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“I have discovered a truly marvelous proof that it is impossible
to separate a cube into two cubes, or a fourth power into two
fourth powers, or in general, any power higher than the second
into two like powers. This margin is too narrow to contain it."

– Fermat
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Fermat’s Last Theorem (FLT):
Given an integer n ≥ 3, there are no a,b, c ∈ Z such that

an + bn = cn.

Note: It suffices to consider n = 4 and n = p, an odd prime.

1. Some Historical Milestones

(1) Fermat; assertion made around 1637.

(2) Early attempts, up to 1847:
n = 3,4,5,7,14; some criteria.
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(3) First breakthrough: Kummer’s work, 1844–1850s

Kummer’s Theorem:
ap + bp = cp has no solutions when p is regular ,
i.e., p does not divide the class number h of the cyclotomic field
Q(ζ), ζ = e2πi/p.

Ernst Eduard Kummer
1810 - 1893
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(4) Numerous further results based on Kummer’s work,
improved criteria, computations. FLT settled for all

• p < 100 (Kummer, 1850s),
• p < 2000 (Vandiver, 1952),
• p < 125 000 (Wagstaff, 1976),
• p < 4 000 000 (Buhler et al., 1993).

(5) Second breakthrough:
Mordell’s conjecture proved by Faltings, 1983.
Consequence:
Fermat’s equation has at most finitely many solutions.

(6) Final breakthrough:
Wiles, 1993 and Taylor & Wiles, 1994.

(7) Further developments, refinements, extensions.
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After this very brief outline, back to the 3 breakthrough result.

Kummer’s Theorem:

That’s what MATH 4070/5070 was all about.

So, let’s have a brief look at Mordell’s Conjecture.
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Louis Joel Mordell
1888 - 1972
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In 1953 Mordell retired from the Sadleirian Chair but he most
certainly did not retire from mathematics; almost half of
Mordell’s 270 publications appeared after his retirement. Nor
did retirement mean that he lived a quiet life at his home in
Cambridge. On the contrary he delighted in accepting
appointments as Visiting Professor (in places such as Toronto,
Ghana, Nigeria, Mount Allison, Colorado, Notre Dame and
Arizona), delighted in adding yet another university to the list of
places at which he had been invited to speak (with a final total
of around 190), and delighted in sharing his enjoyment of
mathematics with as many young people as he could.

– http://www-history.mcs.st-and.ac.uk/
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2. Mordell’s Conjecture

Genus of a surface:
Roughly speaking, the number of “holes" or “handles".
• Sphere: genus 0;
• torus: genus 1.

Connection with Fermat:
Rewrite an + bn = cn as

xn + yn − 1 = 0.

Does it have rational solutions?

L. J. Mordell’s idea:
Given a polynomial equation Q(x , y) = 0,
look at all its complex solutions.
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This is related to a surface (a “compact Riemann surface"),
so the genus makes sense, and will be called the “genus of the
algebraic curve" defined by Q(x , y) = 0.

Mordell’s Conjecture (1922; Faltings, 1983):
A polynomial equation Q(x , y) = 0 with rational coefficients and
genus g ≥ 2 has only finitely many solutions.

The genus of the curve

xn + yn − 1 = 0

is (n − 1)(n − 2)/2, which is ≥ 2 for n ≥ 4.

Hence:
Fermat’s equation has at most
finitely many solutions for n ≥ 4.
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Gerd Faltings
1954 –

Faltings received the 1986 Fields Medal for this achievement.
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Another consequence of Faltings’ theorem:

FLT is true for “almost all" n.

In other words, the asymptotic density of the exponents n for
which FLT is true is 1.
(A. Granville and R. Heath-Brown, independently, 1985).
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3. The Frey Elliptic Curve

Up to the 1980s:
The only successful approach to FLT was via cyclotomic fields.

At that time, however, further progress seemed to be stalling.

Some fundamental new ideas were introduced by
Y. Hellegouarch (1975) and G. Frey (1982).
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Idea: Suppose that FLT is false, i.e.,
suppose there exist nonzero a,b, c ∈ Z,
pairwise coprime, such that

ap + bp = cp

(p an odd prime).

Then define the “Frey elliptic curve" F over Q by

y2 = x(x − ap)(x + bp). (1)

Since
bp + ap = cp and ap + (−c)p = (−b)p

are also solutions, we may as well assume that we have
a ≡ −1 (mod 4) and b is even.
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Elliptic curves have a number of “invariants"; one of them is the
discriminant , defined by

(x1 − x2)2(x2 − x3)2(x3 − x1)2,

where x1, x2, x3 are the roots of the RHS in (1).

With x1 = 0, x2 = −ap, x3 = bp, the discriminant is

(0− (−ap))2(−ap − bp)2(bp − 0)2 = a2pb2pc2p,

(recall that ap + bp = cp.)
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Frey remarked that it is very unusual for a discriminant to be a
high perfect power.

