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e Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,
(3) What does the sequence count?
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Spod, S
(1807 — 1894)
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e Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,
(3) What does the sequence count?

Spod, S
(1807 — 1894)

Moritz Abraham Stern at the University of Géttingen:
the first Jewish full professor at a German university.
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e Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,
(3) What does the sequence count?

@ The Stern Diatomic Sequence can be created
by recursion equations or by generating functions.
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e Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,
(3) What does the sequence count?

@ The Stern Diatomic Sequence can be created
by recursion equations or by generating functions.

@ Stern numbers count the number of
representations of an integer n:
as the sum of powers of 2,
with no power used more than 2 times.

Larry Ericksen Generalized Stern polynomials: Their recursions and continued fra



e Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,
(3) What does the sequence count?

@ The Stern Diatomic Sequence can be created
by recursion equations or by generating functions.

@ Generalized Stern numbers count the number of
representations of an integer n:
as the sum of powers of any b > 2,
with no power used more than b times.
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e Introduction

Stern sequence {a(n)},>o at b = 2 is defined by
a(0) =0, a(1) =1, and for n > 1,

a(2n) = a(n),
a(2n+1) = a(n) + a(n+1).
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e Introduction

Stern sequence {a(n)},>o at b = 2 is defined by
a(0) =0, a(1) =1, and for n > 1,
a(2n) = a(n),
a(2n+1) = a(n) + a(n+1).
Sequence: 0,1,1,2,

17372’37
174737572’573’47
1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1, ...

Properties: a(2¥) =1, and bimodal between 1’s.
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e Hyperbinary expansions

Definition. A hyperbinary expansion (HBE) of an integer n > 1
is an expansion of n as a sum of powers of 2, each power being
used at most 2 times.
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e Hyperbinary expansions

Definition. A hyperbinary expansion (HBE) of an integer n > 1
is an expansion of n as a sum of powers of 2, each power being
used at most 2 times.

Example: The HBEs of n= 12 are
8+4,
8+2+2,
8+2+1+1,
4+4+4+2+2,
4+44+2+1+1.
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e Hyperbinary expansions

Definition. A hyperbinary expansion (HBE) of an integer n > 1
is an expansion of n as a sum of powers of 2, each power being
used at most 2 times.

Example: The HBEs of n= 12 are
8+4,
8+2+2,
8+2+1+1,
4+4+4+2+2,
4+44+2+1+1.

Theorem (Reznick)
The number of HBEs of an integern> 1 isa(n+1).
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e Hyperbinary expansions

Definition. A hyperbinary expansion (HBE) of an integer n > 1
is an expansion of n as a sum of powers of 2, each power being
used at most 2 times.

Example: The HBEs of n= 12 are
8+4,
8+2+2,
8+2+1+1,
4+4+4+2+2,
4+44+2+1+1.

Theorem (Reznick)

The number of HBEs of an integern> 1 isa(n+1).

Indeed, a(12 +1) = 5.
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e Polynomial analogues

Two types of polynomials ay:(n;z) at¢ e {1,2} fort > 1.

Recursions:
aii(2nz) = zay(n2h),
ari(2n+1;2) = ai(mz)+ar(n+1;2Y),
as ¢(2n; z) = ay(n 2,

a(2n+1;2) = z ay(n; 2) + ag(n+1; 2%).
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e Polynomial analogues

Two types of polynomials ay:(n;z) at¢ e {1,2} fort > 1.

Recursions:
aii(2nz) = zay(n2h),
ari(2n+1;2) = ai(mz)+ar(n+1;2Y),
as ¢(2n; z) = ay(n 2,

a(2n+1;2) = z ay(n; 2) + ag(n+1; 2%).

