A Composite Problem

Asmita Sodhi

Dalhousie University

acsodhi@dal.ca

November 2, 2018

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	00000000	000000000	0000000000
Overview			

Intro to IVPs

- The ring of integer-valued polynomials
- *p*-orderings and *p*-sequences
- 2 IVPs over Matrix Rings
 - Moving the problem to maximal orders
 - An analogue to *p*-orderings
 - The Maximal Order Δ_n

\bigcirc The 3 \times 3 Case

- Subsets of Δ_3
- Characteristic polynomials
- Towards computing ν -sequences

A The 4×4 Case

- Structure of Δ_4
- Determining the ν -sequence of Δ_4

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 $ imes$ 4 Case
●○○○	00000000	0000000000	
The Ring of In	teger-Valued Poly	nomials	

The set

$$\mathsf{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[x] : f(\mathbb{Z}) \subseteq \mathbb{Z} \}$$

of rational polynomials taking integer values over the integers forms a subring of $\mathbb{Q}[x]$ called the *ring of integer-valued polynomials* (IVPs).

Int(\mathbb{Z}) is a polynomial ring and has basis $\left\{\binom{x}{k}: k \in \mathbb{Z}_{>0}\right\}$ as a \mathbb{Z} -module, with

$$\binom{x}{k} := \frac{x(x-1)\cdots(x-(k-1))}{k!} , \qquad \binom{x}{0} = 1 , \qquad \binom{x}{1} = x .$$

This basis is a *regular basis*, meaning that the basis contains exactly one polynomial of degree k for $k \ge 1$.

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
○●○○	00000000	000000000	
<i>p</i> -orderings			

The study of IVPs on subsets of the integers greatly benefited from the introduction of p-orderings by Bhargava [1].

Definition

Let S be a subset of \mathbb{Z} and p be a fixed prime. A p-ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ defined as follows: choose an element $a_0 \in S$ arbitrarily. Further elements are defined inductively where, given $a_0, a_1, \ldots, a_{k-1}$, the element $a_k \in S$ is chosen so as to minimize the highest power of p dividing

$$\prod_{i=0}^{k-1} (a_k - a_i) \; .$$

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
○0●0	00000000	000000000	
<i>p</i> -sequences			

The choice of a *p*-ordering gives a corresponding sequence:

Definition

The associated *p*-sequence of *S*, denoted $\{\alpha_{S,p}(k)\}_{k=0}^{\infty}$, is the sequence wherein the k^{th} term $\alpha_{S,p}(k)$ is the power of *p* minimized at the k^{th} step of the process defining a *p*-ordering. More explicitly, given a *p*-ordering $\{a_i\}_{i=0}^{\infty}$ of *S*,

$$\alpha_{\mathcal{S},p}(k) = \nu_p\left(\prod_{i=0}^{k-1} (a_k - a_i)\right) = \sum_{i=0}^{k-1} \nu_p(a_k - a_i)$$

Intro to IVPs ○00●	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 × 4 Case

Though the choice of a *p*-ordering of *S* is not unique, the associated *p*-sequence of a subset $S \subseteq \mathbb{Z}$ is independent of the choice of *p*-ordering [1].

These *p*-orderings can be used to define a generalization of the binomial polynomials to a specific set $S \subseteq \mathbb{Z}$ which serve as a basis for the integer-valued polynomials of *S* over \mathbb{Z} ,

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subseteq \mathbb{Z}\}$$
.

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	•••••	000000000	0000000000
IVPs over	Matrix Rings		

We are particularly interested in studying IVPs over matrix rings.

We denote the set of rational polynomials mapping integer matrices to integer matrices by

5

 $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})) = \{ f \in \mathbb{Q}[x] : f(M) \in M_n(\mathbb{Z}) \text{ for all } M \in M_n(\mathbb{Z}) \}$.

We know from Cahen and Chabert [2] that $Int_{\mathbb{Q}}(M_n(\mathbb{Z}))$ has a regular basis, but it is not easy to describe using a formula in closed form [3].

