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The general question

In the sequel we will use the following notation:
N denote the set of non-negative integers,
N+ - the set of positive integers,
P - the set of prime numbers,
N≥k - the set {n ∈ N : n ≥ k}.

If p ∈ P and n ∈ Z we define the p-adic valuation of n as:

νp(n) := max{k ∈ N : pk | n}.

We also adopt the standard convention that νp(0) = +∞.

From the definition we easily deduce that for each n1, n2 ∈ Z the following
properties hold:

νp(n1n2) = νp(n1) + νp(n2) and νp(n1 + n2) ≥ min{νp(n1), νp(n2)}.

If νp(n1) 6= νp(n2) then the inequality can be replaced by the equality.
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Let

f (x) =
∞∑
n=0

anx
n ∈ Z[[x ]]

and

g(x) =
∞∑
n=0

bnx
n ∈ Z[[x ]]

be a formal power series with integer coefficients and M ∈ N≥2 be given.
We say that f , g are congruent modulo M if and only if for all n the
coefficients of xn in both series are congruent modulo M.

In other words

f ≡ g (mod M)⇐⇒ ∀n ∈ N : an ≡ bn (mod M).
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One can prove that for any given f ,F , g ,G ∈ Z[[x ]] satisfying

f ≡ g (mod M) and F ≡ G (mod M)

we have

f ± F ≡ g ± G (mod M) and fF ≡ gG (mod M).

Moreover, if f (0), g(0) ∈ {−1, 1} then the series 1/f , 1/g have integer
coefficients and we also have

1

f
≡ 1

g
(mod M).

In consequence, in this case we have

f k ≡ g k (mod M)

for any k ∈ Z.
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We formulate the following general

Question 1

Let f (x) =
∑∞

n=0 εnx
n ∈ Z[[x ]] with ε0 ∈ {−1, 1} and take m ∈ N+. What can

be said about the sequences (νp(am(n)))n∈N, (νp(bm(n)))n∈N, where

f (x)m =

(
∞∑
n=0

εnx
n

)m

=
∞∑
n=0

am(n)xn,

1

f (x)m
=

(
1∑∞

n=0 εnx
n

)m

=
∞∑
n=0

bm(n)xn,

i.e., am(n) (bm(n)) is the n-th coefficient in the power series expansion of the
series f m(x) (1/f (x)m respectively)?
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It is clear that in its full generality, the Question 1 is too difficult and we
cannot expect that the sequences (νp(am(n)))n∈N (νp(bm(n)))n∈N can be
given in closed form or even that a reasonable description can be obtained.
Indeed, in order to give an example let us consider the formal power series

f (x) =
∞∏
n=1

(1− xn) = 1 +
∞∑
n=1

(−1)n(x
n(3n−1)

2 + x
n(3n+1)

2 ).

The second equality is well know theorem: the Euler pentagonal number
theorem.

In particular a(n) ∈ {−1, 0, 1} and thus for any given p ∈ P we have

νp(a(n)) = 0 in case when n is of the form n = m(3m±1)
2

for some m ∈ N+,
and νp(a(n)) =∞ in the remaining cases.

However, the characterization of the 2-adic behaviour of the sequence
(p(n))n∈N given by

1

f (x)
=
∞∏
n=1

1

1− xn
= 1 +

∞∑
n=1

p(n)xn

is unknown. Let us note that the number p(n) counts the integer
partitions of n, i.e., the number of non-negative integer solutions of the
equation

∑n
i=1 xi = n. In fact, even the proof that ν2(p(n)) > 0 infinitely

often is quite difficult.
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The Prouhet-Thue-Morse sequence and the binary partition function

Let n ∈ N and n =
∑k

i=0 εi2
i be the unique expansion of n in base 2 and

define the sum of digits function

s2(n) =
k∑

i=0

εi .

Next, we define the Prouhet-Thue-Morse sequence t = (tn)n∈N (on the
alphabet {−1,+1}) in the following way

tn = (−1)s2(n),

i.e., tn = 1 if the number of 1’s in the binary expansion of n is even and
tn = −1 in the opposite case. We will call the sequence t as the PTM
sequence in the sequel.

From the relations

s2(0) = 0, s2(2n) = s2(n), s2(2n + 1) = s2(n) + 1

we deduce the recurrence relations for the PTM sequence: t0 = 1 and

t2n = tn, t2n+1 = −tn.
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Let

T (x) =
∞∑
n=0

tnx
n ∈ Z[x ]

be the ordinary generating function for the PTM sequence.

One can check that the series T satisfies the following functional equation

T (x) = (1− x)T (x2).

In consequence we easily deduce the representation of T in the infinite
product shape

T (x) =
∞∏
n=0

(1− x2n ).

Let us also note that the (multiplicative) inverse of the series T , i.e.,

B(x) =
1

T (x)
=
∞∏
n=0

1

1− x2n
=
∞∑
n=0

bnx
n

is an interesting object.
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Indeed, for n ∈ N, the number bn counts the number of binary partitions
of n. The binary partition is the representation of the integer n in the form

n =
n∑

i=0

ui2
i ,

where ui ∈ N for i = 0, . . . , n.

