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The Ring of Integer-Valued Polynomials

The set
Int(Z) = {f ∈ Q[x ] : f (Z) ⊆ Z}

of rational polynomials taking integer values over the integers
forms a subring of Q[x ] called the ring of integer-valued
polynomials (IVPs).

Int(Z) is a polynomial ring and has basis
{(x

k

)
: k ∈ Z>0

}
as a

Z-module, with(
x

k

)
:=

x(x − 1) · · · (x − (k − 1))

k!
,

(
x

0

)
= 1 ,

(
x

1

)
= x .

This basis is a regular basis, meaning that the basis contains
exactly one polynomial of degree k for k ≥ 1.
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p-orderings

The study of IVPs on subsets of the integers greatly benefited from
the introduction of p-orderings by Bhargava [1].

Definition

Let S be a subset of Z and p be a fixed prime. A p-ordering of S
is a sequence {ai}∞i=0 ⊆ S defined as follows: choose an element
a0 ∈ S arbitrarily. Further elements are defined inductively where,
given a0, a1, . . . , ak−1, the element ak ∈ S is chosen so as to
minimize the highest power of p dividing

k−1∏
i=0

(ak − ai ) .
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p-sequences

The choice of a p-ordering gives a corresponding sequence:

Definition

The associated p-sequence of S , denoted {αS,p(k)}∞k=0, is the
sequence wherein the kth term αS,p(k) is the power of p
minimized at the kth step of the process defining a p-ordering.
More explicitly, given a p-ordering {ai}∞i=0 of S ,

αS ,p(k) = νp

(
k−1∏
i=0

(ak − ai )

)
=

k−1∑
i=0

νp(ak − ai ) .
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Though the choice of a p-ordering of S is not unique, the
associated p-sequence of a subset S ⊆ Z is independent of the
choice of p-ordering [1].

These p-orderings can be used to define a generalization of the
binomial polynomials to a specific set S ⊆ Z which serve as a basis
for the integer-valued polynomials of S over Z,

Int(S ,Z) = {f ∈ Q[x ] : f (S) ⊆ Z} .
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IVPs over Matrix Rings

We are particularly interested in studying IVPs over matrix rings.

We denote the set of rational polynomials mapping integer
matrices to integer matrices by

IntQ(Mn(Z)) = {f ∈ Q[x ] : f (M) ∈ Mn(Z) for all M ∈ Mn(Z)} .

We know from Cahen and Chabert [2] that IntQ(Mn(Z)) has a
regular basis, but it is not easy to describe using a formula in
closed form [3].



Intro to IVPs IVPs over Matrix Rings The 3 × 3 Case The 4 × 4 Case

Link to Maximal Orders

Finding a regular basis for IntQ(Mn(Z)) is related to finding a
regular basis for its integral closure, and we understand the latter
object through studying its localizations at rational primes.

If p is a fixed prime, D is a division algebra of degree n2 over
K = Qp, and ∆n is its maximal order, then we obtain the following
useful result:

Proposition ([3], 2.1)

The integral closure of IntQ(Mn(Z)(p)) is IntQ(∆n).

Thus, the problem of describing the integral closure of
IntQ(Mn(Z)(p)) is exactly that of describing IntQ(∆n), and so we
move our attention towards studying IVPs over maximal orders.
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An Analogue to p-orderings

Definition-Proposition ([4], 1.1, 1.2)

Let K be a local field with valuation ν, D a division algebra over K to
which ν extends, ∆ the maximal order in D, and S a subset of ∆.

A ν-ordering of S is a sequence {ai} ⊆ S such that for each k > 0,
the element ak minimizes the quantity ν(fk(a0, . . . , ak−1)(a)) over
a ∈ S , where fk(a0, . . . , ak−1(x)) is the minimal polynomial of the
set {a0, a1, . . . , ak−1}, with the convention that f0 = 1. We call
αS = {αS(k) = ν(fk(a0, . . . , ak−1)(ak)) : k = 0, 1, . . . } the
ν-sequence of S .

