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1. Introduction

We begin with Wilson’s Theorem: p is a prime if and only if

(p − 1)! ≡ −1 (mod p).

Write out the factorial (p − 1)!, exploit symmetry mod p:

1·2·. . .· p−1
2

p+1
2 ·. . .·(p−1) ≡

(
p−1

2

)
!(−1)

p−1
2
(

p−1
2

)
! (mod p).

Thus, with Wilson’s Theorem,(
p−1

2

)
!2 ≡ (−1)

p+1
2 (mod p).

This was apparently first observed by Lagrange (1773).
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This congruence,(
p−1

2

)
!2 ≡ (−1)

p+1
2 (mod p),

has the following consequences:

For p ≡ 1 (mod 4) the RHS is −1, so

ordp

((
p−1

2

)
!
)
= 4 for p ≡ 1 (mod 4).

In the case p ≡ 3 (mod 4) we get(
p−1

2

)
! ≡ ±1 (mod p).

What is the sign on the right?
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Theorem 1 (Mordell, 1961)

For a prime p ≡ 3 (mod 4),(
p−1

2

)
! ≡ −1 (mod p) ⇔ h(−p) ≡ 1 (mod 4),

where h(−p) is the class number of Q(
√
−p).

First mentioned in a book by Venkov (1937, in Russian).
Discovered independently by Chowla.

This completely determines the order mod p of
(

p−1
2

)
!.
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Is there an analogue of Wilson’s Theorem for composite
integers?

For integers N,n ≥ 1 we define the Gauss factorial

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j .

Theorem 2 (The Gauss-Wilson Theorem)
For any n ≥ 2,

(n − 1)n! ≡

{
−1 (mod n) for n = 2,4,pα, or 2pα,
1 (mod n) otherwise,

where p is an odd prime and α ≥ 1.
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General long-term program: To study the Gauss factorials(
n − 1

M

)
n
!, M ≥ 1, n ≡ 1 (mod M),

in particular their multiplicative orders (mod n),
but also, if possible, their values (mod n).

• M = 1: Gauss-Wilson theorem.

• M = 2: Completely determined (JBC & KD, 2008).
Only possible orders are 1, 2, and 4.

• M ≥ 3: Orders are generally unbounded.
Various partial results; e.g.,

– If n has at least 3 different prime factors ≡ 1 (mod M),
then (n−1

M )n! ≡ 1 (mod n);

– If n has two different prime factors ≡ 1 (mod M),
then the order of (n−1

M )n! is a divisor of M.
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– If n has one prime factor ≡ 1 (mod M):
Most interesting case;
this talk will be about three different instances of this.

– If n has no prime factor ≡ 1 (mod M):
Next to nothing is known.

Some further aspects:

• Other partial products of the “full" product (n − 1)n!
have also been studied (JBC & KD, 2013).
(Not in this talk).

• Some meaningful results also when n 6≡ 1 (mod M);
in this case consider bn−1

M cn!.
(Later in this talk).
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2. Binomial Coefficient Congruences

First application of Gauss factorials:

In 1828, Gauss proved the following remarkable congruence.

Let p ≡ 1 (mod 4), and write p = a2 + b2 with a ≡ 1 (mod 4).
(a is then uniquely determined).

Theorem 3 (Gauss, 1828)
Let p and a be as above. Then(p−1

2
p−1

4

)
≡ 2a (mod p).

Karl Dilcher Gauss factorials



2. Binomial Coefficient Congruences

First application of Gauss factorials:

In 1828, Gauss proved the following remarkable congruence.

Let p ≡ 1 (mod 4), and write p = a2 + b2 with a ≡ 1 (mod 4).
(a is then uniquely determined).

Theorem 3 (Gauss, 1828)
Let p and a be as above. Then(p−1

2
p−1

4

)
≡ 2a (mod p).

Karl Dilcher Gauss factorials



2. Binomial Coefficient Congruences

First application of Gauss factorials:

In 1828, Gauss proved the following remarkable congruence.

