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• Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,

(3) What does the sequence count?

(1807 – 1894)

Moritz Abraham Stern at the University of Göttingen:
the first Jewish full professor at a German university.
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• Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,

(3) What does the sequence count?

The Stern Diatomic Sequence can be created
by recursion equations or by generating functions.

Stern numbers count the number of
representations of an integer n:

as the sum of powers of 2,
with no power used more than 2 times.
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• Introduction

(1) Who was Moritz Stern,
(2) What is the Stern sequence,

(3) What does the sequence count?

The Stern Diatomic Sequence can be created
by recursion equations or by generating functions.

Generalized Stern numbers count the number of
representations of an integer n:

as the sum of powers of any b ≥ 2,
with no power used more than b times.
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• Introduction

Stern sequence {a(n)}n≥0 at b = 2 is defined by

a(0) = 0, a(1) = 1, and for n ≥ 1,

a(2n) = a(n),

a(2n + 1) = a(n) + a(n + 1).

Sequence: 0,1,1,2,

1,3,2,3,
1,4,3,5,2,5,3,4,
1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1, . . .

Properties: a(2k ) = 1, and bimodal between 1’s.
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• Hyperbinary expansions

Definition. A hyperbinary expansion (HBE) of an integer n ≥ 1
is an expansion of n as a sum of powers of 2, each power being
used at most 2 times.

Example: The HBEs of n = 12 are

8 + 4,
8 + 2 + 2,
8 + 2 + 1 + 1,
4 + 4 + 2 + 2,
4 + 4 + 2 + 1 + 1.

Theorem (Reznick)

The number of HBEs of an integer n ≥ 1 is a(n + 1).

Indeed, a(12 + 1) = 5.
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• Polynomial analogues

Two types of polynomials a`,t (n; z) at ` ∈ {1,2} for t ≥ 1.

Recursions:

a1,t (2n; z) = z a1,t (n; z t ),
a1,t (2n + 1; z) = a1,t (n; z t ) + a1,t (n + 1; z t ),

a2,t (2n; z) = a2,t (n; z t ),
a2,t (2n + 1; z) = z a2,t (n; z t ) + a2,t (n + 1; z t ).

Generating functions:

x
∏
j≥0

(
1 + z t j

x2j
+ x2j+1

)
=
∑
n≥0

a1,t (n; z) xn,

x
∏
j≥0

(
1 + x2j

+ z t j
x2j+1

)
=
∑
n≥0

a2,t (n; z) xn.
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• Originators - polynomials

Type 1 at t = 1

Sandi Klavz̆ar

Type 2 at t = 2

Ken Stolarsky
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n a1,t (n; z) a2,t (n; z)
1 1 1
2 z 1
3 1 + z t 1 + z
4 z t+1 1
5 1 + z t + z t2

1 + z + z t

6 z + z t2+1 1 + z t

7 1 + z t2
+ z t2+t 1 + z + z t+1

8 z t2+t+1 1
9 1 + z t2

+ z t2+t + z t3
1 + z + z t + z t2

10 z + z t2+1 + z t3+1 1 + z t + z t2

11 1 + z t + z t2
+ z t3

+ z t3+t 1 + z + z t+1 + z t2
+ z t2+1

Proposition
For t ≥ 2, polynomial coefficients are only 0 or 1,
and the exponent coefficients are also only 0 or 1.
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Theorem
Let Pn+1 be the set of exponents of z in expansion:

a2,t (n + 1; z) =
∑

p∈Pn+1

zp(t).

Then each HBE of n corresponds to exactly one polynomial in
Pn+1, as follows:

If

p(t) = tα1 + · · ·+ tαr ∈ Pn+1,

then exactly the powers 2α1 , . . . ,2αr are repeated.

Example. a2,t (n + 1; z) at n = 12, P13 = {1, t ,1 + t2, t + t2}.

Last HBEs are characterized by repeated powers of 2:

• 20 and 22, so 12 = 1 + 1 + 2 + 4 + 4;
• 21 and 22, so 12 = 2 + 2 + 4 + 4.
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Theorem
Let Pn+1 be the set of exponents of z in expansion:

a1,t (n + 1; z) =
∑

p∈Pn+1

zp(t).

Then each HBE of n corresponds to exactly one polynomial in
Pn+1, as follows:

If

p(t) = tα1 + · · ·+ tαr ∈ Pn+1,

then exactly the powers 2α1 , . . . ,2αr are not repeated.

Example. a1,t (n + 1; z) at n = 12, P13 = {t , t3, t + t3, t2 + t3}.