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	0●000000	000000000	0000000000
Link to Ma	ximal Orders		

Finding a regular basis for $Int_{\mathbb{Q}}(M_n(\mathbb{Z}))$ is related to finding a regular basis for its integral closure, and we understand the latter object through studying its localizations at rational primes.

If p is a fixed prime, D is a division algebra of degree n^2 over $K = \mathbb{Q}_p$, and Δ_n is its maximal order, then we obtain the following useful result:

Proposition ([3], 2.1)

The integral closure of $Int_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is $Int_{\mathbb{Q}}(\Delta_n)$.

Thus, the problem of describing the integral closure of $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is exactly that of describing $\operatorname{Int}_{\mathbb{Q}}(\Delta_n)$, and so we move our attention towards studying IVPs over maximal orders.

An Analogue t	o <i>p</i> -orderings		
Intro to IVPs 0000	IVPs over Matrix Rings	The 3 \times 3 Case	The 4 \times 4 Case

Definition-Proposition ([4], 1.1, 1.2)

Let K be a local field with valuation ν , D a division algebra over K to which ν extends, Δ the maximal order in D, and S a subset of Δ .

- A ν -ordering of S is a sequence $\{a_i\} \subseteq S$ such that for each k > 0, the element a_k minimizes the quantity $\nu(f_k(a_0, \ldots, a_{k-1})(a))$ over $a \in S$, where $f_k(a_0, \ldots, a_{k-1}(x))$ is the minimal polynomial of the set $\{a_0, a_1, \ldots, a_{k-1}\}$, with the convention that $f_0 = 1$. We call $\alpha_S = \{\alpha_S(k) = \nu(f_k(a_0, \ldots, a_{k-1})(a_k)) : k = 0, 1, \ldots\}$ the ν -sequence of S.
- Additionally, let $\pi \in \Delta$ be a uniformizing element. Then the ν -sequence α_S depends only on the set S, and not on the choice of ν -ordering. The sequence of polynomials

$$\{\pi^{-\alpha_{\mathcal{S}}(k)}f_{k}(a_{0},\ldots,a_{k-1})(x):k=0,1,\ldots\}$$

forms a regular Δ -basis for the Δ -algebra of polynomials which are integer-valued on S.

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
	0000000		

In order to use this proposition, we need to be able to construct a ν -ordering for the maximal order Δ_n . A recursive method for constructing ν -orderings for elements of a maximal order is based on two lemmas.

Lemma (see [4], 6.2)

Let $\{a_i : i = 0, 1, 2, ...\}$ be a ν -ordering of a subset S of Δ_n with associated ν -sequence $\{\alpha_S(i) : i = 0, 1, 2, ...\}$ and let b be an element in the centre of Δ_n . Then:

- i) $\{a_i + b : i = 0, 1, 2, ...\}$ is a ν -ordering of S + b, and the ν -sequence of S + b is the same as that of S
- ii) If p is the characteristic of the residue field of K (so that $(p) = (\pi)^n$ in Δ_n), then $\{pa_i : i = 0, 1, 2, ...\}$ is a ν -ordering for pS and the ν -sequence of pS is $\{\alpha_S(i) + in : i = 0, 1, 2, ...\}$

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
	0000000		

Lemma ([4], 5.2)

Let S_1 and S_2 be disjoint subsets of S with the property that there is a non-negative integer k such that $\nu(s_1 - s_2) = k$ for any $s_1 \in S_1$ and $s_2 \in S_2$, and that S_1 and S_2 are each closed with respect to conjugation by elements of Δ_n . If $\{b_i\}$ and $\{c_i\}$ are ν -orderings of S_1 and S_2 respectively with associated ν -sequence $\{\alpha_{S_1}(i)\}$ and $\{\alpha_{S_2}(i)\}$, then the ν -sequence of $S_1 \cup S_2$ is the sum of the linear sequence $\{ki : i = 0, 1, 2, ...\}$ with the shuffle $\{\alpha_{S_1}(i) - ki\} \land \{\alpha_{S_2}(i) - ki\}$, and this shuffle applied to $\{b_i\}$ and $\{c_i\}$ gives a ν -ordering of $S_1 \cup S_2$.