The sequence (bn)n∈N was introduced by Euler. However, it seems that
the first nontrivial result concerning its arithmetic properties was obtained
by Churchhouse. He proved that ν2(bn) ∈ {1, 2} for n ≥ 2.

More precisely, b0 = 1, b1 = 1 and for n ≥ 2 we have ν2(bn) = 2 if and
only if n or n − 1 can be written in the form 4r (2u + 1) for some r ∈ N+

and u ∈ N. In the remaining cases we have ν2(bn) = 1.

We can compactly write

ν2(bn) =

{
1
2
|tn − 2tn−1 + tn−2|, if n ≥ 2

0, if n ∈ {0, 1}.

In other words we have simple characterization of the 2-adic valuation of
the number bn for all n ∈ N.
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Let m ∈ N+ and consider the series

Bm(x) := B(x)m =
∞∏
n=0

1

(1− x2n )m
=
∞∑
n=0

bm(n)xn.

We have b1(n) = bn for n ∈ N and

bm(n) =
∑

i1+i2+...+im=n

m∏
k=1

b(ik),

i.e., bm(n) is Cauchy convolution of m-copies of the sequence (bn)n∈N. For
m ∈ N+ we denote the sequence (bm(n))n∈N by bm.

From the above expression we easily deduce that the number bm(n) has a
natural combinatorial interpretation. Indeed, bm(n) counts the number of
representations of the integer n as the sum of powers of 2, where each
summand can have one of m colors.
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Now we can formulate the natural

Question 2

Let m ∈ N+ be given. What can be said about the sequence (ν2(bm(n)))n∈N?

To give a partial answer to this question we will need two lemmas. The
one concerning the characterization of parity of the number bm(n) and the
second one concerning the behaviour of certain binomial coefficients
modulo small powers of two.

Lemma 1

Let m ∈ N+ be fixed and write m = 2k(2u + 1) with k ∈ N. Then:
1 We have bm(n) ≡

(m
n

)
+ 2k+1

(m−2
n−2

)
(mod 2k+2) for m even;

2 We have bm(n) ≡
(m
n

)
(mod 2) for m odd;

3 For infinitely many n we have bm(n) 6≡ 0 (mod 4) for m odd.
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Lemma 2

Let m be a positive integer ≥ 2. Then(
2m − 1

k

)
≡ 1 (mod 2), for k = 0, 1, . . . , 2m − 1,

and

(
2m

k

)
≡


1 for k = 0, 2m

4 for k = 2m−2, 3 · 2m−2

6 for k = 2m−1

0 in the remaining cases

(mod 8), for k = 0, 1, . . . , 2m.
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We are ready to prove the following

Theorem 3

Let k ∈ N+ be given. Then ν2(b2k−1(n)) = 0 for n ≤ 2k−1 and

ν2(b2k−1(2kn + i)) = ν2(b1(2n))

for each i ∈ {0, . . . , 2k − 1} and n ∈ N+.

Proof: First of all, let us observe that the second part of Lemma 1 and the
first part of Lemma 2 implies that b2k−1(n) is odd for n ≤ 2k − 1 and thus
ν2(b2k−1(n)) = 0 in this case.
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Now let us observe that from the first part of Lemma 1 and the second
part of Lemma 2 we have

b2k (n) ≡

(
2k

n

)
(mod 8)

for n = 0, 1, . . . , 2k and b2k (n) ≡ 0 (mod 8) for n > 2k , provided k ≥ 2 or
n 6= 2.

Moreover,

b2(2) ≡

(
2

2

)
+ 4

(
0

0

)
= 5 (mod 8).

Summing up this discussion we have the following expression for b2k−1(n)
(mod 8), where k ≥ 2 and n ≥ 2k :

b2k−1(n) =
n∑

j=0

tn−jb2k (j) =
2k∑
j=0

tn−jb2k (j) +
n∑

j=2k+1

tn−jb2k (j)

≡
2k∑
j=0

tn−jb2k (j) ≡
2k∑
j=0

tn−j

(
2k

j

)
(mod 8)

≡ tn + tn−2k + 4tn−2k−2 + 4tn−3·2k−2 + 6tn−2k−1 (mod 8).
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However, it is clear that tn−2k−2 + tn−3·2k−2 ≡ 0 (mod 2) and thus we can
simplify the above expression and get

b2k−1(n) ≡ tn + tn−2k + 6tn−2k−1 (mod 8)

for n ≥ 2k .

If k = 1 and n ≥ 2 then, analogously, we get

b1(n) ≡
2k∑
j=0

tn−jb2k (j) (mod 8) ≡ tn + 5tn−2 + 2tn−1 (mod 8)

and since tn−1 ≡ tn−2 (mod 2), we thus conclude that

b1(n) ≡ tn + tn−2k + 6tn−2k−1 (mod 8).
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Let us put
Rk(n) = tn + tn−2k + 6tn−2k−1 .

Using now the recurrence relations for tn, i.e., t2n = tn, t2n+1 = −tn, we
easily deduce the identities

Rk(2n) = Rk−1(n), Rk(2n + 1) = −Rk−1(n)

for k ≥ 2.