Generating functions:

x]] (1 + 2% 4 X2/+1) = a(n2)x",

70 =0
xI1 (1 + xZ4z7 x2j+1> = ap(mz)x".
j>0 n>0
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e Originators - polynomials

Type 1 att=1

P\t

\ =)
P e—)
Sandi Klavzar
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e Originators - polynomials

Type 1 att=1

iy

-~
Sandi Klavzar

},,

Type2att=2
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n ai «(n; 2) a (n; z)

1 1 1

21 z 1

31 1+2 142z

4 | ztH 1

5 1+2zt42f 14242

6 || z+ z+ 142t

711+ 20+ 20+ 14z + 2t

8 || Zf+t+ 1

9 || 142 2+t 2 1+ z42zt+ 2
10 || z 4 20+ 4 2+ 142zt + 2
M| 1420420 420 4 200 || 14z 2t 4 26 4 20
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n ai i(n; z) az (n; z)
1 1 1
21 z 1
3|1+2 142z
4 ZI+1 1
5(1+2+2° 14242
6 z—|—zt2+1 14zt
7 142 14z 4 zH1
8 || Zf+t+ 1
9| 1428+t 4 7 14z4+2t4 2
10 || z+ 204+ 4 20+ 142t 4 2t
M| 1420420 420 42000 || 14 24 201 4 260 4 20

Proposition

For t > 2, polynomial coefficients are only 0 or 1,
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n ai «(n; 2) a (n; z)
1 1 1
21 z 1
3|1+ 142z
4 Zt+1 1
5142042 14+z+2
6 || z+ z+ 142t
711+ 20+ 20+ 14z + 2t
8 || Zf+t+ 1
9 || 142 2+t 2 1+ z42zt+ 2
10 || z 4 20+ 4 2+ 142zt + 2
1| 1420420 420 420+ | 14z 4 241 4 20 4 20+

Proposition

For t > 2, polynomial coefficients are only 0 or 1,
and the exponent coefficients are also only 0 or 1.
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Let Pn.1 be the set of exponents of z in expansion:

ai(n+1;2)= > z°0.
PEPn1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows:

Larry Ericksen
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Theorem
Let Pn.1 be the set of exponents of z in expansion:

ai(n+1;2)= > z°0.
PEPn1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows: If

pt) = 1% + - + 1% € Ppiq,

then exactly the powers 21, ... 2% are repeated.
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Theorem
Let Pn.1 be the set of exponents of z in expansion:

ai(n+1;2)= > z°0.
PEPn1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows: If

pt) = 1% + - + 1% € Ppiq,

then exactly the powers 21, ... 2% are repeated.

Example. ax;(n+1;z) atn=12, Py3 = {1,t,1 + 2, t + t2}.
Last HBEs are characterized by repeated powers of 2:

e20and22,s012=1+1+2+4+4;
e2'and2?,s012=2+2+4+4.
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Let Pn.1 be the set of exponents of z in expansion:

a(n+1,2)= > 2°0.
pePn+1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows:
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Theorem
Let Pn.1 be the set of exponents of z in expansion:

a(n+1,2)= > 2°0.
pePn+1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows: If

p(t) =t + - + 1% € Ppy1,

then exactly the powers 2% ... 2% are not repeated.
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Theorem
Let Pn.1 be the set of exponents of z in expansion:

a(n+1,2)= > 2°0.
PEPni1

Then each HBE of n corresponds to exactly one polynomial in
Pni1, as follows: If

p(t) =t + - + 1% € Ppy1,

then exactly the powers 2% ... 2% are not repeated.

Example. a;;(n+1;z) at n=12, Pz = {t, 3, t + 13, 2 + t3}.

Last HBEs are characterized by non-repeated powers of 2:

e2'and2%,s012=1+1+2+8;
e 22and22,s012=4+8.
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e Polynomial extension

Polynomials ws¢(n; y, z) in two variables y,z with s, > 1.
Recursion:

ws (2 y, Z) = ywsi(mys, 2",
wS,f(zn + 1;}/,2) = Zz ws,t(n;ysvzt) + w&t(n + 1;ysazt)'
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e Polynomial extension