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
	00000000		

The theory presented in the previous slides is utilized by Evrard and Johnson [3] to construct a ν -order for Δ_2 and establish a ν -sequence and regular basis for the IVPs on Δ_2 when the division algebra D is over the local field \mathbb{Q}_2 .

We would like to extend these results to the general case, in order to find a regular basis for the integer-valued polynomials on Δ_n over the local field \mathbb{Q}_2 .

Intro to IVPs 0000	IVPs over Matrix Rings ○○○○○○●○	The 3 \times 3 Case	The 4 $ imes$ 4 Case
Constructing	Δ_n		

We can use these lemmas by decomposing Δ_n as a union of subsets to which the lemmas apply. Let \mathbb{Q}_2 denote the 2-adic numbers, and let ζ be a $(2^n - 1)^{\text{th}}$ root of unity. Let θ be the automorphism of $\mathbb{Q}_2(\zeta)$ that maps $\theta(\zeta) = \zeta^2$. Define $n \times n$ matrices ω_n and π_n as:

$$\omega_n = \begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & \theta(\zeta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta^{n-1}(\zeta) \end{pmatrix} \quad \pi_n = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2 & 0 & \cdots & 0 \end{pmatrix}$$

The maximal order Δ_n with which we concern ourselves is

$$\Delta_n = \mathbb{Z}_2[\omega_n, \pi_n]$$

where \mathbb{Z}_2 denotes the 2-adic integers.

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
	0000000		

$$\Delta_n = \mathbb{Z}_2[\omega_n, \pi_n]$$

$$\omega_n = \begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & \theta(\zeta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta^{n-1}(\zeta) \end{pmatrix} \quad \pi_n = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2 & 0 & \cdots & 0 \end{pmatrix}$$

The elements ω_n and π_n observe the commutativity relation $\pi_n \omega_n = \omega_n^2 \pi_n$, and note also that $\pi_n^n = 2I_n$. An element $z \in \Delta_n$ can be expressed as a \mathbb{Z}_2 -linear combination of the elements $\{\omega_n^i \pi_n^j : 0 \le i, j \le n-1\}$, or else uniquely in the form $z = \alpha_0 + \alpha_1 \pi + \cdots + \alpha_{n-1} \pi_n^{n-1}$ with $\alpha_i \in \mathbb{Z}_2(\zeta)$.

	0000000	• 000 000000	000000000
The Maxir	nal Order		

We present in particular some results for $\Delta_3 = \mathbb{Z}_2[\omega,\pi]$ with

$$\omega = \begin{pmatrix} \zeta & 0 & 0 \\ 0 & \zeta^2 & 0 \\ 0 & 0 & \zeta^4 \end{pmatrix} \qquad \qquad \pi = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$

where ζ is a 7th root of unity. In addition to the relations $\pi\omega = \omega^2\pi$ and $\pi^3 = 2I_3$, we also work with the convention that

$$\zeta+\zeta^2+\zeta^4\equiv 0\ ({
m mod}\ 2) \quad {
m and} \quad \zeta^3+\zeta^5+\zeta^6\equiv 1\ ({
m mod}\ 2)\ .$$

The valuation in Δ_3 is described by $\nu(z) = \nu_2(\det(z))$ for $z \in \Delta_3$ realized as a matrix, where ν_2 denotes the 2-adic valuation.

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 $ imes$ 4 Case
Conjugacy Cla	asses mod π		

Looking at all elements of $\Delta_3 = \mathbb{Z}_2[\omega, \pi]$ modulo π , we obtain four conjugacy classes:

$$T = \{z \in \Delta_3 : z \equiv 0 \pmod{\pi}\}$$

$$T + 1 = \{z \in \Delta_3 : z \equiv I_3 \pmod{\pi}\}$$

$$S = \{z \in \Delta_3 : z \equiv \omega \text{ or } \omega^2 \text{ or } \omega^4 \pmod{\pi}\}$$

$$S + 1 = \{z \in \Delta_3 : z \equiv \omega^3 \text{ or } \omega^6 \text{ or } \omega^5 \pmod{\pi}\}$$

$$= \{z \in \Delta_3 : z \equiv \omega + I_3 \text{ or } \omega^2 + I_3 \text{ or } \omega^4 + I_3 \pmod{\pi}\}$$