Using a simple induction argument, one can easily obtain the following
identities:

|Rk(2km + j)| = |R1(2m)| (2)

for k ≥ 2,m ∈ N and j ∈ {0, . . . , 2k − 1}.
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From the above identity we easily deduce that Rk(n) 6≡ 0 (mod 8) for
each n ∈ N and each k ≥ 1. If k = 1 then R1(n) = tn + 6tn−1 + tn−2 and
R1(n) ≡ 0 (mod 8) if and only if tn = tn−1 = tn−2. However, a well known
property of the Prouhet-Thue-Morse sequence is that there are no three
consecutive terms which are equal.

If k ≥ 2 then our statement about Rk(n) is clearly true for n ≤ 2k . If
n > 2k then we can write n = 2km + j for some m ∈ N and
j ∈ {0, 1, . . . , 2k − 1}. Using the reduction (2) and the property obtained
for k = 1, we get the result.

Summing up our discussion, we have proved that ν2(b2k−1(n)) ≤ 2 for
each n ∈ N, since ν2(b1(n)) ∈ {0, 1, 2}. Moreover, as an immediate
consequence of our reasoning we get the equality

ν2(b2k−1(2kn + j)) = ν2(b1(2n))

for j ∈ {0, ..., 2k − 1} and our theorem is proved.
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Conjecture 1

Let m ∈ N≥2 be given and suppose that m is not of the form 2k − 1 for
k ∈ N+. Then the sequence (ν2(bm(n)))n∈N is unbounded.

Conjecture 2

Let m be a fixed positive integer. Then for each n ∈ N and k ≥ m + 2 the
following congruence holds

b2m (2k+1n) ≡ b2m (2k−1n) (mod 2k).
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Conjecture 3

Let m be a fixed positive integer. Then for each n ∈ N and k ≥ m + 2 the
following congruence holds

b2m−1(2k+1n) ≡ b2m−1(2k−1n) (mod 24b k+1
2
c−2).

In fact we expect the following

Conjecture 4

Let m be a fixed positive integer. Then for each n ∈ N and given k � 1 there
is a non-decreasing function f : N→ N such that f (k) = O(k) and the
following congruence holds

bm(2k+1n) ≡ bm(2k−1n) (mod 2f (k)).
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Some general results

Let (εn)n∈N be a sequence of integers and write
f (x) =

∑∞
n=0 εnx

n ∈ Z[[x ]]. Moreover, for m ∈ N+ we define the sequence
bm = (bm(n))n∈N, where

1

f (x)m
=
∞∑
n=0

bm(n)xn.

We have the following

Theorem 4

Let (εn)n∈N be a sequence of integers and suppose that εn ≡ 1 (mod 2) for
each n ∈ N. Then for any m ∈ N+ and n ≥ m we have the congruence

bm−1(n) ≡
m∑
i=0

(
m

i

)
εn−i (mod 2ν2(m)+1). (3)
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Proof: Let f (x) =
∑∞

n=0 εnx
n ∈ Z[[x ]]. From the assumption on sequence

(εn)n∈N we get that

f (x) ≡ 1

1 + x
(mod 2).

In consequence, writing m = 2ν2(m)k with k odd, and using the well known
property saying that U ≡ V (mod 2k) implies U2 ≡ V 2 (mod 2k+1), we
get the congruence

1

f (x)m
≡ (1 + x)m (mod 2ν2(m)+1).

Thus, multiplying both sides of the above congruence by f (x) we get

1

f (x)m−1
≡ f (x)(1 + x)m (mod 2ν2(m)+1).

From the power series expansion of f (x)(1 + x)m by comparing coefficients
on the both sides of the above congruence we get that

bm−1(n) ≡
min{m,n}∑

i=0

(
m

i

)
εn−i (mod 2ν2(m)+1),

i.e., for n ≥ m we get the congruence (3). Our theorem is proved.
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From our result we can deduce the following

Corollary 5

Let (εn)n∈N be a non-eventually constant sequence, εn ∈ {−1, 1} for each
n ∈ N, and suppose that for each N ∈ N+ there are infinitely many n ∈ N such
that εn = εn+1 = . . . = εn+N . Then, for each even m ∈ N+ there are infinitely
many n ∈ N such that

ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1.

Proof: From our assumption on the sequence (εn)n∈N we can find infinitely
many (m + 1)-tuples such that εn+1 = ε, εn = . . . = εn−m = −ε, where ε
is a fixed element of {−1, 1}. We apply (3) and get

bm−1(n) ≡
m∑
i=0

(m
i

)
εn−i ≡ −

m∑
i=0

(m
i

)
ε ≡ −ε2m ≡ 0 (mod 2ν2(m)+1),

bm−1(n + 1) ≡
m∑
i=0

(m
i

)
εn+1−i ≡ 2ε−

m∑
i=0

(m
i

)
ε ≡ ε(2− 2m) ≡ 2ε (mod 2ν2(m)+1).

In consequence ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1 and
our theorem is proved.
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Example: Let F : N→ N satisfy the condition
lim supn→+∞(F (n + 1)− F (n)) = +∞ and define the sequence

εn(F ) =

{
1 n = F (m) for some m ∈ N
−1 otherwise

.

