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• Introduction: Legendre Polynomials

Legendre Polynomails, named for Adrien-Marie Legendre and
denoted Pn(x), are important polynomials found throughout
mathematics and physics with numerous special properties.

They are the polynomial solutions to Legendre’s differential
equation

d
dx

(
(1− x2)

dPn(x)

dx

)
+ n(n + 1)Pn(x) = 0

These polynomails come up throughout numerous areas of
physics, most noteably in multipole expansions in
electrodynamics and in certain solutions of the Schrödinger
equation in quantum mechanics.
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The first few Legendre polynomials are

P0(x) = 1
P1(x) = x

P2(x) =
1
2

(
3x2 − 1

)
P3(x) =

1
2

(
5x3 − 3x

)
P4(x) =

1
8

(
35x4 − 30x2 + 3

)
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The Legendre polynomials have the generating function

1√
(1− 2xt + x2)

=
∞∑

n=0

Pn(x)tn

From the generating function it can be shown that they also
satisfy the three term recurrence relation

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)
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An explicit formula for the Legendre polynomials is given by

Pn(x) =
n∑

k=0

(
n
k

)(
n + k

k

)(
x − 1

2

)k

Perhaps the most important property of Legendre polynomials
is they are examples of orthogonal polynomials on the interval
[−1,1] which means∫ 1

−1
Pn(x)Pm(x)dx =

{
2

2n+1 if m = n
0 otherwise

An alternate derivation of the Legendre polynomials involes
using the Gram-Schmidt method on the polynomials
{1, x , x2, ...} under the above inner product.
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Figure: Watercolor of Adrien-Marie Legendre. This is the only known
portrait of Legendre and for nearly 200 years a different portrait was
mistaken to be Legendre, but was actually of a politician, Louis
Legendre.
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• Statement of the Original Problem

Find f (x) such that

g(1
2) =

∫ 1

0
f (x)g(x)dx

where f (x) and g(x) are polynomials of degree ≤ 2.

Scott Cameron A Linear Algebra Problem Related to Legendre Polynomials



Solving this problem gives us the solution

f (x) = −15x2 + 15x − 3
2

Solving the same problem but allowing the degree of the
polynomials to increase is what lead to further inquiry.

If we increase the degree to 3, then the solution is
f (x) = −15x2 + 15x − 3

2 again.

Increase to degree 4 and we have
f (x) = 945

4 x4 − 945
2 x3 + 1155

4 x2 − 105
2 x + 15

8 as the solution.

Degree 5 also has f (x) = 945
4 x4 − 945

2 x3 + 1155
4 x2 − 105

2 x + 15
8

as the solution.

This pattern continues for higher degrees. Why is this
happening? To answer this we change the original problem to a
more general one.
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• Generalizing the Problem

Find fn(x) such that

g(c) =

∫ 1

0
fn(x)g(x)dx

where g(x) and fn(x) are polynomials of degree ≤ n.

Now let us write our question in terms of the following
proposition.
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Proposition

Let fn(x) be as previously defined. Then when c = 1
2 we have

f2m+1(x) = f2m(x) for m ∈ N.

So then let

fn(x) =
n∑

k=0

akxk

and

g(x) =
n∑

k=0

bkxk

Now solving the more general problem leads us to the following
matrix multiplication.
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1 1

2
1
3 . . . 1

n+1
1
2

1
3

1
4 . . . 1

n+2
1
3

1
4

1
5 . . . 1

n+3
...

...
...

. . .
...

1
n+1

1
n+2

1
n+3 . . . 1

2n+1




a0
a1
a2
...

an

 =


1
c
c2

...
cn



Now write this as
Ha = c.

The choice of H is because matrices of this form (Hi,j = 1
i+j−1 )

are known as Hilbert matrices.
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To continue we need to know the inverse of the matrix H.

Luckily Hilbert matrices have a known formula for the entries of
their inverse.