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 \times 4 Case
Conjugacy (Classes mod π^2		

We can break the set T down further by considering conjugacy classes modulo π^2 :

$$T_1 = \{z \in \Delta_3 : z \equiv 0 \pmod{\pi^2}\} = \pi^2 \Delta$$

$$T_2 = \{z \in \Delta_3 : z \equiv \omega^i \pi \pmod{\pi^2} \text{ for some } 0 \le i \le 6\}$$

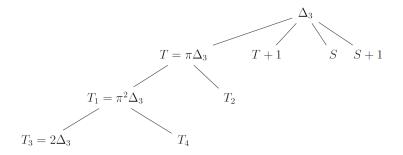
The set T_1 can be broken down further still by looking at conjugacy classes modulo $\pi^3 = 2$:

$$T_3 = \{z \in \Delta_3 : z \equiv 0 \pmod{\pi^3}\} = 2\Delta$$

$$T_4 = \{z \in \Delta_3 : z \equiv \omega^i \pi^2 \pmod{\pi^3} \text{ for some } 0 \le i \le 6\}$$

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
		00000000	

From this analysis, we obtain the following tree of subsets of Δ_3 :



These sets all satisfy the necessary lemmas pertaining to shuffles of ν -sequences, and so we can derive a formula for α_{Δ_3} that depends only on itself, α_5 , α_{T_2} , and α_{T_4} .

Intro to IVPs IVPs over Matrix Rings I he 3 x 3 Case I he 4 x 4 Case 0000 00000000 00000000 000000000	Characterie	stic Polynomials		
	Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
	0000	0000000	○○○○●○○○○○	0000000000

The tree of subsets and the lemmas show us that the ν -sequence of Δ_3 is recursively defined and also depends on the ν -sequences of S, T_2 , T_4 .

It remains to determine the ν -sequences for these sets, and to do so, it is useful to describe them in terms of their characteristic polynomials.

Given a 3×3 matrix A, we define the characteristic polynomial of A to be

$$x^3 - Tr(A)x^2 + \beta(A)x - \det(A)$$

where Tr(A) and det(A) are the usual trace and determinant of a 3×3 matrix, and $\beta(A)$ is defined in terms of the 2×2 minors of A.

Intro to IVPs IVPs o	over Matrix Rings Th	ie 3 × 3 Case The	e 4 $ imes$ 4 Case
		000000000000000000000000000000000000000	

Lemma

$$S = \{z \in \Delta_3 : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 1 \pmod{2}, \det(z) \equiv 1 \pmod{2} \}$$

$$T_2 = \{z \in \Delta_3 : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 0 \pmod{2}, \det(z) \equiv 2 \pmod{4} \}$$

$$T_4 = \{z \in \Delta_3 : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 0 \pmod{4}, \det(z) \equiv 4 \pmod{8} \}$$

We can determine some useful facts about the valuation of certain polynomials within S, T_2 , and T_4 , with the goal of establishing these as the minimal polynomials within their respective sets. This process is analogous to the one presented in Evrard and Johnson [3] and Johnson [4].

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 × 3 Case	The 4 \times 4 Case
A Polvnomia	$I \text{ in } T_2$		

Recall that

$$T_2 = \{z \in \Delta_3 : Tr(z) \equiv 0 \pmod{2}, \ \beta(z) \equiv 0 \pmod{2}, \det(z) \equiv 2 \pmod{4}\}$$

Let us define the function

$$\begin{split} \psi &= (\psi_1, \psi_2, \psi_3) : \mathbb{Z}_{\geq 0} \to 2\mathbb{Z}_{\geq 0} \times 2\mathbb{Z}_{\geq 0} \times (2 + 4\mathbb{Z}_{\geq 0}) \\ \psi(n) &= \left(2\sum_{i\geq 0} n_{3i+1}2^i, 2\sum_{i\geq 0} n_{3i}2^i, 2 + 4\sum_{i\geq 0} n_{3i+2}2^i\right) \end{split}$$

where $n = \sum_{i \ge 0} n_i 2^i$ is the expansion of *n* in base 2. Let

$$g_n(x) = \prod_{k=0}^{n-1} \left(x^3 - \psi_1(k) x^2 + \psi_2(k) x - \psi_3(k) \right)$$