Let p ≡ 1 (mod 4), and write p = a2 + b2 with a ≡ 1 (mod 4).
(a is then uniquely determined).

Theorem 3 (Gauss, 1828)
Let p and a be as above. Then(p−1

2
p−1

4

)
≡ 2a (mod p).

Karl Dilcher Gauss factorials



This can be extended:

Theorem 4
With p and a as above and α ≥ 2, we have(

pα−1
2

)
p
!((

pα−1
4

)
p
!

)2 ≡ 2a− 1 · p
2a
− 1 · p2

8a3 − 2 · p3

(2a)5 − 5 · p4

(2a)7

−14 · p5

(2a)9 − . . .− Cα−2
pα−1

(2a)2α−1 (mod pα).

Cn := 1
n+1

(2n
n

)
∈ N is the nth Catalan number.
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Jacobi proved a similar theorem to that of Gauss:

Theorem 5 (Jacobi, 1837)

Let p ≡ 1 (mod 3), and write 4p = r2 + 27t2, r ≡ 1 (mod 3),
which uniquely determines the integer r . Then(2(p−1)

3
p−1

3

)
≡ −r (mod p).

Yet another theorem of this type is due to Hudson and Williams
(1984) (later).

These and others also have “Catalan analogues" (JBC & KD,
2010; Al-Shaghay, 2014; JBC & KD, 2016).
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1777–1855 1804–1851
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3. Sequences of Multiplicative Orders

For the second part of this talk, the main objects of study are:
For M ≥ 2 and prime p ≡ 1 (mod M), define

γM
α (p) := ordpα

((pα−1
M

)
pα!
)
.

In what follows: Fix M and p; let α vary.

What can we say about the sequence

{γM
α (p)}α≥1?

Note:
(pα−1

M )pα! = (pα−1
M )p!;

We can therefore replace the subscript pα by p.

Let’s look at some examples with M = 4:
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α/p 5 13 17 29 37
1 1 12 16 7 18
2 10 156 272 406 333
3 25 2 028 4 624 5 887 24 642
4 250 26 364 78 608 341 446 455 877
5 625 342 732 1 336 336 4 950 967 33 734 898

1 γ γ γ γ γ

2 2pγ pγ pγ 2pγ 1
2pγ

3 p2γ p2γ p2γ p2γ p2γ

4 2p3γ p3γ p3γ 2p3γ 1
2p3γ

5 p4γ p4γ p4γ p4γ p4γ

Table 1: γ := γ4
1(p), p ≡ 1 (mod 4).

Note the 3 different patterns; otherwise regular.
• Are there more patterns?
• Do we always have 1,p,p2,p3, . . .?
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One might conjecture:
the sequence of orders γ4

1 = γ, γ4
2 , γ

4
3 , . . . is

γ,pγ,p2γ,p3γ, . . . when p ≡ 1 (mod 8)
or p ≡ 5 (mod 8) and 4|γ,

γ, 1
2pγ,p2γ, 1

2p3γ, . . . when p ≡ 5 (mod 8) and γ ≡ 2 (mod 4),
γ,2pγ,p2γ,2p3γ, . . . when p ≡ 5 (mod 8) and γ is odd.

Computations seem to support this.

However, for p = 29 789: γ4
1 = 14 894, but γ4

2 = 7 447.
The sequence “forgot" the factor p in the step γ4
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Theorem 6

Let M ≥ 2, p ≡ 1 (mod M) and γM
α (p) as above.

When p ≡ 1 (mod 2M), then

γM
α+1(p) = pγM

α (p) or γM
α+1(p) = γM

α (p).

When p ≡ M + 1 (mod 2M), then

γM
α+1(p) =


pγM

α (p) or γM
α (p) if γM

α (p) ≡ 0 (mod 4),
1
2pγM

α (p) or 1
2γ

M
α (p) if γM

α (p) ≡ 2 (mod 4),
2pγM

α (p) or 2γM
α (p) if γM

α (p) ≡ 1 (mod 2).