(Hi,j)
−1 = (−1)i+j−1(i+j−1)

(
n + i

i + j − 1

)(
n + j

i + j − 1

)(
i + j − 2

i − 1

)2

.

Before continuing we need a definition.
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Definition
Let hn,i(c) be the polynomial created by taking the dot product
of the i th row of H−1 and c.

These polynomials determine the coefficients of fn(x). That is,

hn,i(c) = ai−1, or fn(x) =
n+1∑
k=1

hn,k (c)xk−1

Let’s do an example to clarify.
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Example: If n = 2, then

H =

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

 .

Using our formula,

H−1 =

 9 −36 30
−36 192 −180
30 −180 180

 .
So we have n = 2 and can see that 1 ≤ i ≤ 3. Thus

h2,1(c) = 9− 36c + 30c2,

h2,2(c) = −36 + 192c − 180c2,

h2,3(c) = 30− 180c + 180c2,

fn(x) =h2,1(c) + h2,2(c)x + h2,3(c)x2
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Now back to our problem.

If n is odd, and fn(x) = fn−1(x) when c = 1
2 , then the degree of

fn(x) is n − 1. This means that an = 0 in fn(x).

This would correspond to the polynomial formed by the bottom
row of H−1 having a root at c = 1

2 . Using our definition, this can
be written as hn,n+1(c) having a root at c = 1

2 .

Using the formula for H−1 we can write hn,n+1(c) as

hn,n+1(c) =

n+1∑
j=1

(−1)n+j+1(n + j)
(

2n + 1
n + j

)(
n + j
n + j

)(
n + j − 1

n

)2

c j−1
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Rearranging, simplifying, and shifting indicies gives us

hn,n+1(c) = (−1)n(2n + 1)

(
2n + 1

n

) n∑
k=0

(−1)k
(

n
k

)(
n + k

k

)
ck .

This form is exactly what we need. The sum is our polynomial,
and then we have a scaling factor outside.

All we need now is a definition to solve our problem.
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Definition

The shifted Legendre polynomials, denoted P̃n(x), are given by

P̃n(x) = (−1)n
n∑

k=0

(−1)k
(

n
k

)(
n + k

k

)
xk .

Looking back at our expresion for hn,n+1(c),

hn,n+1(c) = (−1)n(2n + 1)

(
2n + 1

n

) n∑
k=0

(−1)k
(

n
k

)(
n + k

k

)
ck ,

we can now see that hn,n+1(c) is just a multiple of P̃n(c).
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The shifted Legendre polynomials are so named because they
are, unsurprisingly, Legendre polynomials which have been
shifted.

The shift is given by sending x to 2x − 1. That is,
Pn(2x − 1) = P̃n(x).

The Legendre polynomials are known to have x = 0 as a root
when their degree is odd. Therefore, the shifted Legendre
polynomials must have a root at x = 1

2 when their degree is
odd.
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So, hn,n+1(c) = an and these are just multiples of the shifted
Legendre polynomials.

The shifted Legendre polynomials have a root at 1
2 when their

degree is odd.

Therefore, if n is odd and c = 1
2 , then an = 0. This ends up

forcing fn(x) = fn−1(x), thus answering our question.
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The appearance of Legendre polynomials is unsurprising since
the original problem involves an inner product of polynomials.

However, when I found this solution, It gave me another
question.

If hn,n+1(c) is always just a multiple of a shifted Legendre
polynomial, what do other rows correspond to?

That is, how does hn,1(c) change as we change n? hn,2(c)?
etc.
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• Another Approach to the Problem and the Other
Rows of H−1

Until now I have just used calculus and linear algebra to look
into these questions. There is however another way.

Theorem
(Riesz Represention Theorem) If we have some finite
dimensional vector space, V , and some linear functional φ on
V, then there is a unique vector u ∈ V such that

φ(v) = 〈v ,u〉

for all v ∈ V.