Polynomials ws¢(n; y, z) in two variables y,z with s, > 1.
Recursion:

ws,t(2m;y, 2) = ywst(nys, 2",

wS,f(zn + 1 Y, Z) = Z Ws,t(n; yS’ Zt) + w&t(n + 1 ;ysa Zt)'

Generating function:

xI1 ( +y9x? +z x2’+1> = wsi(ny,z)x"

j>0 n>0
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e Polynomial extension

Polynomials ws¢(n; y, z) in two variables y,z with s, > 1.
Recursion:

ws,t(2m;y, 2) = ywst(nys, 2",

ws,f(zn + 1 Y, Z) = Z Ws,t(n; yS7 Zt) + w&t(n + 1 ;yS, Zt)'

Generating function:

xI1 ( +y9x? +z x2’+1> = wsi(ny,z)x"

j>0 n>0
n|wst(my,z) || n|wst(ny,z)
11 5| ySz+zt+ys
2 y 6 th +y1+32
3| z+ys 7| 21+t yS2Z + ys+52
4 | yits g | yltsts’
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e Explicit formula

Definition: Let n =", ¢;2/, then set di(n) := 3", ¢ tl.
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e Explicit formula

Definition: Let n =", ¢;2/, then set di(n) := 3", ¢ tl.

Proposition

An explicit formula with ()" = (]}) (mod 2) becomes

,_
NS |||
[

n—k\"*
wst(n+1;y,2) = < k )yds(”‘”)zd’(k’-
k

Il
o
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e Explicit formula

Definition: Let n =", ¢;2/, then set di(n) := 3", ¢ tl.

Proposition

An explicit formula with ()" = (]}) (mod 2) becomes

,_
NS |||
—

n—k\"
wst(N+1:y,2) = < k )yds(”‘”)zd’(k’-

Example: At n =5, then ws(6;y,2) = y1+s* 4 yzt as

k (" | ds(n—2k) di(k) | term
0 1 1482 0 |y
2 3 s0 ¢ yzt
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Continued fractions

A continued fraction with limit ¢ = (1 + v/5) is

1

c:=1
* 1

14

T+
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Continued fractions

A continued fraction with limit ¢ = (1 + v/5) is

1+ 1
c:=
1
1+
1+
We use “K" notation as
bo + & b+ K A mpyy 2 22 &
0 a -0 j1b 0 b+ b2+ b3+.“
by +
as
bo +
by + -
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The Rogers-Ramanujan continued fraction in modified form is

Ri(z) =14+ 22 2 2
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The Rogers-Ramanujan continued fraction in modified form is

Ri(z) =14+ 22 2 2

We study continued fractions in extended forms at t > 1 like

7t th zt3 Zt4
c(z) =14+ —— — — ...
(2) ST I
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The Rogers-Ramanujan continued fraction in modified form is

Ri(z) =14+ 22 2 2

We study continued fractions in extended forms at t > 1 like

7t th zt3 Zt4
c(z) =14+ —— — — ...
(2) ST I

2 3

zt zt zZt
+ .
P2+ (D)t Pa(2)+
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Continued fractions

Lehmer showed row maximums are F, occurring at

2"~ (-1)") and B, ::%(5.2”—2+(—1)").

w| =

Op (=

onf1]2/3[4[5]6[7] 89 [10]
an [ 1]1]3|5]| 11| 21|43 85 | 171 | 341
B, | |2[3[7[13 27|53 107|213 | 427
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Continued fractions

Lehmer showed row maximums are F, occurring at

2"~ (-1)") and B, ::%(5.2”—2+(—1)").

Op (=

w| =

onf1]2/3[4[5]6[7] 89 [10]
an [ 1]1]3|5]| 11| 21|43 85 | 171 | 341

Bn 213|713 ]27|53|107 | 213 | 427
n | ai(an; z) ay 1(Bn; 2)
211 z
3|1+2 1+ 2t
401+24 20 1428 4 25+
5| 14zt+ 20 428 4 20+ | L2ty 2 4 A4 A
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Polynomials have recurrences like Fibonacci numbers.