It is clear that the sequence (εn(F ))n∈N satisfies the conditions from
Theorem 5 and thus for any even m ∈ N+ there are infinitely many n ≥ m
such that ν2(bm−1(n)) ≥ ν2(m) + 1 and ν2(bm−1(n + 1)) = 1.

A particular examples of F ’s satisfying required properties include:
positive polynomials of degree ≥ 2;
the functions which for given n ∈ N+ take as value the n-th prime number
of the form ak + b, where a ∈ N+, b ∈ Z and gcd(a, b) = 1;
and many others.
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Lemma 6

Let s ∈ N≥3. Then

(
2s

i

)
(mod 16) ≡



1 for i = 0, 2s

6 for i = 2s−1

8 for i = (2j + 1)2s−3, j ∈ {0, 1, 2, 3}
12 for i = 2s−2, 3 · 2s−2

0 in the remaining cases

.
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Theorem 7

Let s ∈ N+ and (εn)n∈N be an integer sequence and suppose that εn ≡ 1 (mod 2) for
n ∈ N.
(A) For n ≥ 2s we have

b2s−1(n) ≡ εn + 2εn−2s−1 + εn−2s (mod 4). (4)

In particular, if εn ∈ {−1, 1} for all n ∈ N then:

ν2(b2s−1(n)) > 1 ⇐⇒ εn = εn−2s−1 = εn−2s or εn = −εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 1 ⇐⇒ εn = −εn−2s .

(B) For s ≥ 2 and n ≥ 2s we have

b2s−1(n) ≡ εn + 6εn−2s−1 + εn−2s (mod 8). (5)

In particular, if εn ∈ {−1, 1} for all n ∈ N, then:

ν2(b2s−1(n)) > 2 ⇐⇒ εn = εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 2 ⇐⇒ εn = −εn−2s−1 = εn−2s

ν2(b2s−1(n)) = 1 ⇐⇒ εn = −εn−2s .
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Theorem 7 (continuation)

(C) For s ≥ 3 and n ≥ 2s we have

b2s−1(n) ≡ εn + εn−2s + 6εn−2s−1 + 12(εn−2s−2 + εn−3·2s−2 ) (mod 16) (6)

In particular, if εn ∈ {−1, 1} for all n ∈ N, then:

ν2(b2s−1(n)) > 3 ⇐⇒ εn = εn−2s−2 = εn−2s−1 = εn−3·2s−2 = εn−2s or
εn = −εn−2s−2 = εn−2s−1 = −εn−3·2s−2 = εn−2s ;

ν2(b2s−1(n)) = 3 ⇐⇒ εn = εn−2s−2 = εn−2s−1 = −εn−3·2s−2 = εn−2s or
εn = −εn−2s−2 = εn−2s−1 = εn−3·2s−2 = εn−2s

⇐⇒ εn ≡ −εn−2s + 2εn−2s−1 + 8 (mod 16)

(7)

As a first application of Theorem 17 we get the following:

Corollary 8

Let s ∈ N≥2 and (εn)n∈N with εn ∈ {−1, 1} for all n ∈ N. If there is no
n ∈ N≥2s such that εn = εn−2s−1 = εn−2s then

ν2(b2s−1(n)) = ν2(εn + 6εn−2s−1 + εn−2s ).

In particular, for each n ∈ N≥2s we have ν2(b2s−1(n)) ∈ {1, 2}.
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2-adic valuations for all powers

We consider now the power series

F1(x) =
1

1− x

∞∏
n=0

1

1− x2n
=
∞∑
n=0

b2nx
n,

where bn is the binary partition function.

Let m ∈ Z and write

Fm(x) = F1(x)m =
1

(1− x)m

∞∏
n=0

1

(1− x2n )m
=
∞∑
n=0

cm(n)xn.

If m ∈ N+, then the sequence (cm(n))n∈N, has a natural combinatorial
interpretation. More precisely, the number cm(n) counts the number of
binary representations of n such that the part equal to 1 can take one
among 2m colors and other parts can have m colors. Motivated by the
mentioned result concerning the 2-adic valuation of the number bm(n), it is
natural to ask about the behaviour of the sequence (ν2(cm(n))n∈N,m ∈ Z.
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Let us observe the identity F1(x) = 1
1−x

B(x). Thus, the functional

relation (1− x)B(x) = B(x2) implies the functional relation
(1− x)F1(x) = (1 + x)F1(x2) for the series F1. In consequence, for m ∈ Z
we have the relation

Fm(x) =

(
1 + x

1− x

)m

Fm(x2),

which will be useful later.

In the sequel we will need the following functional property: for
m1,m2 ∈ Z we have

Fm1(x)Fm2(x) = Fm1+m2(x).
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We start our investigations with the simple lemma which is a consequence
of the result of Churchhouse and the product form of the series F−1(x).

Lemma 9

For n ∈ N+, we have the following equalities:

ν2(c1(n)) =
1

2
|tn + 3tn−1|,

ν2(c−1(n)) =

{
1, if tn 6= tn−1

+∞, if tn = tn−1

.