Additionally, let π ∈ ∆ be a uniformizing element. Then the
ν-sequence αS depends only on the set S , and not on the choice of
ν-ordering. The sequence of polynomials

{π−αS (k)fk(a0, . . . , ak−1)(x) : k = 0, 1, . . . }

forms a regular ∆-basis for the ∆-algebra of polynomials which are
integer-valued on S .
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In order to use this proposition, we need to be able to construct a
ν-ordering for the maximal order ∆n. A recursive method for
constructing ν-orderings for elements of a maximal order is based
on two lemmas.

Lemma (see [4], 6.2)

Let {ai : i = 0, 1, 2, . . . } be a ν-ordering of a subset S of ∆n with
associated ν-sequence {αS(i) : i = 0, 1, 2, . . . } and let b be an
element in the centre of ∆n. Then:

i) {ai + b : i = 0, 1, 2, . . . } is a ν-ordering of S + b, and the
ν-sequence of S + b is the same as that of S

ii) If p is the characteristic of the residue field of K (so that
(p) = (π)n in ∆n), then {pai : i = 0, 1, 2, . . . } is a ν-ordering
for pS and the ν-sequence of pS is
{αS(i) + in : i = 0, 1, 2, . . . }
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Lemma ([4], 5.2)

Let S1 and S2 be disjoint subsets of S with the property that there
is a non-negative integer k such that ν(s1 − s2) = k for any
s1 ∈ S1 and s2 ∈ S2, and that S1 and S2 are each closed with
respect to conjugation by elements of ∆n. If {bi} and {ci} are
ν-orderings of S1 and S2 respectively with associated ν-sequence
{αS1(i)} and {αS2(i)}, then the ν-sequence of S1 ∪ S2 is the sum
of the linear sequence {ki : i = 0, 1, 2, . . . } with the shuffle
{αS1(i)− ki} ∧ {αS2(i)− ki}, and this shuffle applied to {bi} and
{ci} gives a ν-ordering of S1 ∪ S2.
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The theory presented in the previous slides is utilized by Evrard
and Johnson [3] to construct a ν-order for ∆2 and establish a
ν-sequence and regular basis for the IVPs on ∆2 when the division
algebra D is over the local field Q2.

We would like to extend these results to the general case, in order
to find a regular basis for the integer-valued polynomials on ∆n

over the local field Q2.
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Constructing ∆n

We can use these lemmas by decomposing ∆n as a union of
subsets to which the lemmas apply. Let Q2 denote the 2-adic
numbers, and let ζ be a (2n − 1)th root of unity. Let θ be the
automorphism of Q2(ζ) that maps θ(ζ) = ζ2. Define n × n
matrices ωn and πn as:

ωn =


ζ 0 · · · 0
0 θ(ζ) · · · 0
...

...
. . .

...
0 0 · · · θn−1(ζ)

 πn =


0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
2 0 · · · 0


The maximal order ∆n with which we concern ourselves is

∆n = Z2[ωn, πn]

where Z2 denotes the 2-adic integers.
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∆n = Z2[ωn, πn]

ωn =


ζ 0 · · · 0
0 θ(ζ) · · · 0
...

...
. . .

...
0 0 · · · θn−1(ζ)

 πn =


0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 1
2 0 · · · 0


The elements ωn and πn observe the commutativity relation
πnωn = ω2

nπn, and note also that πnn = 2In. An element z ∈ ∆n

can be expressed as a Z2-linear combination of the elements
{ωi

nπ
j
n : 0 ≤ i , j ≤ n − 1}, or else uniquely in the form

z = α0 + α1π + · · ·+ αn−1π
n−1
n with αi ∈ Z2(ζ).
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The Maximal Order

We present in particular some results for ∆3 = Z2[ω, π] with

ω =

ζ 0 0
0 ζ2 0
0 0 ζ4

 π =

0 1 0
0 0 1
2 0 0


where ζ is a 7th root of unity.
In addition to the relations πω = ω2π and π3 = 2I3, we also work
with the convention that

ζ + ζ2 + ζ4 ≡ 0 (mod 2) and ζ3 + ζ5 + ζ6 ≡ 1 (mod 2) .