Definition
For a fixed integer t > 1 we have

2
ay (any1; 2) = aq t(an; Zt) + Zta1,t(04nf1 2! )

2
a1 ¢(Bni1;2) = a1 4(Bn; 2') + Z'as 4(Bn_1; 2").
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Polynomials have recurrences like Fibonacci numbers.

Definition
For a fixed integer t > 1 we have

2
ay (any1; 2) = aq t(an; Zt) + Zta1,t(04nf1 2! )

2
a1 ¢(Bni1;2) = a1 4(Bn; 2') + Z'as 4(Bn_1; 2").

For integerst > 1 and n > 3 we have

ar(an:2) z!
——~ T 2= + —
a1,t(an; Zt) 14+ oz
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Proposition

There is a unique function, analytic for |z| < 1, defined by

Fii(z) = lim ay t(on; 2) = Jim. ay +(Bn; 2)

2 3 3 4 4 4, 42
:1—{—214—21 —i—Zt —i—Zt—H—l-Zt —|—Zt+t+21+t—|—...
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Proposition

There is a unique function, analytic for |z| < 1, defined by

F17t(Z) =S nleoo au(an; Z) = nleoo 3171(,3,7; Z)

2 3 3 4 4 4, 42
:1—{—214—21 —i—Zt —i—Zt—H—l-Zt —|—Zt+t+21+t—|—...

Proposition

For every integer t > 2 we have for z € C with |z| < 1,

Fiiz) N zt 2 2t
Fii(2t) 1+ 1+ 1+ 1+

Whent=1weget1+ % & 55 =1 +vV1+4z)/2

When z=1weget1+ 7 & - =(1+V5)/2=0o.
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Continued fractions by index runs

Graham, Knuth, Patashnik consider when positive integer n
has the binary representation

n=(110%...1%),, >0, 2K<np<2kt!

where 1" indicates the binary digit 1 is repeated r;-times.
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Continued fractions by index runs

Graham, Knuth, Patashnik consider when positive integer n
has the binary representation

n=(110%...1%),, >0, 2K<np<2kt!
where 1" indicates the binary digit 1 is repeated r;-times.

Theorem (GKP)
Stern number a(n) is the numerator of the continued fraction

1
n+

o +
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e Originators - continued fractions

ais(my)ats=1

W\
-~

Andrzej Schinzel
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e Originators - continued fractions

ais(my)ats=1

—

~ff
-4

! % y \
Andrzej Schinzel

wst(My,z)ats, t=1
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Continued fractions

Mansour extended the Stern number case to polynomials
wst(my,z)ats=t=1.

Theorem (Mansour)

Polynomial w1 1(n; y, z) is the numerator of continued fraction
yr1 yr _ zr
[r1 ]}’72 + yf22f3 ’ [r]yvz = y _z .
Z[rZ]}/J + yf3
[rS]y,z o Ia 715
Z[raly,1 +
[rely.z
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We extend numerators to polynomials ws ¢(n; y, z) for s, t > 1
and identify denominators as polynomials @s ((n; y, z).

Definition
At fixed integers s, t > 1, we define polynomials @s ¢(n; y, z) by

ws,t(2n;y7 Z):yws,t(n; ysu Zt)a

o t(2n+1 Ly Z): ws,t(n; yS; Zt) ain 25371([7—}—1 ; yS7 zt)7 n+2v,
s, Y ZT"“ws,t(n; yS, Zt)+Zws,t(n+1;y5, Zt), n=2v,

where v > 0 is some integer.
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We obtain the quotient of polynomials for 2k < n < 2k+1 as

Ws,t(n; Y, Z)
wst(2k1 —ny, z)

with the required continued fraction expansion.
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Theorem

We obtain the quotient of polynomials for 2k < n < 2k+1 as

ws,t(n; Y, Z)
wst(2k1 —ny, z)

with the required continued fraction expansion.