When the second alternative holds in one of the cases, we call
p an α-exceptional prime for M.
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How often does this happen?

M p up to
3 13, 181, 2 521, 76 543, 489 061 1012

4 29 789 1011

5 71 2 · 106

6 13, 181, 2 521, 76 543, 489 061 1012

10 11 2 · 106

18 1 090 891 2 · 106

21 211, 15 583 2 · 106

23 3 037 2 · 106

24 73 2 · 106

29 59 2 · 106

35 1 471 2 · 106

44 617 2 · 106

48 97 2 · 106

Table 2: 1-exceptional primes p for 3 ≤ M ≤ 100.
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4. Exceptional Primes

The proof of Theorem 6 provides a first criterion;
all entries in the table were found with this criterion.

However, it is awkward and computationally expensive.
Can we do better?

In the cases M = 3,4 and 6 we can use the theory of Jacobi
sums to obtain some strong criteria, in addition to further
insight.

Here: Consider M = 3,6; M = 4 is similar.

But also, as we saw: M = 3,6 are connected in some special
ways.

Karl Dilcher Gauss factorials



4. Exceptional Primes

The proof of Theorem 6 provides a first criterion;
all entries in the table were found with this criterion.

However, it is awkward and computationally expensive.
Can we do better?

In the cases M = 3,4 and 6 we can use the theory of Jacobi
sums to obtain some strong criteria, in addition to further
insight.

Here: Consider M = 3,6; M = 4 is similar.

But also, as we saw: M = 3,6 are connected in some special
ways.

Karl Dilcher Gauss factorials



4. Exceptional Primes

The proof of Theorem 6 provides a first criterion;
all entries in the table were found with this criterion.

However, it is awkward and computationally expensive.
Can we do better?

In the cases M = 3,4 and 6 we can use the theory of Jacobi
sums to obtain some strong criteria, in addition to further
insight.

Here: Consider M = 3,6; M = 4 is similar.

But also, as we saw: M = 3,6 are connected in some special
ways.

Karl Dilcher Gauss factorials



4. Exceptional Primes

The proof of Theorem 6 provides a first criterion;
all entries in the table were found with this criterion.

However, it is awkward and computationally expensive.
Can we do better?

In the cases M = 3,4 and 6 we can use the theory of Jacobi
sums to obtain some strong criteria, in addition to further
insight.

Here: Consider M = 3,6; M = 4 is similar.

But also, as we saw: M = 3,6 are connected in some special
ways.

Karl Dilcher Gauss factorials



5. Some fundamental congruences for M = 3,6

Let p ≡ 1 (mod 6) be a prime.

Known: The representation p = a2 + 3b2 is unique up to sign,
but the signs are crucial here.

We fix them in a certain technical way.

With a and b as above, we obtain two closely related pairs r , s
and u, v which also satisfy sums-of-squares identities:

4p = r2 + 3s2, 4p = u2 + 3v2, r ≡ u ≡ 1 (mod 3)

The numbers u occur in the following analogue of the binomial
coefficient theorems of Gauss and Jacobi:
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Theorem 7 (Hudson and Williams, 1984)

Let p ≡ 1 (mod 6) be a prime and u as above. Then(p−1
3

p−1
6

)
≡ (−1)

p−1
6 +1u (mod p).

This has the following “Catalan extension":

Theorem 8
Let p and u be as above. Then for α ≥ 1 we have(

pα+1−1
3

)
p
!((

pα+1−1
6

)
p
!

)2 ≡ (−1)
p−1

6 +1

×
(

u − p
u
− p2

u3 − · · · − Cα−1
pα

u2α−1

)
(mod pα+1).
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Kenneth S. Williams Eugène Catalan
b. 1940 1814–1894
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The next result will be the basis for all that follows.
Theorem 9
Let p ≡ 1 (mod 6) and r ,u as above.
Then for all α ≥ 1 we have(

r − p
r
− · · · − Cα−1pα

r2α−1

)3

≡
(

u − p
u
− · · · − Cα−1pα

u2α−1

)3

(mod pα+1),

where Cn is the nth Catalan number.