The valuation in ∆3 is described by ν(z) = ν2(det(z)) for z ∈ ∆3

realized as a matrix, where ν2 denotes the 2-adic valuation.
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Conjugacy Classes mod π

Looking at all elements of ∆3 = Z2[ω, π] modulo π, we obtain four
conjugacy classes:

T = {z ∈ ∆3 : z ≡ 0 (mod π)}
T + 1 = {z ∈ ∆3 : z ≡ I3 (mod π)}

S = {z ∈ ∆3 : z ≡ ω or ω2 or ω4 (mod π)}
S + 1 = {z ∈ ∆3 : z ≡ ω3 or ω6 or ω5 (mod π)}

= {z ∈ ∆3 : z ≡ ω + I3 or ω2 + I3 or ω4 + I3 (mod π)}
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Conjugacy Classes mod π2

We can break the set T down further by considering conjugacy
classes modulo π2:

T1 = {z ∈ ∆3 : z ≡ 0 (mod π2)} = π2∆

T2 = {z ∈ ∆3 : z ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 6}

The set T1 can be broken down further still by looking at
conjugacy classes modulo π3 = 2:

T3 = {z ∈ ∆3 : z ≡ 0 (mod π3)} = 2∆

T4 = {z ∈ ∆3 : z ≡ ωiπ2 (mod π3) for some 0 ≤ i ≤ 6}
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From this analysis, we obtain the following tree of subsets of ∆3:

These sets all satisfy the necessary lemmas pertaining to shuffles of
ν-sequences, and so we can derive a formula for α∆3 that depends
only on itself, αS , αT2 , and αT4 .
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Characteristic Polynomials

The tree of subsets and the lemmas show us that the ν-sequence
of ∆3 is recursively defined and also depends on the ν-sequences of
S ,T2,T4.

It remains to determine the ν-sequences for these sets, and to do
so, it is useful to describe them in terms of their characteristic
polynomials.

Given a 3× 3 matrix A, we define the characteristic polynomial of
A to be

x3 − Tr(A)x2 + β(A)x − det(A)

where Tr(A) and det(A) are the usual trace and determinant of a
3× 3 matrix, and β(A) is defined in terms of the 2× 2 minors of A.
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Lemma

S = {z ∈ ∆3 : Tr(z) ≡ 0 (mod 2), β(z) ≡ 1 (mod 2), det(z) ≡ 1 (mod 2)}
T2 = {z ∈ ∆3 : Tr(z) ≡ 0 (mod 2), β(z) ≡ 0 (mod 2), det(z) ≡ 2 (mod 4)}
T4 = {z ∈ ∆3 : Tr(z) ≡ 0 (mod 2), β(z) ≡ 0 (mod 4), det(z) ≡ 4 (mod 8)}

We can determine some useful facts about the valuation of certain
polynomials within S , T2, and T4, with the goal of establishing
these as the minimal polynomials within their respective sets. This
process is analogous to the one presented in Evrard and
Johnson [3] and Johnson [4].
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A Polynomial in T2

Recall that

T2 = {z ∈ ∆3 : Tr(z) ≡ 0 (mod 2), β(z) ≡ 0 (mod 2), det(z) ≡ 2 (mod 4)} .
Let us define the function

ψ = (ψ1, ψ2, ψ3) : Z≥0 → 2Z≥0 × 2Z≥0 × (2 + 4Z≥0)

ψ(n) =

2
∑
i≥0

n3i+12i , 2
∑
i≥0

n3i2
i , 2 + 4

∑
i≥0

n3i+22i


where n =

∑
i≥0 ni2

i is the expansion of n in base 2. Let

gn(x) =
n−1∏
k=0

(
x3 − ψ1(k)x2 + ψ2(k)x − ψ3(k)

)
.

Lemma

If z ∈ T2 then

ν(gn(z)) ≥ 4n +
∑
i>0

⌊ n
2i

⌋
.
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The polynomials constructed in the previous slide will be the
minimal polynomial of a sequence of elements in T2, which then
suggests that this sequence extends to a ν-ordering. The
associated ν-sequence will be the valuation of these polynomials,
which we have calculated.