Example 4. Let n =27 = (11011)s,80 11 =2, o =1, 3 = 2.
Then the continued fraction is
SS+S4
4 3
(y® + zt )+ ——.
t2 ySZZH_t
ys+z

Expanding this, we get numerator polynomial as ws ((27; y, z)
and denominator with index 32 — 27 = 5 as

wst(5:y,2) = yS 2 st g g1
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Atn=(170"---1"), for fixed r and ws(n; y, 1) = a1 s(n; y), then

lim wsyt(an—H (r);y7 1)

0o g s(zr;ys/’)
=as(2'-1,y)+ K ’
A Delan(r)y, 1) s 1Y)

=1 ars(2—1iy%)’
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Atn=(170"---1"), for fixed r and ws(n; y, 1) = a1 s(n; y), then

lim wsyt(an—H (r);y7 1)

0o g s(zr;ys/’)
=as(2'-1,y)+ K ’
A erlan()y, 1)~ s 1Y)

=tas(2r=1;y9)

Example. At r = 2 with a; 5(3;y) =1+ y5, ar s(4; y) = y'*s,
then we get
oo 18U 482t
S
TS e
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Atn=(170"---1"), for fixed r and ws(n; y, 1) = a1 s(n; y), then

lim Wsyt(an-m (r);ya 1)

0o g s(zr;ys/’)
=as(2'-1,y)+ K ’
M ooy, 1) e E )

=tas(2r=1;y9)

Example. At r =2 with a; 5(3;y) =1+ y5, a1 (4 y) = y' 5,

then we get
s 52 4 g2 +1
S
1 +y +jL<1 1 +ysgj+1 9

which at y = 1 becomes

2+,°Rj1% — 2414, = 142,
j:

as the limit ratio of Pell numbers.
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e Extend to Lucas sequence

Recall: If

2" - (-1)") and B,:= (5.2n—2+(71)n)

W[ =
w| =

Qp (=

Then
a(an) = a(Bn) = Fn (n>2),

where {a(m)} is Stern’s diatomic sequence (Lehmer, 1929).
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e Extend to Lucas sequence

Recall: If

2" - (-1)") and B,:= (5.2n—2+(71)n)

W[ =
w| =

Qp (=

Then
a(an) = a(Bn) = Fn (n>2),

where {a(m)} is Stern’s diatomic sequence (Lehmer, 1929).
This is a special case of a more general relation:

For a fixed k € N define the Lucas function Un(k) = Un(k, —1)
by Us(k) =0, Ui (k) =1, and

Upst(K) = k Up(k) + Up_1(K) — (n>1).
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Now define, again for a fixed k € N,

2nk o (_1)n

an(k) = =557

(n=0),

(2k + 3)2nk—k—1 + (_1 )n
2k +1

Bn(k) == (n>2).
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Now define, again for a fixed k € N,

2nk_ —1)n
O[n(k) = 2’<§>‘I) (n Z 0),
2k+3 2nk—k—1 4 (=1 n
ol = S E ),
In particular:

an(1) = an, Bn(1) = Bn.
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Now define, again for a fixed k € N,

2nk o (_1)n

ank) == =557

(n=0),

k nk—k—1 _4\n
ol = S E ),

In particular:

an(1) = O, 5n(1) = fBn.
Further properties include

ani1(k) = 2%an(k) + (=1)"  Bpra(k) = 2"Ba(k) — (—1)".

Larry Ericksen
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Now define, again for a fixed k € N,

nk _ (_4\n
an(k) == W (n>0),
Bn(k) _ (2k + 3)2nk—k—1 + (_1 )n (n . 2).

2k +1

In particular:
an(1) = Qp, 5n(1) = fBn.

Further properties include

ani1(k) = 2%an(k) + (=1)"  Bpra(k) = 2"Ba(k) — (—1)".

Proposition

Forallk > 1 andn> 2,

a(an(k)) = a(Bn(k)) = Un(k).
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Recall: The recursion at k = 1:
2
ar (ont1; 2) = ar f(an; 2') + Z'aq f(p-1; 27) (1)

was used to obtain one of our continued fractions.
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Recall: The recursion at k = 1:
ai t(any1;2) = a (an; 2') + 2'ay f(an_1; th) (1)

was used to obtain one of our continued fractions.