We can interpret our problem in terms of this theorem. The
integral is an inner product, g(x) corresponds to v , fn(x)
corresponds to u, and evaluation at c is a linear functional.
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This theorem has the consequence of allowing us to write

fn(x) =
n∑

k=0

P̃k (c)P̃k (x)∫ 1

0
P̃k (x)2dx

=
n∑

k=0

(2k + 1)P̃k (c)P̃k (x)

It should be noted that this expression for fn(x) shows us that it
is actually a familier concept in the study of orthogonal
polynomials.

In this form fn(x) would be called the kernel of the shifted
Legendre polynomials. Therefore what I am studying can be
interpreted as looking at how the coefficients of this kernel
change with n, and with c.
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Moving back to hn,i(c), we can use the expression from the
previous slide:

fn(x) =
n∑

k=0

(2k + 1)P̃k (c)P̃k (x)

and the fact that

fn(x) =
n+1∑
k=1

hn,k (c)xk−1

To find that

hn,i(c) =
n∑

k=i−1

(−1)k+i−1
(

k
i − 1

)(
k + i − 1

i − 1

)
(2k + 1)P̃k (c)

Using this equation, I wanted to find a generating function for
these polynomials.
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First let us focus on i = 1.

If i = 1 we have

hn,1(c) =
n∑

k=0

(−1)k (2k + 1)P̃k (c).

Since the Legendre Polynomials satisfy a recurrence relation,
the shifted Legendre polynomials must also.

(n + 1)P̃n+1(x) = (2n + 1)(2x − 1)P̃n(x)− nP̃n−1(x)

Combining the two expressions, it can be shown that

hn,1(c) =
(−1)n(n + 1)

2c

(
P̃n(c) + P̃n+1(c)

)
Using this we can find a generating function for hn,1(c).
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Rearranging, multiplying by xn+1, and summing over n yields

∞∑
n=0

hn,1(c)xn+1

n + 1
= −

∞∑
n=0

1
2c

(
P̃n(c)(−x)n+1 + P̃n+1(c)(−x)n+1

)

= − 1
2c

(
−x

∞∑
n=0

P̃n(c)(−x)n +
∞∑

n=0

P̃n(c)(−x)n − P̃0(c)

)

= − 1
2c

(
(1− x)

∞∑
n=0

P̃n(c)(−x)n − 1

)

= − 1
2c

(
1− x√

1 + 2(2c − 1)x + x2
− 1

)
Now we take the derivative with respect to x of both sides

which gives us the generating function.
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Let H1(x) be the generating function for hn,1(c).

Then we have from the previous slide

H1(x) = − 1
2c

d
dx

(
1− x√

1 + 2(2c − 1)x + x2
− 1

)

=
1 + x

(1 + 2(2c − 1)x + x2)
3
2
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Now using our expression for H1(x), along with

hn,i(c) =
n∑

k=i−1

(−1)k+i−1
(

k
i − 1

)(
k + i − 1

i − 1

)
(2k + 1)P̃k (c)

we can find an expression for the generating function of any
hn,i(c), denoted Hi(x).

Scott Cameron A Linear Algebra Problem Related to Legendre Polynomials



Sparing the details of the calculation, as it is more complicated
but similar to the derivation of H1(x), the final final result is
given by

Hi(x) =
(−x)i−1

(1− x)((i − 1)!)2
d2i−2

dx2i−2

(
x i−1(1− x)(1 + x)

(1 + 2(2c − 1)x + x2)
3
2

)

If we let j = i − 1 then this takes on a nicer form of

Hj+1(x) =
(−x)j

(1− x)(j!)2
d2j

dx2j

(
x j(1− x)(1 + x)

(1 + 2(2c − 1)x + x2)
3
2

)

So we have accomplished our goal of finding the generating
function for the polynomials hn,i(c).
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Here are the first couple generating functions.

H1(x) =
1 + x

(1 + 2(2c − 1)x + x2)
3
2

H2(x) =
12x(1 + x)

(
(c − 1

2)x2 − (c2 − c − 1)x + c − 1
2

)
(1 + 2(2c − 1)x + x2)

7
2

H3(x) is a bit long so I will break it up a bit.