Main ingredients in proof:
• An identity between the third powers of certain Jacobi sums;
• congruences (mod pα+1) between these Jacobi sums

and both sides in Theorem 9;
• quotients of certain Gauss factorials are involved

as intermediate steps.
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Corollary 10

For any p ≡ 1 (mod 6) and α ≥ 1 we have((
pα−1

3

)
p
!

)24

≡
((

pα−1
6

)
p
!

)12

(mod pα).

This, in turn, implies (after some work):

Corollary 11

Let p ≡ 1 (mod 6) and α ≥ 1. Then
p is α-exceptional for M = 3 iff it’s α-exceptional for M = 6.

This confirms our observation from Table 1.

Another consequence is the desired exceptionality criterion:
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Theorem 12
Let p ≡ 1 (mod 6) and u as before. Then for a fixed α ≥ 1, p is
α-exceptional for M = 3 (and M = 6) iff(

u − p
u
− p2

u3 − 2
p3

u5 − · · · − Cα−1
pα

u2α−1

)p−1

≡ 1 (mod pα+1),

where Cn is the nth Catalan number.

Special case:

Corollary 13

Let p ≡ 1 (mod 6) and u as before. Then p is 1-exceptional for
M = 3 (and M = 6) iff(

u − p
u

)p−1 ≡ 1 (mod p2).
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It turns out: 1-exceptionality is the most important case:

Theorem 14
Let M ≥ 2, p ≡ 1 (mod M), and α ≥ 2.
If p is α-exceptional, then it’s also (α− 1)-exceptional (for M).

This means that only 1-exceptional primes need to be checked
for 2-exceptionality.
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Results:

• M = 3,6: Searched up to 1012.
No new 1-exceptional primes found.

• M = 4: A similar new criterion.
Searched up to 1011.
No new 1-exceptional primes found.

• All M ≤ 100:
None of the known 1-exceptional primes are 2-exceptional.
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How are we doing with time?

Salvador Dalí, The Persistence of Memory , 1931.
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6. Gauss Factorials of Order 1

This is the third part of this talk.

Now: given a fixed M ≥ 1, we consider the question:
which integers n satisfy⌊n−1

M

⌋
n! ≡ 1 (mod n), n ≡ ±1 (mod M)

Recall:

• M = 1: Determined by Gauss-Wilson theorem.
• M = 2: Completely determined (JBC & KD, 2008).
• M = 3,4,6: Most interesting cases.

– M = 4: Previously studied (JBC & KD, 2014).
– M = 3,6: Similar to each other, but different from M = 4;

topic of the remainder of this talk.
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• M = 3,4,6: Most interesting cases.

– M = 4: Previously studied (JBC & KD, 2014).
– M = 3,6: Similar to each other, but different from M = 4;
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Different point of view: Consider again⌊n−1
M

⌋
n! ≡ 1 (mod n), n ≡ ±1 (mod M). (1)

– If n has at least 3 different prime factors ≡ 1 (mod M),
then (1) always holds for n ≡ 1 (mod M).

– If n has two different prime factors ≡ 1 (mod M),
then the order of (n−1

M )n! (mod n) is a divisor of M.
In certain cases, solutions of (1) can be characterized.

– If n has one prime factor ≡ 1 (mod M):
Most interesting case.

– If n has no prime factor ≡ 1 (mod M):
Very little can be said.
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Setting the stage: We’ll consider integers of the form

n = pαw , with w = qβ1
1 . . . qβs

s

(s ≥ 0, α, β1, . . . , βs ∈ N), where

p ≡ 1 (mod 3), q1 ≡ · · · ≡ qs ≡ −1 (mod 3)

are distinct primes (case s = 0 is interpreted as w = 1.)