Generalization:

With fixed t, k € N we have for alln > 1,

ari(on1(K); 2) = ar (2K = 1; 2)ar (an(k): 2")

+ ay (2% 2 an (on_1(K); 2™

) (2
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Recall: The recursion at k = 1:
2
ar (ont1; 2) = ar f(an; 2') + Z'aq f(p-1; 27) (1)
was used to obtain one of our continued fractions.

Generalization:

With fixed t, k € N we have for alln > 1,

tk)

t2k

ay t(ani1(k); 2) = a14(2K — 1; 2)aq t(an(k); 2

) (2

+ aq 4(2%; Ztk)a1,t(an—1 (k); z

Note:
a1 (2K —1;2) = 1 4 2t L gt L AT

ay (2, z) = ZHHtE T
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Recall: The recursion at k = 1:
2
ar (ont1; 2) = ar f(an; 2') + Z'aq f(p-1; 27) (1)
was used to obtain one of our continued fractions.

Generalization:

With fixed t, k € N we have for alln > 1,

ari(on1(K); 2) = ar (2K = 1; 2)ar (an(k): 2")
2k

+a1,4(2% 2")ar (an (k) 27). (@)

Note:
a1 (2K —1;2) = 1 4 2t L gt L AT
ay (2, z) = ZHHtE T

Therefore (1) is indeed a special case of (2).
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As before, the Lemma leads to a finite continued fraction
(for simplicity, write a(m; z) for ay +(m; 2)):

k ’ k. Htk k. 2k
a(an(k); z1) a(2k —1;zt%)+ a(2k — 1; zt*)+
a(zk_ Zt(n72)k) a(2k' Zt(n—1)k)
a2k —1; 21+ g(2k — 1, 2t
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As before, the Lemma leads to a finite continued fraction
(for simplicity, write a(m; z) for ay +(m; 2)):

; k. Stk k. -2k
a(zk_ Zt(n72)k) a(2k' Zt(n—1)k)
a2k —1; 21+ g(2k — 1, 2t

Example k = 1. For a(2k — 1;z) =1, a(2%; z) = z, then

arg(anzt) A+ 1+ 1+ A+ 1

2 3 n—2 —1
ai 1(any1; 2) zt 2t 28 2 A
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Example k = 2. For a(2k — 1;2z) =1 + z!, a(2¥; z) = z'*!, then

art(an1(2);2) (1420 + AHE S
ar¢(an(2); 28%) (1+z8+ (1 +20+

Zt2n—4+t2l7—3 Zt2n—2+t2n—1

te (1 +Zt2n73)+ (1 +Zt2n71)'
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Example k = 2. For a(2k — 1;2z) =1 + z!, a(2¥; z) = z'*!, then

art(an1(2);2) (1420 + AHE S
ar¢(an(2); 28%) (14 z0+ (1 + 20+

zt2n—4+t2n—3 Zt2n—2+t2n—1

tet (1 +Zt2n73)+ (1 +zt2n71)'

e Just as before, we can define an analytic limit function, now
depending on t and on k.
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Example k = 2. For a(2k — 1;2z) =1 + z!, a(2¥; z) = z'*!, then
A+ Pana

(1 +z5+ (1 +20+

zt2n—4+t2n—3 Zt2n—2+t2n—1

ai,t(ant1(2); 2)
31J(@n(2)JZﬂ)

=(1+2)+

tet (1 +Zt2n73)+ (1 +zt2n71)'
e Just as before, we can define an analytic limit function, now
depending on t and on k.

e This can then be used to obtain an infinite version of this last
general continued fraction.
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Example k = 2. For a(2k — 1;2z) =1 + z!, a(2¥; z) = z'*!, then

art(an1(2);2) (1420 + AHE S
ar¢(an(2); 28%) (1+z8+ (1 +20+

zt2n—4+t2n—3 Zt2n—2+t2n—1

tet (1 +Zt2n73)+ (1 +zt2n71)'

e Just as before, we can define an analytic limit function, now
depending on t and on k.