This method of creating minimal polynomials based on the
characteristic polynomial that defines a conjugacy class within ∆3

can be extended to any subset S of a maximal order ∆n sitting in
Mn(Q2) that is closed under conjugation. However, the practical
use of the construction comes from the fact that it is possible to
achieve a known minimum when taking the valuation of the
polynomials generated.
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Extension to General n

For any valuation ν, if the valuation of n terms a1, . . . , an produces
a complete set of residues modulo n, then it must be the case that
ν(a1 + · · ·+ an) = min1≤i≤n ν(ai ). This fact is applied in the
valuation of the polynomial

f (z) = zn − φ1(k)zn−1 + φ2(k)zn−2 + · · ·+ (−1)nφn(k)

with z ∈ S ⊆ ∆n to show that a minimum for ν(f ) can be
determined with certainty only when gcd(n, ν(z)) = 1.
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In particular, if n = q is a prime, then a polynomial construction
such as that of T2 in the 3× 3 case (given in detail for the 2× 2
case in [3] and [4]) will be possible for all conjugacy classes in the
maximal order ∆q.

The construction will also work for some subsets of ∆n when n is
composite, in particular for conjugacy classes modulo πj where
gcd(j , n) = 1. It remains to see what adjustments must be made
to this construction in the case where n is composite, and if there
is any difference between the case where n is a power of a prime or
n is squarefree.
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Structure of ∆4

We now consider ∆4 = Z2[ω, π] with

ω =


ζ 0 0 0
0 ζ2 0 0
0 0 ζ4 0
0 0 0 ζ8

 π =


0 1 0 0
0 0 1 0
0 0 0 1
2 0 0 0


where ζ is a 15th root of unity.

In addition to the relations πω = ω2π and π4 = 2I4, we also work
with the convention that

ζ3 + ζ4 + ζ7 ≡ 0 (mod 2) and ζ + ζ5 + ζ8 ≡ 1 (mod 2) .

As previously, the valuation in ∆4 is described by
ν(z) = ν2(det(z)) for z ∈ ∆4 realized as a matrix, where ν2

denotes the 2-adic valuation.
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Conjugacy Classes modulo pi

Looking at all elements of ∆4 = Z2[ω, π] modulo π, we obtain six
conjugacy classes:

T = {z ∈ ∆4 : z ≡ 0 (mod π)} = π∆

T + 1 = {z ∈ ∆4 : z ≡ I4 (mod π)}
S1 = {z ∈ ∆4 : z ≡ ω or ω2 or ω4 or ω8 (mod π)}
S2 = {z ∈ ∆4 : z ≡ ω7 or ω11 or ω13 or ω14 (mod π)}
S3 = {z ∈ ∆4 : z ≡ ω3 or ω6 or ω9 or ω12 (mod π)}
S4 = {z ∈ ∆4 : z ≡ ω5 or ω10 (mod π)}
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We can break down the set T further into subsets:

T1 = {z ∈ ∆4 : z ≡ 0 (mod π2)} = π2∆4

T2 = {z ∈ ∆4 : z ≡ ωiπ (mod π2) for some 0 ≤ i ≤ 14}

T3 = {z ∈ ∆4 : z ≡ 0 (mod π3)} = π3∆4

T4 = {z ∈ ∆4 : z ≡ ωiπ2 (mod π3) for some i ≡ 0 (mod 3)}
T5 = {z ∈ ∆4 : z ≡ ωiπ2 (mod π3) for some i 6≡ 0 (mod 3)}

T6 = {z ∈ ∆4 : z ≡ 0 (mod π4)} = {z ∈ ∆4 : z ≡ 0 (mod 2)} = 2∆4

T7 = {z ∈ ∆4 : z ≡ ωiπ3 (mod π4) for some 0 ≤ i ≤ 14}



Intro to IVPs IVPs over Matrix Rings The 3 × 3 Case The 4 × 4 Case

From this analysis, we obtain the following tree of subsets of ∆4:



Intro to IVPs IVPs over Matrix Rings The 3 × 3 Case The 4 × 4 Case

ν-sequence of ∆4

The ν-sequence of ∆4 will be recursively defined, and will also
depend on the ν-sequences of the Si , T2, T4, T5, and T7.

For each z ∈ Si we have ν(z) = 0, for z ∈ T2 we have ν(z) = 1,
for z ∈ T4 and z ∈ T5 we have ν(z) = 2, and for z ∈ T7 we have
ν(z) = 3. Since our aforementioned construction involving taking
the valuation of products of characteristic polynomials works when
gcd(n, ν(z)) = 1, we will be able to use this method for computing
the ν-sequences of the Si for i = 1, 2, 3, T2, and T7.