Proof: The first equality is an immediate consequence of the equalities
c1(n) = b(2n), ν2(b(n)) = 1

2
|tn − 2tn−1 + tn−2| and the recurrence

relations satisfied by the PTM sequence (tn)n∈N, i.e., t2n = tn, t2n+1 = −tn.
The second equality comes from the expansion

F−1(x) = (1− x)
∞∏
n=0

(1− x2n ) = (1− x)
∞∑
n=0

tnx
n = 1 +

∞∑
n=1

(tn − tn−1)xn.
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In order to compute the 2-adic valuations of the sequence (c±2(n))n∈N we
need the following simple

Lemma 10

The sequence (c±2(n))n∈N satisfy the following recurrence relations:
c±2(0) = 1, c±2(1) = ±4 and for n ≥ 1 we have

c±2(2n) =± 2c±2(2n − 1)− c±2(2n − 2) + c±2(n) + c±2(n − 1),

c±2(2n + 1) =± 2c±2(2n)− c±2(2n − 1)± 2c±2(n).

Proof: The recurrence relations for the sequence (c±2(n))n∈N are
immediate consequence of the functional equation

F±2(x) =
(

1+x
1−x

)±2

F±2(x2), which can be rewritten in an equivalent form

(1− x)±2F±2(x) = (1 + x)±2F±2(x2). Comparing now the coefficients on
both sides of this relation we get the result.
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As a consequence of the recurrence relations for (c±2(n))n∈N we get

Corollary 11

For n ∈ N+ we have c±2(n) ≡ 4 (mod 8). In consequence, for n ∈ N+ we have
ν2(c±2(n)) = 2.

Proof: The proof relies on a simple induction. Indeed, we have
c±2(1) = ±4, c−2(2) = 4, c2(2) = 12 and thus our statement folds for
n = 1, 2. Assuming it holds for all integers ≤ n and applying the
recurrence relations given in Lemma 10 we get the result.
The second part is an immediate consequence of the obtained congruence.

Theorem 12

Let m ∈ Z \ {0,−1} and consider the sequence cm = (cm(n))n∈N. Then
cm(0) = 1 and for n ∈ N+ we have

ν2(cm(n)) =


ν2(m) + 1, if m ≡ 0 (mod 2)

1, if m ≡ 1 (mod 2) and tn 6= tn−1

ν2(m + 1) + 1, if m ≡ 1 (mod 2) and tn = tn−1

.

(8)
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Proof: First of all, let us note that our theorem is true for m = 1,±2.
This is a consequence of Lemma 9 and Corollary 11. Let m ∈ Z and
|m| > 2. Because cm(0) = 1, cm(1) = 2m our statement is clearly true for
n = 0, 1. We can assume that n ≥ 2.

We start with the case m = −3. From the functional relation
F−3(x) = F−2(x)F−1(x) we immediately get the identity

c−3(n) =
n∑

n=0

c−1(i)c−2(n−i) = c−2(n)+tn−tn−1+
n−1∑
i=1

(ti−ti−1)c−2(n−i).

Let us observe that for i ∈ {1, . . . , n − 1}, from Lemma 9 and Corollary
11, we obtain the inequality

ν2((ti − ti−1)c−2(n − i)) ≥ 3.

In consequence, from Lemma 10, we get

c−3(n) ≡ c−2(n) + tn − tn−1 ≡ 4 + tn − tn−1 (mod 8).

It is clear that 4 + tn − tn−1 6≡ 0 (mod 8). Thus, we get the equality
ν2(c−3(n)) = ν2(4 + tn − tn−1) and the result follows for m = −3.
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We are ready to prove the general result. We proceed by double induction
on m (which depends on the remainder of m (mod 4)) and n ∈ N+. As
we already proved, our theorem is true for m = ±1,±2 and m = −3. Let
us assume that it is true for each m satisfying |m| < M and each term
cm(j) with j < n. Let |m| ≥ M and write m = 4k + r with |k| < M/4 for
some r ∈ {−3,−2, 0, 1, 2, 3} (depending on the sign of m).

If m = 4k, then from the identity F4k(x) = F2k(x)2 we get the expression

c4k(n) = 2c2k(n) +
n−1∑
i=1

c2k(i)c2k(n − i).

From the induction hypothesis we have
ν2(c2k(i)c2k(n − i)) = 2(ν2(2k) + 1) > ν2(2c2k(n)) = ν2(2k) + 2. In
consequence
ν2(cm(n)) = ν2(c4k(n)) = ν2(2c2k(n)) = ν2(2k) + 2 = ν2(4k) + 1. The
obtained equality finishes the proof in the case m ≡ 0 (mod 4).

Similarly, if m = 4k + 2 is positive, we use the identity
F4k+2(x) = F4k(x)F2(x), and get

c4k+2(n) = c2(n) + c4k(n) +
n−1∑
i=1

c4k(i)c2(n − i).

Maciej Ulas p-adic valuations ...