e This can then be used to obtain an infinite version of this last
general continued fraction.

e All this can also be done with ay ¢(5n(k); z) and for the type-2
case; we get different continued fractions of a similar nature.
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e Ternary case ( b = 3)

Polynomials wr(n; Z) have Z = (x,y,z), T = (r,s,t).
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e Ternary case ( b = 3)

Polynomials wr(n; Z) have Z = (x,y,z), T = (r,s,t).
Generating function:

(II <1 XY e Zﬂ'CS-?J) = wr(mZ)¢".

/>0 n>0
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e Ternary case ( b = 3)

Polynomials wr(n;Z) have Z = (x,y,z), T = (r, s, 1).
Generating function:
CTT (14 X7 4 y" 2 4+ 2'39) = 3 wr(m 2)¢",
j>0 n>0
Recursion: With w(0;Z) =0, w(1;Z) =1, then for n > 1:
wBn—1;x,y,2) = xw(mx",ys, 2"
w(Bn+0;x,y,2) = yw(mx",y, 2"
w@Bn+1;x,y,2) = zw(mx", ¥y, 2" + w(n+1;x", y5, 2Y).
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e Ternary case ( b = 3)

Polynomials wr(n;Z) have Z = (x,y,z), T = (r, s, 1).
Generating function:
(H <1 + Xf/<1~3/ + ij<23/ + Zﬂ‘CS'Sj) _ ZWT(n; Z) Cn‘
j>0 n>0
Recursion: With w(0;Z) =0, w(1;Z) =1, then for n > 1:

wBn—1;x,y,2) = xw(mx",ys, 2!

)
wBn+0;x,y,2) = y w(nx",y5,2)
)

wBn+1;x,y,2) = zw(mx",y5,z") +w(n+1;x",y%, 2Y).

n|wr(nZ)| n|wr(n2)
2| x 6| x"y
3|y 71 y5+x'z
4 | x" 4z 8| xy’
5 | x1+r 9 y1+s
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e Stern b-ary extension

Any integer base b > 2, polynomials w?(n; Z) have
Z = (21,...,Zb), T= (t1,...,tb).
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e Stern b-ary extension

Any integer base b > 2, polynomials w?(n; Z) have
Z = (21,...,Zb), T= (t1,...,tb).

Generating function:

> i i ; i , s
IO + 20 ¢+ 22 BY o 20 PY) = Y wp(m2) ¢
j=0 n=0
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e Stern b-ary extension

Any integer base b > 2, polynomials w?(n; Z) have
Z = (21,...,Zb), T= (t1,...,tb).

Generating function:

> i i ; i , s
IO + 20 ¢+ 22 BY o 20 PY) = Y wp(m2) ¢
j=0 n=0

Recursions: With wr(0;2Z) =0,w7r(1;Z) =1, thenfor n > 1:
wr(b(n-1)+j+1;,2) = ziwr(mZ") (1<j<b-1),

wrbn+1;2) = zywr(nZ") +wr(n+1;27).
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e Stern b-ary extension

Polynomials encode each hyper b-ary expansion hin Hp, , as
) Pn,1(t) Ph b(fb)
wr(n+1;z,..., h;ﬂbnz
If we write exponent polynomials as
Pnj(t) = 1}7;(1) + tf"(z) +o At t] i)
the powers used exactly j times in the representation of n are
b b i),
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e Stern b-ary extension

Polynomials encode each hyper b-ary expansion hin Hp, , as
Pn,1(t) Ph b(fb)
wr(n+1;z,..., Z Z .
hGHb n

If we write exponent polynomials as
(1) | 47(2)
Pnj(t) =477+ 67 4 1]
the powers used exactly j times in the representation of n are

b b i),

(V/)

