2(−m,m + 2, i ; 1, i + 1; c)dc

=
i2Γ(n + i + 1)Γ(m + 2− i)

(2i − 1)(n + 1)(m + 1)Γ(n + 2− i)Γ(m + i + 1)

Scott Cameron A Linear Algebra Problem Related to Legendre Polynomials



Next, I would like to show you some images that arise from the
hypergeometric representation of the polynomials.
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Thanks for listening.
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Special thanks to Dalhousie University
and to my advisor, Karl Dilcher
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