Here: study integers of this type for which⌊n−1
3

⌋
n! ≡ 1 (mod n), (2)

or ⌊n−1
6

⌋
n! ≡ 1 (mod n). (3)
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First few solutions of⌊n−1
3

⌋
n! ≡ 1 (mod n),

⌊n−1
6

⌋
n! ≡ 1 (mod n):

n factored n factored
26 2 · 13 1105 5 · 13 · 17

244 22 · 61 14365 5 · 132 · 17
305 5 · 61 34765 5 · 17 · 409
338 2 · 132 303535 5 · 17 · 3571

9755 5 · 1951 309485 5 · 11 · 17 · 331
18205 5 · 11 · 331 353365 5 · 29 · 2437
33076 22 · 8269 508255 5 · 11 · 9241
48775 52 · 1951 510605 5 · 102121
60707 17 · 3571 527945 5 · 11 · 29 · 331

In bold: p ≡ 1 (mod 3).

How can we characterize these solutions?
Let’s consider some specific p ≡ 1 (mod 3).
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Example. Let p = 7, the smallest admissible p in

n = pαqβ1
1 . . . qβs

s .

(a) Solutions of
⌊n−1

3

⌋
n! ≡ 1 (mod n):

Combination of theory and computation shows:

• For s = 0,1, . . . ,6: no solutions.

• For s = 7: exactly 27 solutions, the smallest and largest of
which are

n = 7 · 2 · 5 · 17 · 353 · 169553 · 7699649 · 531968664833,

n = 7 · 29 · 5 · 17 · 353 · 7699649 · 47072139617
·531968664833,

with 30 and 36 decimal digits, respectively.
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n = pαqβ1
1 . . . qβs

s .

(b) Solutions of
⌊n−1

6

⌋
n! ≡ 1 (mod n):

• For s = 0: trivial solution n = 7.

• For s = 1, . . . ,6: no solutions.

• For s = 6: single 40-digit solution

n = 7·17·353·169553·7699649·47072139617·531968664833.

Questions:

(i) What determines presence/absence of solutions?

(ii) What are the factors qj when solutions exist?

(iii) For what p can solutions exist?
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The solutions, again: For M = 3:

n = 7 · 2 · 5 · 17 · 353 · 169553 · 7699649 · 531968664833,
. . .
n = 7 · 29 · 5 · 17 · 353 · 7699649 · 47072139617 · 531968664833.

For M = 6:

n = 7·17·353·169553·7699649·47072139617·531968664833.

Note:

5 | 72 + 1,

17 | 723
+ 1 and 169 553 | 723

+ 1,

353 | 724
+ 1 and 47 072 139 617 | 724

+ 1,

7 699 649 | 725
+ 1 and 531 968 664 833 | 725

+ 1.

Also: 722
+ 1 has no prime factor q ≡ −1 (mod 3);

29 is the exact power of 2 that divides

(7− 1)(7 + 1)(721
+ 1) . . . (725

+ 1).
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7. Towards an explanation

We can find necessary and sufficient conditions for the
solutions of⌊n−1

3

⌋
n!

3 ≡ 1 (mod n) and
⌊n−1

6

⌋
n!

3 ≡ 1 (mod n),

i.e., necessary conditions for the original congruences.

For simplicity, here: Restrict our attention to
• denominator M = 3;
• the case s ≥ 2, where n = pαw , w = qβ1

1 . . . qβs
s ,

• w ≡ 1 (mod 3), i.e., n ≡ 1 (mod 3).

Main approach: Find criteria for⌊n−1
3

⌋
n!

3 ≡ 1 (mod w) and⌊n−1
3

⌋
n!

3 ≡ 1 (mod pα);

then combine the two using the Chinese Remainder Theorem.
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8. Generalized Fermat numbers

Congruences modulo w:

We define the partial totient function

ϕ(M,w) = #{τ | 1 ≤ τ ≤ w−1
M ,gcd(τ,w) = 1}.

Lemma 15
With n as before, we have(n−1

3

)
n! ≡

1
pϕ(3,w)

(mod w), ϕ(3,w) = 1
3(ϕ(w) + 2s−1).

Proof is very technical. Basic idea: Write

n−1
3 = pα−1

3 w + w−1
3 (n ≡ 1 (mod 3)).