Example: For b =3, n = 36, then
wr(37;X,y,2) = xr2+r + Xr3y521 + X7t +ysz1+t2 4+ Zitt

h € Hs 36 Pn1(r) | pn2(S) | pna(t)
P 4+3+3+1+1+1 r3 s {0
3¥+3+3+3 rd 0 t!
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e Stern b-ary maxima

If b > 2, there are 2(b — 1) locations of Fibonacci numbers F,
being maxima m inrow n with b"2 < m< b1,

At1 < j < b-1,those indices o, 32 are given in base b:

, (jO(10)¢-21), if n=2¢,
XA, =
(jO(10)-211), if n=20+1.

n 7]

g (j(10Y-211), if n is odd,
e ((10) M), if niseven.
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e Lucas sequences

Recall the Lucas function at Up(k) = 0, Ui(k) =1,
Unt1(k) = k Un(k) + Up—1(k) (n<1).

For b > 2, Stern numbers a(n) at indices a5 (k), 57 (k) are

a(ap (k) = a(Bp (k) = Un(k),

Larry Ericksen Generalized Stern polynomials: Their recursions and continued fra



e Lucas sequences

Recall the Lucas function at Up(k) = 0, Ui(k) =1,
Unt1(k) = k Un(k) + Up—1(k) (n<1).

For b > 2, Stern numbers a(n) at indices a5 (k), 57 (k) are

a(ap (k) = a(Bp (k) = Un(k),

At1 < j < b—1,indices a8(k), 52(k) are given in base b:
b (k) (j11k=Tok1kok ... 1k0k=11"), if nis odd,
M (1R 10kakok . 1kok1KY, i n is even.
Tok—11kok ... 1kok1k if n is odd,

(jlok=11kok ... 1kok=111), if n is even.
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e Recursions for b =3

Recursions for b =3 with Z = (x,y,2), T = (r, s, t) at o, (k):

At k = 1, polynomial recursions with a3, ; = a3, (k) are

2
WT(agn+1,j?Z) z- wr(a2n ZT) + X’-wr(agn_u;ZT ).
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e Recursions for b =3

Recursions for b =3 with Z = (x,y,2), T = (r, s, t) at o, (k):

At k = 1, polynomial recursions with a3, ; = a3, (k) are
2

2
WT(agn+1,j?Z) z- wr(aQn ZT) + X’-wr(agn_u;ZT ).

At k = 2, polynomial recursions with a3, ; = a3, (k) are
k
wr(a3,;:Z2)  =(z+2") wr(ez, 1;2")

2 2k
+xr2(1+0) .wT(agnin; ydl ),

k
wr(0hy 1 ;i) = (X +2) wr(ad,; 27

2 2k
+yS () ZH wr (e, 27,
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e Recursions consolidated for b > 2:

Definition: For an integer b > 2 we have sets with cardinality b
for parameters T, S and variables Z, Y given by

T=(H,b,....0h_1,1), S=(ss,...,81),
Z=(z1,20,...,2p-1,20), Y =(.),....y,2""),
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e Recursions consolidated for b > 2:

Definition: For an integer b > 2 we have sets with cardinality b
for parameters T, S and variables Z, Y given by

T=(H,b,....0h_1,1), S=(ss,...,81),
Z=(z1,20,...,2p-1,20), Y =(.),....y,2""),

Proposition

. . . b _ b
Polynomial recursions with o3, ; = o, (k) are

k__ k
wr(08.2512) = 2zws(51Y) wr(0g1 ;1 Z7)

k
rk(c =i 2k
+ X ( r—1 ). (A)T(agnyj; Z T ),

wr(0d,1;i2) = wr(BFh2) wr(ad,;Z27)
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Example: At b=3, k=1, and w3(%=1;2) = 1, then

3 . 21 2 Rl
jm 20000 2) g gyt 20X
n—oo ZTy i—0 t2/ 1

WT(agn, ) ] +

3 . 2j+1 2j+1 2

im “T(2ni2i) R X7y 2T
e wr(agy, i Z7) =0 1+  zt¥
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Thank you
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