Last HBEs are characterized by non-repeated powers of 2:

• 21 and 23, so 12 = 1 + 1 + 2 + 8;
• 23 and 22, so 12 = 4 + 8.
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• Polynomial extension

Polynomials ωs,t (n; y , z) in two variables y , z with s, t ≥ 1.

Recursion:
ωs,t (2n; y , z) = y ωs,t (n; ys, z t ),
ωs,t (2n + 1; y , z) = z ωs,t (n; ys, z t ) + ωs,t (n + 1; ys, z t ).

Generating function:

x
∏
j≥0

(
1 + ysj

x2j
+ z t j

x2j+1
)

=
∑
n≥0

ωs,t (n; y , z) xn.

n ωs,t (n; y , z) n ωs,t (n; y , z)

1 1 5 ysz + z t + ys2

2 y 6 yz t + y1+s2

3 z + ys 7 z1+t + ys2
z + ys+s2

4 y1+s 8 y1+s+s2
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• Explicit formula

Definition: Let n =
∑

j≥0 cj 2j , then set dt (n) :=
∑

j≥0 cj t j .

Proposition

An explicit formula with
(n

k

)∗ ≡ (n
k

)
(mod 2) becomes

ωs,t (n + 1; y , z) =

b n
2 c∑

k=0

(
n − k

k

)∗
yds(n−2k)zdt (k).

Example: At n = 5, then ωs,t (6; y , z) = y1+s2
+ yz t as

k
(n−k

k

)
ds(n − 2k) dt (k) term

0 1 1 + s2 0 y1+s2

2 3 s0 t1 yz t
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Continued fractions

A continued fraction with limit c = 1
2(1 +

√
5) is

c := 1 +
1

1 +
1

1 +
. . .

.

We use “K " notation as

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
. . .

= b0 +
∞
K

j=1

aj

bj
= b0 +

a1

b1+

a2

b2+

a3

b3+
. . .
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The Rogers-Ramanujan continued fraction in modified form is

R -1(z) := 1 +
z

1+

z2

1+

z3

1+

z4

1+
. . .

We study continued fractions in extended forms at t ≥ 1 like

ct (z) := 1 +
z t

1+

z t2

1+

z t3

1+

z t4

1+
. . .

cp,t (z) := p0(z) +
z t

p1(z)+

z t2

p2(z)+

z t3

p3(z)+
. . .
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Continued fractions

Lehmer showed row maximums are Fn occurring at

αn :=
1
3

(2n − (−1)n) and βn :=
1
3

(
5 · 2n−2 + (−1)n

)
.

n 1 2 3 4 5 6 7 8 9 10
αn 1 1 3 5 11 21 43 85 171 341
βn 2 3 7 13 27 53 107 213 427

n a1,t (αn; z) a1,t (βn; z)

2 1 z
3 1 + z t 1 + z t

4 1 + z t + z t2
1 + z t2

+ z t2+t

5 1 + z t + z t2
+ z t3

+ z t3+t 1 + z t + z t3
+ z t3+t + z t3+t2
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Polynomials have recurrences like Fibonacci numbers.

Definition
For a fixed integer t ≥ 1 we have

a1,t (αn+1; z) = a1,t (αn; z t ) + z ta1,t (αn−1; z t2
),

a1,t (βn+1; z) = a1,t (βn; z t ) + z ta1,t (βn−1; z t2
).

Proposition
For integers t ≥ 1 and n ≥ 3 we have

a1,t (αn+1; z)

a1,t (αn; z t )
= 1 +

z t

1 + z t2

1+ zt3

1+···ztn−1

= 1 +
z t

1+

z t2

1+

z t3

1+
. . .

z tn−2

1+

z tn−1

1
.
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Proposition

There is a unique function, analytic for |z| < 1, defined by

F1,t (z) := lim
n→∞

a1,t (αn; z) = lim
n→∞

a1,t (βn; z)

= 1 + z t + z t2
+ z t3

+ z t3+t + z t4
+ z t4+t + z t4+t2

+ . . .

Proposition

For every integer t ≥ 2 we have for z ∈ C with |z| < 1,

F1,t (z)

F1,t (z t )
= 1 +

z t

1+

z t2

1+

z t3

1+

z t4

1+
. . .

When t = 1 we get 1 + z
1+

z
1+

z
1+

z
1+ · · · = (1 +

√
1 + 4z)/2.

When z = 1 we get 1 + 1
1+

1
1+

1
1+

1
1+ · · · = (1 +

√
5)/2 = Φ.
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Continued fractions by index runs

Graham, Knuth, Patashnik consider when positive integer n
has the binary representation

n = (1r10r2 · · · 1r`)2 , rj > 0, 2k ≤ n < 2k+1,

where 1r1 indicates the binary digit 1 is repeated r1-times.