Lemma

If $z \in T_2$ then

$$\nu(g_n(z)) \geq 4n + \sum_{i>0} \left\lfloor \frac{n}{2^i} \right\rfloor$$

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	0000000	0000000000	

The polynomials constructed in the previous slide will be the minimal polynomial of a sequence of elements in T_2 , which then suggests that this sequence extends to a ν -ordering. The associated ν -sequence will be the valuation of these polynomials, which we have calculated.

This method of creating minimal polynomials based on the characteristic polynomial that defines a conjugacy class within Δ_3 can be extended to any subset S of a maximal order Δ_n sitting in $M_n(\mathbb{Q}_2)$ that is closed under conjugation. However, the practical use of the construction comes from the fact that it is possible to achieve a known minimum when taking the valuation of the polynomials generated.

0000	0000000	0000000000	000000000
Extension	to Conoral n		

For any valuation ν , if the valuation of *n* terms a_1, \ldots, a_n produces a complete set of residues modulo *n*, then it must be the case that $\nu(a_1 + \cdots + a_n) = \min_{1 \le i \le n} \nu(a_i)$. This fact is applied in the valuation of the polynomial

$$f(z) = z^{n} - \phi_{1}(k)z^{n-1} + \phi_{2}(k)z^{n-2} + \dots + (-1)^{n}\phi_{n}(k)$$

with $z \in S \subseteq \Delta_n$ to show that a minimum for $\nu(f)$ can be determined with certainty only when $gcd(n, \nu(z)) = 1$.

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 \times 4 Case

In particular, if n = q is a prime, then a polynomial construction such as that of T_2 in the 3×3 case (given in detail for the 2×2 case in [3] and [4]) will be possible for all conjugacy classes in the maximal order Δ_q .

The construction will also work for some subsets of Δ_n when *n* is composite, in particular for conjugacy classes modulo π^j where gcd(j, n) = 1. It remains to see what adjustments must be made to this construction in the case where *n* is composite, and if there is any difference between the case where *n* is a power of a prime or *n* is squarefree.

Structure of			
Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	00000000	000000000	

We now consider
$$\Delta_4 = \mathbb{Z}_2[\omega,\pi]$$
 with

$$\omega = \begin{pmatrix} \zeta & 0 & 0 & 0 \\ 0 & \zeta^2 & 0 & 0 \\ 0 & 0 & \zeta^4 & 0 \\ 0 & 0 & 0 & \zeta^8 \end{pmatrix} \qquad \pi = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \end{pmatrix}$$

where ζ is a 15th root of unity.

In addition to the relations $\pi\omega=\omega^2\pi$ and $\pi^4=2{\it I}_4,$ we also work with the convention that

$$\zeta^3+\zeta^4+\zeta^7\equiv 0\ ({
m mod}\ 2) \quad {
m and} \quad \zeta+\zeta^5+\zeta^8\equiv 1\ ({
m mod}\ 2) \ .$$

As previously, the valuation in Δ_4 is described by $\nu(z) = \nu_2(\det(z))$ for $z \in \Delta_4$ realized as a matrix, where ν_2 denotes the 2-adic valuation.