(slightly different when n ≡ −1 (mod 3)).
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n−1
3 = pα−1

3 w + w−1
3 .

This means:

bn−1
3 cn! is a product of

{
pα−1

3 “main terms", and
one “remainder term".

• Main terms mostly evaluate to 1 (mod w), by Gauss-Wilson.

• Remainder term is more subtle, but can also be evaluated by
Gauss-Wilson and Euler-Fermat theorems.

• Similar result also for arbitrary denominators M ≥ 2.
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Now we can see how generalized Fermat numbers enter:

Raise both sides of Lemma to 3rd power.

Then(n−1
3

)
n!

3 ≡ p−ϕ(w)−2s−1 ≡ p−2s−1
(mod w), δ = ±1.

Therefore (n−1
3

)
n!

3 ≡ 1 (mod w)

if and only if
p2s−1 − 1 ≡ 0 (mod w).

This factors:

p2s−1 − 1 = (p − 1)(p + 1)(p2 + 1) . . . (p2s−2
+ 1).
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We have therefore shown:

Theorem 16
Let n be as before, with s ≥ 1. Then(n−1

3

)
n!

3 ≡ 1 (mod w)

iff every qβi
i is a divisor of p2s−1 − 1; i.e., iff every

qβi
i divides

{
p − 1, for s = 1,
(p − 1)(p + 1)(p2 + 1) . . . (p2s−2

+ 1), for s ≥ 2.

Note: This is in fact true for⌊n−1
3

⌋
n! ≡ 1 (mod w).
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9. Jacobi primes

Congruences modulo pα:

The following is the second crucial ingredient.

Lemma 17
Let n ≡ 1 (mod 3) be as before. Then for s ≥ 2,

(
n − 1

3

)
n
! ≡ (q1 . . . qs)

(−1)s−1 ϕ(p
α)

3

((
pα − 1

3

)
p
!

)2s

(mod pα).

Once again:
• Lemma holds in greater generality;
• proof is very technical.

To apply this lemma, first observe:
By cubing both sides, the (q1 . . . qs) term becomes 1 (mod pα).
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Therefore the main conditions is

(pα−1
3 )p!

3·2s ≡ 1 (mod pα). (4)

We’ll see: primes p that satisfy this are rather special.

Using the notation

γα(p) := ordpα((
pα−1

3 )p!) p ≡ 1 (mod 3)),

for the multiplicative order modulo pα,(4) implies

γα(p) = 2` or 3 · 2` (0 ≤ ` ≤ s). (5)

We saw earlier:
Sequence γ1(p), γ2(p), . . . behaves in a very specific way;
this means that (5) implies

γ1(p) = 2` or 3 · 2`.
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This gives rise to the following definition:

Definition 18
A prime p ≡ 1 (mod 3) is called a Jacobi prime of level ` if

ordp

(
p−1

3 !
)
= 2` or ordp

(
p−1

3 !
)
= 3 · 2`.

Examples: We consider the first three primes p ≡ 1 (mod 6)
and compute:

p = 7 : p−1
3 ! = 2, ordp

(
p−1

3 !
)
= 3 = 3 · 20;

p = 13 : p−1
3 ! = 24, ordp

(
p−1

3 !
)
= 12 = 3 · 22;

p = 19 : p−1
3 ! = 720, ordp

(
p−1

3 !
)
= 9.

Thus, 7 and 13 are Jacobi primes of levels 0, resp. 2;
19 is not a Jacobi prime.
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Why “Jacobi prime"? Recall:

Theorem 19 (Jacobi, 1837)

Let p ≡ 1 (mod 3), and write 4p = r2 + 27t2, r ≡ 1 (mod 3),
which uniquely determines the integer r . Then(2(p−1)

3
p−1

3

)
≡ −r (mod p).

An easy consequence:

Corollary 20
Let p and r be as above. Then

(p−1
3 )!3 ≡ 1

r
(mod p). (6)
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This leads to equivalent definition:

Corollary 21

A prime p ≡ 1 (mod 3) is a Jacobi prime of level ` iff

ordp(r) = 2`.