Theorem (GKP)

Stern number a(n) is the numerator of the continued fraction

r1 +
1

r2 +
1

. . . +
1
r`

.
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• Originators - continued fractions
a1,s(n; y) at s = 1

Andrzej Schinzel

ωs,t (n; y , z) at s, t = 1

Toufik Mansour
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Continued fractions

Mansour extended the Stern number case to polynomials
ωs,t (n; y , z) at s = t = 1.

Theorem (Mansour)

Polynomial ω1,1(n; y , z) is the numerator of continued fraction

[r1]y ,z +
y r1

z[r2]y ,1 +
y r2zr3

[r3]y ,z +
y r3

z[r4]y ,1 +
y r4zr5

. . .
[r`]y ,z

, [r ]y ,z :=
y r − zr

y − z
.
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We extend numerators to polynomials ωs,t (n; y , z) for s, t ≥ 1
and identify denominators as polynomials ωs,t (n; y , z).

Definition
At fixed integers s, t ≥ 1, we define polynomials ωs,t (n; y , z) by

ωs,t (2n; y , z)=y ωs,t (n; ys, z t ),

ωs,t (2n+1; y , z)=

{
ωs,t (n; ys, z t ) + z ωs,t (n+1; ys, z t ), n 6=2ν,
z tν+1

ωs,t (n; ys, z t )+z ωs,t (n+1; ys, z t ),n=2ν,

where ν ≥ 0 is some integer.
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Theorem

We obtain the quotient of polynomials for 2k ≤ n < 2k+1 as

ωs,t (n; y , z)

ωs,t (2k+1 − n; y , z)

with the required continued fraction expansion.

Example 4. Let n = 27 = (11011)2, so r1 = 2, r2 = 1, r3 = 2.
Then the continued fraction is

(ys4
+ z t3

) +
ys3+s4

z t2 +
ys2

z1+t

ys + z

.

Expanding this, we get numerator polynomial as ωs,t (27; y , z)
and denominator with index 32− 27 = 5 as

ωs,t (5; y , z) = ys2
z1+t + ysz t2

+ z1+t2
.
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Corollary

At n = (1r 0r · · · 1r )2 for fixed r and ωs,t (n; y ,1) = a1,s(n; y), then

lim
n→∞

ωs,t (αn+1(r); y ,1)

ωs,t (αn(r); y ,1)
= a1,s(2r−1; y) +

∞
K

j=1

a1,s(2r ; ysjr
)

a1,s(2r−1; ysjr )
.

Example. At r = 2 with a1,s(3; y) = 1 + ys, a1,s(4; y) = y1+s,
then we get

1 + ys +
∞
K

j=1

ys2j+s2j+1

1 + ys2j+1 ,

which at y = 1 becomes

2 +
∞
K

j=1

1
2

= 2.414 . . . = 1 +
√

2,

as the limit ratio of Pell numbers.
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• Extend to Lucas sequence

Recall: If

αn :=
1
3

(2n − (−1)n) and βn :=
1
3

(
5 · 2n−2 + (−1)n

)
Then

a(αn) = a(βn) = Fn (n ≥ 2),

where {a(m)} is Stern’s diatomic sequence (Lehmer, 1929).

This is a special case of a more general relation:

For a fixed k ∈ N define the Lucas function Un(k) = Un(k ,−1)
by U0(k) = 0,U1(k) = 1, and

Un+1(k) = k Un(k) + Un−1(k) (n ≥ 1).
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Now define, again for a fixed k ∈ N,

αn(k) :=
2nk − (−1)n

2k + 1
(n ≥ 0),

βn(k) :=
(2k + 3)2nk−k−1 + (−1)n

2k + 1
(n ≥ 2).

In particular:
αn(1) = αn, βn(1) = βn.

Further properties include

αn+1(k) = 2kαn(k) + (−1)n, βn+1(k) = 2kβn(k)− (−1)n.

Proposition
For all k ≥ 1 and n ≥ 2,

a(αn(k)) = a(βn(k)) = Un(k).
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Recall: The recursion at k = 1:

a1,t (αn+1; z) = a1,t (αn; z t ) + z ta1,t (αn−1; z t2
) (1)

was used to obtain one of our continued fractions.

Generalization:

Lemma
With fixed t , k ∈ N we have for all n ≥ 1,

a1,t (αn+1(k); z) = a1,t (2k − 1; z)a1,t (αn(k); z tk
)

+ a1,t (2k ; z tk
)a1,t (αn−1(k); z t2k

). (2)

Note:

a1,t (2k − 1; z) = 1 + z t+···+tk−1
+ z t2+···+tk−1

+ · · ·+ z tk−1
,

a1,t (2k ; z) = z1+t+···+tk−1
.