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 \times 4 Case 000000000
0000	00000000	000000000	
Coniugacy	Classes modulo <i>pi</i>		

Looking at all elements of $\Delta_4 = \mathbb{Z}_2[\omega, \pi]$ modulo π , we obtain six conjugacy classes:

$$T = \{z \in \Delta_4 : z \equiv 0 \pmod{\pi}\} = \pi\Delta$$

$$T + 1 = \{z \in \Delta_4 : z \equiv l_4 \pmod{\pi}\}$$

$$S_1 = \{z \in \Delta_4 : z \equiv \omega \text{ or } \omega^2 \text{ or } \omega^4 \text{ or } \omega^8 \pmod{\pi}\}$$

$$S_2 = \{z \in \Delta_4 : z \equiv \omega^7 \text{ or } \omega^{11} \text{ or } \omega^{13} \text{ or } \omega^{14} \pmod{\pi}\}$$

$$S_3 = \{z \in \Delta_4 : z \equiv \omega^3 \text{ or } \omega^6 \text{ or } \omega^9 \text{ or } \omega^{12} \pmod{\pi}\}$$

$$S_4 = \{z \in \Delta_4 : z \equiv \omega^5 \text{ or } \omega^{10} \pmod{\pi}\}$$

Intro to IVPs I	VPs over Matrix Rings	The 3 \times 3 Case	The 4 $ imes$ 4 Case
			000000000

We can break down the set T further into subsets:

$$egin{aligned} &\mathcal{T}_1=\{z\in\Delta_4:z\equiv0\ (ext{mod}\ \pi^2)\}=\pi^2\Delta_4\ &\mathcal{T}_2=\{z\in\Delta_4:z\equiv\omega^i\pi\ (ext{mod}\ \pi^2)\ ext{for some}\ 0\leq i\leq14\} \end{aligned}$$

$$T_3 = \{z \in \Delta_4 : z \equiv 0 \pmod{\pi^3}\} = \pi^3 \Delta_4$$

$$T_4 = \{z \in \Delta_4 : z \equiv \omega^i \pi^2 \pmod{\pi^3} \text{ for some } i \equiv 0 \pmod{3}\}$$

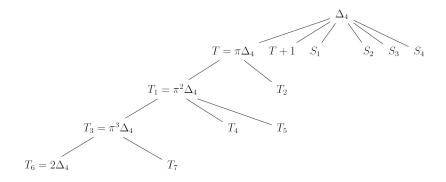
$$T_5 = \{z \in \Delta_4 : z \equiv \omega^i \pi^2 \pmod{\pi^3} \text{ for some } i \not\equiv 0 \pmod{3}\}$$

$$T_6 = \{z \in \Delta_4 : z \equiv 0 \pmod{\pi^4}\} = \{z \in \Delta_4 : z \equiv 0 \pmod{2}\} = 2\Delta_4$$

$$T_7 = \{z \in \Delta_4 : z \equiv \omega^i \pi^3 \pmod{\pi^4} \text{ for some } 0 \le i \le 14\}$$

Intro to IVPs	IVPs over Matrix Rings	The 3 $ imes$ 3 Case	The 4 $ imes$ 4 Case
			000000000

From this analysis, we obtain the following tree of subsets of Δ_4 :



Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 \times 4 Case
ν -sequence	of Δ_4		

The ν -sequence of Δ_4 will be recursively defined, and will also depend on the ν -sequences of the S_i , T_2 , T_4 , T_5 , and T_7 .

For each $z \in S_i$ we have $\nu(z) = 0$, for $z \in T_2$ we have $\nu(z) = 1$, for $z \in T_4$ and $z \in T_5$ we have $\nu(z) = 2$, and for $z \in T_7$ we have $\nu(z) = 3$. Since our aforementioned construction involving taking the valuation of products of characteristic polynomials works when $gcd(n, \nu(z)) = 1$, we will be able to use this method for computing the ν -sequences of the S_i for $i = 1, 2, 3, T_2$, and T_7 .

We will encounter problems for S_4 since the characteristic polynomial of its elements modulo 2 is reducible, and for T_4 and T_5 because the valuation of elements in the set are not relatively prime to the dimension.