Examples:

p = 7 : 4p = 12 + 27 · 12, ordp(1) = 20;

p = 13 : 4p = (−5)2 + 27 · 12, ordp(−5) = 22;

p = 19 : 4p = 72 + 27 · 12, ordp(7) = 3.

Consistent with previous examples.
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Some further properties:

Theorem 22
(a) A prime p is a level-0 Jacobi prime if and only if

p = 27X 2 + 27X + 7 (X ∈ Z).

(b) There is no level-1 Jacobi prime.
(c) The only level-2 Jacobi prime is p = 13.

Remarks: (1) As expected, level-0 Jacobi primes are quite
abundant; the first few (up to 1000) are 7, 61, 331 and 547;
a total of 215 105 up to 1014.

(2) On the other hand, Jacobi primes of levels ` ≥ 3
are very rare, with only 44 up to 1014.
The first few are 13, 97, 193, 409, 769.

Karl Dilcher Gauss factorials



Some further properties:

Theorem 22
(a) A prime p is a level-0 Jacobi prime if and only if

p = 27X 2 + 27X + 7 (X ∈ Z).

(b) There is no level-1 Jacobi prime.
(c) The only level-2 Jacobi prime is p = 13.

Remarks: (1) As expected, level-0 Jacobi primes are quite
abundant; the first few (up to 1000) are 7, 61, 331 and 547;
a total of 215 105 up to 1014.

(2) On the other hand, Jacobi primes of levels ` ≥ 3
are very rare, with only 44 up to 1014.
The first few are 13, 97, 193, 409, 769.

Karl Dilcher Gauss factorials



Some further properties:

Theorem 22
(a) A prime p is a level-0 Jacobi prime if and only if

p = 27X 2 + 27X + 7 (X ∈ Z).

(b) There is no level-1 Jacobi prime.
(c) The only level-2 Jacobi prime is p = 13.

Remarks: (1) As expected, level-0 Jacobi primes are quite
abundant; the first few (up to 1000) are 7, 61, 331 and 547;
a total of 215 105 up to 1014.

(2) On the other hand, Jacobi primes of levels ` ≥ 3
are very rare, with only 44 up to 1014.
The first few are 13, 97, 193, 409, 769.

Karl Dilcher Gauss factorials



Using a slightly more general setting again, with n ≡ w ≡ ±1
(mod 3), we have

Theorem 23
Let n be as above, with α ≥ 1 and s ≥ 2. Then a necessary
and sufficient condition for⌊n−1

3

⌋
n!

3 ≡ 1 (mod n)

to hold is that all of the following be satisfied:

(a) p is (α− 1)-exceptional if α > 1;
(b) p is a level-` Jacobi prime for some 0 ≤ ` ≤ s;

(c) qβi
i | (p − 1)(p + 1)(p2 + 1) . . . (p2s−2

+ 1) for all 1 ≤ i ≤ s.

Relevant here:

p = 13 is the only Jacobi prime < 1012

that is also 1-exceptional.
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Let’s return to our original table:

⌊n−1
3

⌋
n! ≡ 1 (mod n)

⌊n−1
6

⌋
n! ≡ 1 (mod n)

n factored n factored
26 2 · 13 1105 5 · 13 · 17

244 22 · 61 14365 5 · 132 · 17
305 5 · 61 34765 5 · 17 · 409
338 2 · 132 303535 5 · 17 · 3571

9755 5 · 1951 309485 5 · 11 · 17 · 331
18205 5 · 11 · 331 353365 5 · 29 · 2437
33076 22 · 8269 508255 5 · 11 · 9241
48775 52 · 1951 510605 5 · 102121
60707 17 · 3571 527945 5 · 11 · 29 · 331

In bold: p ≡ 1 (mod 3).

We have seen: Only p = 13 can possibly appear to a higher
power, for p < 1012.
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Thank you
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