Therefore (1) is indeed a special case of (2).
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As before, the Lemma leads to a finite continued fraction
(for simplicity, write a(m; z) for a1,t (m; z)):

Proposition

a(αn+1(k); z)

a(αn(k); z tk )
= a(2k − 1; z) +

a(2k ; z tk
)

a(2k − 1; z tk )+

a(2k ; z t2k
)

a(2k − 1; z t2k )+
. . .

. . .
a(2k ; z t(n−2)k

)

a(2k − 1; z t(n−2)k
)+

a(2k ; z t(n−1)k
)

a(2k − 1; z t(n−1)k
)
.

Example k = 1. For a(2k − 1; z) = 1,a(2k ; z) = z, then

a1,t (αn+1; z)

a1,t (αn; z t )
= 1 +

z t

1+

z t2

1+

z t3

1+
. . .

z tn−2

1+

z tn−1

1
.
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Example k = 2. For a(2k − 1; z) = 1 + z t ,a(2k ; z) = z1+t , then

a1,t (αn+1(2); z)

a1,t (αn(2); z t2)
= (1 + z t ) +

z t2+t3

(1 + z t3)+

z t4+t5

(1 + z t5)+
. . .

. . .
z t2n−4+t2n−3

(1 + z t2n−3)+

z t2n−2+t2n−1

(1 + z t2n−1)
.

• Just as before, we can define an analytic limit function, now
depending on t and on k .

• This can then be used to obtain an infinite version of this last
general continued fraction.

• All this can also be done with a1,t (βn(k); z) and for the type-2
case; we get different continued fractions of a similar nature.
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• Ternary case ( b = 3)

Polynomials ωT (n; Z ) have Z = (x , y , z), T = (r , s, t).

Generating function:

ζ
∏
j≥0

(
1 + x r j

ζ1·3j
+ ysj

ζ2·3j
+ z t j

ζ3·3j
)

=
∑
n≥0

ωT (n; Z ) ζn.

Recursion: With ω(0; Z ) = 0, ω(1; Z ) = 1, then for n ≥ 1:

ω(3n − 1; x , y , z) = x ω(n; x r , ys, z t )

ω(3n + 0; x , y , z) = y ω(n; x r , ys, z t )

ω(3n + 1; x , y , z) = z ω(n; x r , ys, z t ) + ω(n + 1; x r , ys, z t ).

n ωT (n; Z ) n ωT (n; Z )

2 x 6 x r y
3 y 7 ys + x r z
4 x r + z 8 x ys

5 x1+r 9 y1+s
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n ωT (n; Z ) n ωT (n; Z )

2 x 6 x r y
3 y 7 ys + x r z
4 x r + z 8 x ys

5 x1+r 9 y1+s
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• Ternary case ( b = 3)

Polynomials ωT (n; Z ) have Z = (x , y , z), T = (r , s, t).

Generating function:

ζ
∏
j≥0

(
1 + x r j

ζ1·3j
+ ysj

ζ2·3j
+ z t j

ζ3·3j
)

=
∑
n≥0

ωT (n; Z ) ζn.
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• Stern b-ary extension

Any integer base b ≥ 2, polynomials ωb
T (n; Z ) have

Z = (z1, . . . , zb), T = (t1, . . . , tb).

Generating function:

ζ
∞∏

j=0

( 1 + z t j
1

1 ζ
bj

+ z t j
2

2 ζ
2·bj

+ · · ·+ z
t j
b

b ζ
b·bj

) =
∞∑

n=0

ωT (n; Z ) ζn.

Recursions: With ωT (0; Z ) = 0, ωT (1; Z ) = 1, then for n ≥ 1:

ωT (b(n−1) + j + 1; Z ) = zj ωT (n; Z T ) (1 ≤ j ≤ b − 1),

ωT (b n + 1; Z ) = zb ωT (n; Z T ) + ωT (n + 1; Z T ).
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• Stern b-ary extension

Polynomials encode each hyper b-ary expansion h in Hb,n as

ωT (n + 1; z1, . . . , zb) =
∑

h∈Hb,n

zph,1(t1)
1 · · · zph,b(tb)

b .

If we write exponent polynomials as

ph,j(tj) = tτj (1)
j + tτj (2)

j + · · ·+ tτj (νj )

j ,

the powers used exactly j times in the representation of n are

bτj (1),bτj (2), . . . ,bτj (νj ).