The denominator is the same as the others but with exponent
11
2 .

There is also the term 180x2(1 + x) which is also similar to the
others.

The part I want to show however, is the polynomial in the
numerator.
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There is also the term 180x2(1 + x) which is also similar to the
others.

The part I want to show however, is the polynomial in the
numerator.
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For H1(x) the polynomial would just be 1.

For H2(x) the polynomial would be(
(c − 1

2)x2 − (c2 − c − 1)x + c − 1
2

)
.

And for H3(x)

(
c2 − c + 1

6

)
x4 +

(
−4

3c3 + 2c2 + 2
3c − 2

3

)
x3

−1
3(c2 − c + 3)(c2 − c − 1)x2

+
(
−4

3c3 + 2c2 + 2
3c − 2

3

)
x +

(
c2 − c + 1

6

)
.
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With the generating functions found, we can now draw a
comparison to a more general set of orthoginal polynomials,
the Gegenbauer polynomials (also known as the ultraspherical
polynomials), denoted Cn(t).

These polynomials generalize the Legendre polynomials, as
well as other types of orthogonal polynomials. In turn, the
Gegenbauer polynomials are generalized by what are known
as the Jacobi polynomials.
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These polynomials can be defined through the generating
function

1
(1− 2tx + x2)α

=
∞∑

n=0

Cn(t)xn

Comparing this with the generating functions for the hn,i(c), we
see that they are actually quite similar. For instance,

H2(x) =
12x(1 + x)

(
(c − 1

2)x2 − (c2 − c − 1)x + c − 1
2

)
(1 + 2(2c − 1)x + x2)

7
2

While they initially may not look that much alike, the
denominator is what really matters here.
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The Gegenbauer polynomials follow the recurrence relation

Cα
n (t) =

1
n
(
2t(n + α− 1)Cα

n−1(t)− (n + 2α− 2)Cα
n−2(t)

)
where Cα

0 (t) = 1 and Cα
1 (t) = 2α.

From this we can find a recurrence relation for the hn,i(c), but
we need to further study the polynomials arising in the
numerators of the generating functions.
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• Other Results

Now I will quickly state some other results and properties of
these polynomials.

First, the polynomials hn,i(c) have an interesting property with
the inner product from which they came.∫ 1

0
hn,i(c)cndc =

{
1 if i = n + 1
0 otherwise

In other words, integrating hn,i(c) against another polynomial in
c of degree at least n, will be equal to the coefficient of c i−1 of
the polynomial.
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Another representation for these polynomials is given by

hn,i(c) = (−1)i i
(

n + i
i

)(
n + 1

i

)
3F2(−n,n + 2, i ; 1, i + 1; c)

3F2(−n,n + 2, i ; 1, i + 1; c) is what is known as a
hypergeometric function. In general:

pFq(a1, ...,ap; b1, ...,bq; z) =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k !

Where (a)n = a(a + 1)...(a + n − 1) is what is known as a
Pochhammer symbol, or rising factorial. So,

hn,i(c) = (−1)i i
(

n + i
i

)(
n + 1

i

) ∞∑
k=0

(−n)k (n + 2)k (i)k

(1)k (i + 1)k

zk

k !
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This just gives us another avenue through which these
polynomials which can be investigated. For instance given the
hypergeometric representation I was able to prove the following
identity.

∫ 1

0
3F2(−n,n + 2, i ; 1, i + 1; c)3F2(−m,m + 2, i ; 1, i + 1; c)dc

=
i2Γ(n + i + 1)Γ(m + 2− i)

(2i − 1)(n + 1)(m + 1)Γ(n + 2− i)Γ(m + i + 1)
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Using the hypergeometric representation of the polynomials we
no longer have integer coefficients. I was interested in for which
values of n and i do the coeffcients end up being fractions.

This leads to the following interesting images.
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Thanks for listening.
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