We will encounter problems for S4 since the characteristic
polynomial of its elements modulo 2 is reducible, and for T4 and
T5 because the valuation of elements in the set are not relatively
prime to the dimension.
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A Potential Polynomial in T5

Let us define the function

φ = (φ1, φ2, φ3, φ4) : Z≥0 → 2Z≥0 × (2 + 4Z≥0)× 4Z≥0 × (4 + 8Z≥0)

φ(n) =

2
∑
i≥0

n4i2
i , 2 + 4

∑
i≥0

n4i+22i , 4
∑
i≥0

n4i+12i , 4 + 8
∑
i≥0

n4i+32i


where n =

∑
i≥0 ni2

i is the expansion of n in base 2. Let z ∈ T5,
let k ≥ 0, and let

fz(k) = z4 − φ1(k)z3 + φ2(k)z2 − φ3(k)z + φ4(k) .

Then

ν(fz(k)) ≥

{
10 + ν2(m − k) if ν2(m − k) ≡ 0 (mod 2)

9 + ν2(m − k) if ν2(m − k) ≡ 1 (mod 2)

where m ∈ Z is chosen so that f (m) is the characteristic
polynomial of z ∈ T5.
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ν(fz(k)) ≥

{
10 + ν2(m − k) if ν2(m − k) ≡ 0 (mod 2)

9 + ν2(m − k) if ν2(m − k) ≡ 1 (mod 2)

Note that due to the nature of the set T5, we will not have any
cancellation of terms when evaluating ν(fz(k)). This means that
equality can be achieved in the expression above, and so too is the
case for products of such polynomials fz(k), as we saw in the 3× 3
case. Therefore, we are still able to use this construction to
establish a ν-sequence for T5.
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The Case of T4

For z ∈ T4, the result in constructing potential minimal
polynomials is the same as for T5:

ν(fz(k)) ≥

{
10 + ν2(m − k) if ν2(m − k) ≡ 0 (mod 2)

9 + ν2(m − k) if ν2(m − k) ≡ 1 (mod 2)

However, in the case of T4, it is possible to choose elements in the
set such that elements cancel when computing the valuation of a
polynomial fz(k).

This means that we cannot guarantee equality in the above
expression, and our inequality becomes strict when we consider
products of such polynomials fz(k). A different method of
approach is necessary for T4.
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Next Steps

We can view ∆2 as being embedded in ∆4. In ∆2, the subset
denoted T1 is defined by

T1 = {z ∈ ∆2 : Tr(z) ≡ 0 (mod 2),N(z) ≡ 2 (mod 4)}

where characteristic polynomials are denoted as
x2 − Tr(z)x + N(z). The characteristic polynomial of an element
of T1 ⊆ ∆2, when squared, has the same form as expected for the
characteristic polynomial of an element in T4 ⊆ ∆4.

We may be able to learn more about the ν-sequence of T4 by
looking at the squares of polynomials in ∆2 and noting the
relationship with the denominator.



Intro to IVPs IVPs over Matrix Rings The 3 × 3 Case The 4 × 4 Case

References

M. Bhargava.

The factorial function and generalizations.
The American Mathematical Monthly, 107(9):783–799, 2000.

P.-J. Cahen and J.-L. Chabert.

Integer-Valued Polynomials, volume 48 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, USA, 1997.

S. Evrard and K. Johnson.

The ring of integer valued polynomials on 2 × 2 matrices and its integral closure.
Journal of Algebra, 441:660–677, 2015.

K. Johnson.

p-orderings of noncommutative rings.
Proceedings of the American Mathematical Society, 143(8):3265–3279, 2015.


	Intro to IVPs
	The ring of integer-valued polynomials
	p-orderings and p-sequences

	IVPs over Matrix Rings
	Moving the problem to maximal orders
	An analogue to p-orderings
	The Maximal Order n

	The 33 Case
	Subsets of 3
	Characteristic polynomials
	Towards computing -sequences

	The 44 Case
	Structure of 4
	Determining the -sequence of 4