———————————————————————————
Example: For b = 3, n = 36, then

ωT (37; x , y , z) = x r2+r3
+ x r3

ysz1 + x r3
z t + ysz1+t2

+ z t+t2
.

h ∈ H3,36 ph,1(r) ph,2(s) ph,3(t)
33 + 3 + 3 + 1 + 1 + 1 r3 s1 t0

33 + 3 + 3 + 3 r3 0 t1
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• Stern b-ary maxima

If b ≥ 2, there are 2(b − 1) locations of Fibonacci numbers Fn
being maxima m in row n with bn−2 ≤ m ≤ bn−1.

At 1 ≤ j ≤ b − 1, those indices αb
n, βb

n are given in base b:

αb
n,j =

{
(j 0(10)`−21)b if n = 2`,

(j 0(10)`−211)b if n = 2`+ 1.

βb
n,j =

{
(j (10)`−211)b if n is odd,

(j (10)`−11)b if n is even.
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• Lucas sequences

Recall the Lucas function at U0(k) = 0,U1(k) = 1,

Un+1(k) = k Un(k) + Un−1(k) (n ≤ 1).

For b ≥ 2, Stern numbers a(n) at indices αb
n,j(k), βb

n,j(k) are

a(αb
n,j(k)) = a(βb

n,j(k)) = Un(k),

At 1 ≤ j ≤ b − 1, indices αb
n(k), βb

n (k) are given in base b:

αb
n,j(k) =

{
(j11k−10k1k0k · · · 1k0k−111)b if n is odd,

(j11k−10k1k0k · · · 1k0k1k )b if n is even.

βb
n,j(k) =

{
(j10k−11k0k · · · 1k0k1k )b if n is odd,

(j10k−11k0k · · · 1k0k−111)b if n is even.
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• Recursions for b = 3

Recursions for b = 3 with Z = (x , y , z), T = (r , s, t) at αb
n,j(k):

At k = 1, polynomial recursions with αb
2n,j = αb

2n,j(k) are

ωT (αb
2n,j ; Z ) = 1 · ωT (αb

2n−1,j ; Z T ) + ysz · ωT (αb
2n−2,j ; Z T 2

),
ωT (αb

2n+1,j ; Z ) = z · ωT (αb
2n,j ; Z T ) + x r · ωT (αb

2n−1,j ; Z T 2
).

At k = 2, polynomial recursions with αb
2n,j = αb

2n,j(k) are

ωT (αb
2n,j ; Z ) = (ysz + z t ) · ωT (αb

2n−1,j ; Z T k
)

+x r2(1+r) · ωT (αb
2n−2,j ; Z T 2k

),

ωT (αb
2n+1,j ; Z ) = (x r + z) · ωT (αb

2n,j ; Z T k
)

+ys2(1+s)z1+t · ωT (αb
2n−1,j ; Z T 2k

).
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• Recursions consolidated for b ≥ 2:

Definition: For an integer b ≥ 2 we have sets with cardinality b
for parameters T ,S and variables Z ,Y given by

T = (t1, t2, . . . , tb−1, tb), S = (s, s, . . . , s, t),
Z = (z1, z2, . . . , zb−1, zb), Y = (y , y , . . . , y , z t−1),

Proposition

Polynomial recursions with αb
2n,j = αb

2n,j(k) are

ωT (αb
2n+2,j ; Z ) = z ωS(bk−1

b−1 ; Y ) · ωT (αb
2n+1,j ; Z T k

)

+ x rk ( rk−1
r−1 ) · ωT (αb

2n,j ; Z T 2k
),

ωT (αb
2n+1,j ; Z ) = ωT (bk−1

b−1 ; Z ) · ωT (αb
2n,j ; Z T k

)

+ ysk ( sk−1
s−1 )z

tk−1
t−1 · ωT (αb

2n−1,j ; Z T 2k
).
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Example: At b = 3, k = 1, and ω3
T (bk−1

b−1 ; Z ) = 1, then

lim
n→∞

ωT (α3
2n+1; Z )

ωT (α3
2n; Z T )

= 1 +
∞
K

j=0

ys2j+1
z t2j

z t2j +

x r2j+1

1
,

lim
n→∞

ωT (α3
2n+2; Z )

ωT (α3
2n+1; Z T )

= z +
∞
K

j=0

x r2j+1

1+

ys2j+1
z t2j

z t2j .

Larry Ericksen Generalized Stern polynomials: Their recursions and continued fractions



Thank you

Larry Ericksen Generalized Stern polynomials: Their recursions and continued fractions



Thank you

Larry Ericksen Generalized Stern polynomials: Their recursions and continued fractions