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 × 4 Case
0000	0000000	000000000	○○○○●○○○○
A Potential	Polynomial in T_5		

Let us define the function

$$\phi = (\phi_1, \phi_2, \phi_3, \phi_4) : \mathbb{Z}_{\ge 0} \to 2\mathbb{Z}_{\ge 0} \times (2 + 4\mathbb{Z}_{\ge 0}) \times 4\mathbb{Z}_{\ge 0} \times (4 + 8\mathbb{Z}_{\ge 0})$$
$$\phi(n) = \left(2\sum_{i\ge 0} n_{4i}2^i, 2 + 4\sum_{i\ge 0} n_{4i+2}2^i, 4\sum_{i\ge 0} n_{4i+1}2^i, 4 + 8\sum_{i\ge 0} n_{4i+3}2^i\right)$$

where $n = \sum_{i \ge 0} n_i 2^i$ is the expansion of n in base 2. Let $z \in T_5$, let $k \ge 0$, and let

$$f_z(k) = z^4 - \phi_1(k)z^3 + \phi_2(k)z^2 - \phi_3(k)z + \phi_4(k)$$
.

Then

$$u(f_z(k)) \ge egin{cases} 10 +
u_2(m-k) & ext{if }
u_2(m-k) \equiv 0 \pmod{2} \ 9 +
u_2(m-k) & ext{if }
u_2(m-k) \equiv 1 \pmod{2} \end{cases}$$

where $m \in \mathbb{Z}$ is chosen so that f(m) is the characteristic polynomial of $z \in T_5$.

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case	The 4 \times 4 Case

$$u(f_z(k)) \ge \begin{cases} 10 + \nu_2(m-k) & \text{if } \nu_2(m-k) \equiv 0 \pmod{2} \\ 9 + \nu_2(m-k) & \text{if } \nu_2(m-k) \equiv 1 \pmod{2} \end{cases}$$

Note that due to the nature of the set T_5 , we will not have any cancellation of terms when evaluating $\nu(f_z(k))$. This means that equality can be achieved in the expression above, and so too is the case for products of such polynomials $f_z(k)$, as we saw in the 3×3 case. Therefore, we are still able to use this construction to establish a ν -sequence for T_5 .

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 \times 4 Case
0000	00000000	000000000	
The Case of	of \mathcal{T}_{4}		

For $z \in T_4$, the result in constructing potential minimal polynomials is the same as for T_5 :

$$u(f_z(k)) \ge \begin{cases} 10 + \nu_2(m-k) & \text{if } \nu_2(m-k) \equiv 0 \pmod{2} \\ 9 + \nu_2(m-k) & \text{if } \nu_2(m-k) \equiv 1 \pmod{2} \end{cases}$$

However, in the case of T_4 , it is possible to choose elements in the set such that elements cancel when computing the valuation of a polynomial $f_z(k)$.

This means that we *cannot* guarantee equality in the above expression, and our inequality becomes strict when we consider products of such polynomials $f_z(k)$. A different method of approach is necessary for T_4 .

Intro to IVPs	IVPs over Matrix Rings	The 3 × 3 Case	The 4 \times 4 Case
0000	00000000	0000000000	
Next Steps			

We can view Δ_2 as being embedded in Δ_4 . In Δ_2 , the subset denoted T_1 is defined by

$$T_1 = \{z \in \Delta_2 : Tr(z) \equiv 0 \pmod{2}, N(z) \equiv 2 \pmod{4}\}$$

where characteristic polynomials are denoted as $x^2 - Tr(z)x + N(z)$. The characteristic polynomial of an element of $T_1 \subseteq \Delta_2$, when squared, has the same form as expected for the characteristic polynomial of an element in $T_4 \subseteq \Delta_4$.

We may be able to learn more about the ν -sequence of T_4 by looking at the squares of polynomials in Δ_2 and noting the relationship with the denominator.

Intro to IVPs 0000	IVPs over Matrix Rings 00000000	The 3 \times 3 Case 000000000	The 4 \times 4 Case

References

M. Bhargava.

The factorial function and generalizations. The American Mathematical Monthly, 107(9):783–799, 2000.

P.-J. Cahen and J.-L. Chabert.

Integer-Valued Polynomials, volume 48 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, USA, 1997.

S. Evrard and K. Johnson.

The ring of integer valued polynomials on 2 \times 2 matrices and its integral closure. *Journal of Algebra*, 441:660–677, 2015.

K. Johnson.

p-orderings of noncommutative rings.

Proceedings of the American Mathematical Society, 143(8):3265-3279, 2015.