We are ready to prove the general result. We proceed by double induction
on m (which depends on the remainder of m (mod 4)) and n ∈ N+. As
we already proved, our theorem is true for m = ±1,±2 and m = −3. Let
us assume that it is true for each m satisfying |m| < M and each term
cm(j) with j < n. Let |m| ≥ M and write m = 4k + r with |k| < M/4 for
some r ∈ {−3,−2, 0, 1, 2, 3} (depending on the sign of m).

If m = 4k, then from the identity F4k(x) = F2k(x)2 we get the expression

c4k(n) = 2c2k(n) +
n−1∑
i=1

c2k(i)c2k(n − i).

From the induction hypothesis we have
ν2(c2k(i)c2k(n − i)) = 2(ν2(2k) + 1) > ν2(2c2k(n)) = ν2(2k) + 2. In
consequence
ν2(cm(n)) = ν2(c4k(n)) = ν2(2c2k(n)) = ν2(2k) + 2 = ν2(4k) + 1. The
obtained equality finishes the proof in the case m ≡ 0 (mod 4).

Similarly, if m = 4k + 2 is positive, we use the identity
F4k+2(x) = F4k(x)F2(x), and get

c4k+2(n) = c2(n) + c4k(n) +
n−1∑
i=1

c4k(i)c2(n − i).

Maciej Ulas p-adic valuations ...



We are ready to prove the general result. We proceed by double induction
on m (which depends on the remainder of m (mod 4)) and n ∈ N+. As
we already proved, our theorem is true for m = ±1,±2 and m = −3. Let
us assume that it is true for each m satisfying |m| < M and each term
cm(j) with j < n. Let |m| ≥ M and write m = 4k + r with |k| < M/4 for
some r ∈ {−3,−2, 0, 1, 2, 3} (depending on the sign of m).

If m = 4k, then from the identity F4k(x) = F2k(x)2 we get the expression

c4k(n) = 2c2k(n) +
n−1∑
i=1

c2k(i)c2k(n − i).

From the induction hypothesis we have
ν2(c2k(i)c2k(n − i)) = 2(ν2(2k) + 1) > ν2(2c2k(n)) = ν2(2k) + 2. In
consequence
ν2(cm(n)) = ν2(c4k(n)) = ν2(2c2k(n)) = ν2(2k) + 2 = ν2(4k) + 1. The
obtained equality finishes the proof in the case m ≡ 0 (mod 4).

Similarly, if m = 4k + 2 is positive, we use the identity
F4k+2(x) = F4k(x)F2(x), and get

c4k+2(n) = c2(n) + c4k(n) +
n−1∑
i=1

c4k(i)c2(n − i).

Maciej Ulas p-adic valuations ...



From the equalities ν2(c2(n)) = ν2(2) + 1 and
ν2(c4k(n)) = ν2(4k) + 1, n ∈ N+, we get ν2(c4k(i)c2(n − i)) = ν2(k) + 5
for each i ∈ {1, . . . , n − 1}. Thus
ν2(c2(n) + c4k(n)) = ν2(c2(n)) = 2 = ν2(4k + 2) + 1.

If m = 4k + 2 is negative, we use the identity F4k+2(x) = F4(k+1)(x)F−2(x)
and proceed in exactly the same way.

If m = 4k + 1 > 0, then we use the identity F4k+1(x) = F4k(x)F1(x) and
get

c4k+1(n) = c4k(n) + c1(n) +
n−1∑
i=1

c4k(i)c1(n − i).

From induction hypothesis we have ν2(c4k(i)c1(n − i)) ≥ ν2(4k) + 2 ≥ 4.
Moreover, for n ∈ N+ we have ν2(c1(n)) ∈ {1, 2}. Thus

ν2(c4k(n) + c1(n)) = ν2(c1(n)) =

{
1, if tn 6= tn−1

2, if tn = tn−1

.

as we claimed.
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If m = 4k + 1 < 0, we write m = 4(k + 1)− 3 and use the identity
F4k+1(x) = F4(k+1)(x)F−3(x). Next, using the obtained expression for
ν2(c−3(n)) and ν2(c4(k+1)(n)) and the same reasoning as in the positive
case we get the result.

Finally, if m = 4k + 3 > 0 we use the identity F4k+3(x) = F4(k+1)(x)F−1(x)
which leads us to the expression

c4k+3(n) = c4k(n) + c−1(n) +
n−1∑
i=1

c4k(i)c−1(n − i).

It is clear that ν2(c4k(i)c−1(n − i)) > ν2(c4k(n) + c−1(n)) for each n ∈ N+
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1, if tn 6= tn−1

ν2(c4(k+1)(n)), if tn = tn−1

=

{
1, if tn 6= tn−1

ν2(4k + 3 + 1) + 1, if tn = tn−1

.

If m = 4k + 3 < 0, then we write 4k + 3 = 4(k + 1)− 1 and employ the
identity F4k+3(x) = F4(k+1)(x)F−1(x).
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Let n ∈ N+ and write

n =
k∑

i=0

εi2
i ,

where εi ∈ {0, 1} and k ≤ log2 n. The above representation is just the
(unique) binary expansion of n in base 2. Let us observe that the equality
ν2(n) = u implies ε0 = . . . = εu−1 = 0 and εu = 1 in the above
representation. Thus, if m ∈ Z \ {−1} is fixed, our result concerning the
exact value of ν2(cm(n)) given by Theorem 16 implies that the number of
trailing zeros in the binary expansion of cm(n), n ∈ N+, is bounded.

This observation suggests the question whether the index of the next
non-zero digit in the binary expansion in cm(n) is in bounded distance
from the first one. We state this in equivalent form as the following

Question 3

Does there exists m ∈ Z \ {−1} such that the sequence(
ν2

(
cm(n)

2ν2(cm(n))
− 1

))
n∈N

has finite set of values?
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Let us write dm(n) = ν2
(

cm(n)

2ν2(cm(n)) − 1
)

. We performed numerical

computations for m ∈ Z satisfying |m| < 100 and n ≤ 105. In this range
there are many values of m such that the cardinality of the set of values of
the sequence (dm(n))n∈N is ≤ 4. We define:

Mm(x) := max{dm(n) : n ≤ x}, Lm(x) := |{dm(n) : n ≤ x}|.

m Mm(105) Lm(105) m Mm(105) Lm(105)
−97 5 3 3 2 2
−93 2 2 15 4 3
−89 3 3 23 3 3
−81 4 3 27 2 2
−69 2 2 35 2 2
−65 6 4 39 3 3
−61 2 2 47 4 3
−49 4 3 59 2 2
−41 3 3 63 6 4
−37 2 2 67 2 2
−29 2 2 79 4 3
−25 3 3 87 3 3
−17 4 3 91 2 2
−5 2 2 95 5 3

99 2 2
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Our numerical computations strongly suggest that there should be
infinitely many m ∈ Z such that the sequence (dm(n))n∈N is bounded. We
even dare to formulate the following

Conjecture 5

Let k ∈ N+ and m = 22k − 1. Then the sequence (dm(n))n∈N is bounded.

In fact, we expect that for n ∈ N the inequality d22k−1(n) ≤ 2k is true.

It is well known that if k ∈ N+ and t ≡ 1 (mod 2), then

c1(22k+1t)− c1(22k−1t) ≡ 0 (mod 23k+2),

c1(22kt)− c1(22k−2t) ≡ 0 (mod 23k)

(remember c1(n) = b(2n), where b(n) counts the binary partitions of n).
The above congruences were conjectured by Churchhouse and
independently proved by Rödseth and Gupta. Moreover, there is no higher
power of 2 which divides c1(4n)− c1(n).

This result motivates the question concerning the divisibility of the
number cm(2k+2n)− cm(2kn) by powers of 2. We performed some
numerical computations in case of m ∈ {2, 3, . . . , 10} and n ≤ 105 and
believe that the following is true.
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Conjecture 6

For k ∈ N+ and each n ∈ N+, we have:

ν2(c2k(4n)− c2k(n)) = ν2(n) + 2ν2(k) + 3.

Moreover, for k ∈ N and n ∈ N+ the following inequalities holds

ν2(c4k+1(4n)− c4k+1(n)) ≥ ν2(n) + 3,

ν2(c4k+3(4n)− c4k+3(n)) ≥ ν2(n) + 6.

In each case the equality holds for infinitely many n ∈ N.
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Some results for p-ary colored partitions

For k ∈ N+ we define the sequence (Am,k(n))n∈N, where

Fm(x)k =
∞∏
n=0

1

(1− xmn )k
=
∞∑
n=0

Am,k(n)xn.

The sequence (Am,k(n))n∈N, as the sequences considered earlier, can be
interpreted in a natural combinatorial way. More precisely, the number
Am,k(n) counts the number of representations of n as sums of powers of
m, where each summand has one among k colors.

A question arises: is it possible to find a simple expression for an exponent
k, such that the sequence (νp(Ap,k(n)))n∈N is bounded or even can be
described in simple terms? Here p is a fixed prime number.
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For a given p (non-necessarily a prime), an integer n and
i ∈ {0, . . . , p − 1} we define

Np(i , n) = |{j : n =
k∑

j=0

εjp
j , εj ∈ {0, . . . , p − 1} and εj = i}|.

The above number counts the number of the digits equal to i in the base
p representation of the integer n. From the definition, we immediately
deduce the following equalities:

Np(i , 0) = 0, Np(i , pn + j) =

{
Np(i , n), if j 6= i

Np(i , n) + 1, if j = i
. (9)
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We have the following result

Lemma 13

Let r ∈ {1, . . . , p − 1}. We have

Fp(x)−r =
∞∏
n=0

(1− xpn )r =
∞∑
n=0

Dp,r (n)xn,

where

Dp,r (n) =

p−1∏
i=0

(−1)iNp(i,n)

(
r

i

)Np(i,n)

, (10)

with the convention that
(
a
b

)
= 0 for b > a and 00 = 1. Moreover, for

j ∈ {0, . . . , p − 1} and n ∈ N+ we have

Dp,r (pn + j) = (−1)j
(
r

j

)
Dp,r (n).

Maciej Ulas p-adic valuations ...



Our next result is the following

Lemma 14

Let k ∈ N+ and suppose that p − 1|k. Then

Fp(x)k ≡ (1− x)
k

p−1 (mod pνp(k)+1).

We are ready to present the crucial lemma which is the main tool in our
study of the p-adic valuation of the number Ap,(p−1)(ups−1)(n) in the
sequel. More precisely, the lemma contains information about behaviour of
the p-adic valuation of the expression

u∑
i=0

(−1)i
(
u

i

)
Dp(n − i),

where
Dp(n) := Dp,p−1(n).

In particular Dp(n) 6= 0 for all n ∈ N.
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Lemma 15

Let p ≥ 3 be prime and u ∈ {1, . . . , p − 1}. Let n ≥ p be of the form
n = n′′ps+1 + kps + j for some n′′ ∈ N, k ∈ {1, . . . , p − 1}, s ∈ N+ and
j ∈ {0, . . . , p − 1}. Then the following equality holds:

νp

(
u∑

i=0

(−1)i
(
u

i

)
Dp(n − i)

)
= νp

(
(p − k)

(
p + u − 1

j

)
+ k

(
p + u − 1

p + j

))
.

In particular:
(a) If u = 1, then

νp

(
u∑

i=0

(−1)i
(u
i

)
Dp(n − i)

)
= νp(Dp(n)− Dp(n − 1)) = 1,

for any n ∈ N+.

(b) If j ≥ u, then we have the equality

νp

(
u∑

i=0

(−1)i
(u
i

)
Dp(n − i)

)
= 1.

(c) If u ≥ 2, then there exist j , k ∈ {0, . . . , p − 1}, k 6= 0, such that we have

νp

(
u∑

i=0

(−1)i
(u
i

)
Dp(n − i)

)
≥ 2.
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Theorem 16

Let p ∈ P≥3, u ∈ {1, . . . , p − 1} and s ∈ N+.
(a) If n > ups , then

νp(Ap,(p−1)(ups−1)(n)) ≥ 1.

(b) If n > ps , then
νp(Ap,(p−1)(ps−1)(n)) = 1.

(c) If u ≥ 2, then
νp(Ap,(p−1)(ups−1)(n)) = 1

for infinitely many n.

(d) If u ≥ 2, then
νp(Ap,(p−1)(ups−1)(n)) ≥ 2

for infinitely many n.

(e) If s ≥ 2 and n ≥ ps+1 with the unique base p-representation n =
∑v

i=0 εip
i and

νp(Ap,(p−1)(ups−1)(n)) ∈ {1, 2},

then the value of νp(Ap,(p−1)(ups−1)(n)) depends only on the coefficient εs and
the first non-zero coefficient εt with t > s.

(f) If s ≥ 2 and
νp(Ap,(p−1)(ups−1)(n)) ≤ s

for n > ups , then also

νp(Ap,(p−1)(ups−1)(pn)) = νp(Ap,(p−1)(ups−1)(pn + i)) for i = 1, 2, . . . , p − 1.
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In the opposite direction we have the following

Theorem 17

Let k ∈ N+, p ∈ P≥3 and suppose that p2(p − 1)|k and r ∈ {1, . . . , p − 2}.
Then, there are infinitely many n ∈ N+ such that

νp(Ap,k−r (n)) ≥ νp(k).

Our computational experiments suggests the following

Conjecture 7

Let p ∈ P≥3, u ∈ {2, . . . , p − 1} and s ∈ N+. Then, for n ≥ ups we have

νp(Ap,(p−1)(ups−1)(n)) ∈ {1, 2}.

Moreover, for each n ∈ N+ we have the equalities

νp(Ap,(p−1)(ups−1)(pn)) = νp(Ap,(p−1)(ups−1)(pn + i)), i = 1, . . . , p − 1.
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Let k ∈ N≥2 be given. We say that the sequence ε = (εn)n∈N is
k-automatic if and only if the following set

Kk(ε) = {(εk i n+j)n∈N : i ∈ N and 0 ≤ j < k i},

called the k-kernel of ε, is finite.

In the case of p = 2 we know that the sequence (ν2(A2,2s−1(n)))n∈N is
2-automatic (and it is not eventually periodic). In Theorem 16 we proved
that the sequence (νp(Ap,k(n)))n∈N for k = (p − 1)(ps − 1) with p ≥ 3, is
eventually constant and hence k-automatic for any k.

We calculated the first 105 elements of the sequence
(νp(Ap,(p−1)(ups−1)(n)))n∈N for any p ∈ {3, 5, 7}, s ∈ {1, 2} and
u ∈ {1, . . . , p − 1} and were not able to spot any general relations. Our
numerical observations lead us to the following

Question 4

For which p ∈ P≥5, s ∈ N and u ∈ {2, . . . , p − 1}, the sequence
(νp(Ap,(p−1)(ups−1)(n)))n∈N is k-automatic for some k ∈ N+?
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Finally, we formulate the following

Conjecture 8

Let k ∈ N+, p ∈ P and suppose that k is not of the form (p − 1)(ups − 1) for
s ∈ N and u ∈ {1, . . . , p − 1}. Then, the sequence (νp(Ap,k(n)))n∈N is
unbounded.
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Thank you for your attention;-)
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