He suggested that it might contradict the
“Taniyama-Shimura-Weil" (TSW) Conjecture.

K. Ribet proved in 1986 that the TSW conjecture does indeed
imply FLT.

Wiles picked up on this and set out to prove the TSW
conjecture, working in isolation for the following 7 years.
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Gerhard Frey Ken Ribet
1944– 1947–
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4. The Main Ingredients

If a prime ` divides the discriminant then it divides differences
of the roots x1, x2, x3.

So either two or all three roots are congruent mod `.

Definition: The curve is called semistable if only 2 roots are
congruent mod ` > 3.

Lemma: Every Frey curve is semistable.

Proof : If ` | a2pb2pc2p, then ` divides only one of ap,bp, cp

since they are coprime. The result follows from the roots being
0,ap,−bp (recall cp = ap + bp).
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Conjecture (Taniyama-Shimura-Weil):
Every elliptic curve over Q is modular.

Theorem (Wiles): Every semistable elliptic curve over Q is
modular.

Corollary: Every Frey curve is modular.

Contradiction: (Ribet)
A Frey curve cannot be modular.

Question: What does “modular" mean??
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5. Finite Fields, Projective Plane

Main idea:
Consider elliptic curves not over Q,
but over a finite field Fp = Z/pZ, i.e., mod p,
where p is a prime. It can happen that the discriminant is 6= 0,
but ≡ 0 (mod p).

Example: y2 = x3 − 5. Discriminant is

−10 800 = −24 · 33 · 52.

So it is not an elliptic curve over Fp for p = 2,3,5.

These primes are said to have “bad reduction" and must be
avoided.
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The primes of bad reduction are multiplied together (with
certain exponents) to give the conductor N of the curve.

Alternative Definition:
A curve is semistable if its conductor is squarefree.

We know: The “point at infinity" plays an important role. To
account for this point, we introduce the “projective plane".

Roughly speaking: The collection of all points

(x , y , z) ∈ R3 \ (0,0,0),

(x , y , z) ∼ (ax ,ay ,az).

All “finite points" can be identified with (x , y ,1), and the points
at infinity with (x , y ,0).

The “point at infinity" that serves as identity in the elliptic curve
group is then O = (0,1,0).
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The “point at infinity" that serves as identity in the elliptic curve
group is then O = (0,1,0).
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What is the “elliptic curve group"?

y2 = x3 − 7x
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We want to count points on a curve over Fp.

First, to put this into perspective, how many points does a line
over Fp,

ax + by = c,

in the projective plane have?

“Homogenize" by introducing a variable z:

ax + by = cz.

When z = 0: Given y = 1, exactly one x
When z = 1: For each y , exactly one x
Total: p + 1 solutions.
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How about elliptic curves?
What’s the number bp of solutions over Fp?
How much does this value differ from the “standard" p + 1?

Call the difference ap. Then

bp = p + 1− ap.

Example: y2 = x3 + 22 over F5.
Homogenize: y2z = x3 + 22z3.
Reduce modulo 5: y2z = x3 + 2z3.
Find solutions (“trial and error"):

(x , y , z) = (0,1,0), (2,0,1)

(3,2,1)

(3,3,1)

(4,1,1)

(4,4,1)

Hence b5 = 6, and thus a5 = 0.

Karl Dilcher Fermat’s Last Theorem



How about elliptic curves?
What’s the number bp of solutions over Fp?
How much does this value differ from the “standard" p + 1?
Call the difference ap. Then

bp = p + 1− ap.

Example: y2 = x3 + 22 over F5.
Homogenize: y2z = x3 + 22z3.
Reduce modulo 5: y2z = x3 + 2z3.
Find solutions (“trial and error"):

(x , y , z) = (0,1,0), (2,0,1)

(3,2,1)

(3,3,1)

(4,1,1)

(4,4,1)

Hence b5 = 6, and thus a5 = 0.

Karl Dilcher Fermat’s Last Theorem



How about elliptic curves?
What’s the number bp of solutions over Fp?
How much does this value differ from the “standard" p + 1?
Call the difference ap. Then

bp = p + 1− ap.

Example: y2 = x3 + 22 over F5.
Homogenize: y2z = x3 + 22z3.
Reduce modulo 5: y2z = x3 + 2z3.
Find solutions (“trial and error"):

(x , y , z) = (0,1,0), (2,0,1)

(3,2,1)

(3,3,1)

(4,1,1)

(4,4,1)

Hence b5 = 6, and thus a5 = 0.

Karl Dilcher Fermat’s Last Theorem



How about elliptic curves?
What’s the number bp of solutions over Fp?
How much does this value differ from the “standard" p + 1?
Call the difference ap. Then

bp = p + 1− ap.

Example: y2 = x3 + 22 over F5.
Homogenize: y2z = x3 + 22z3.
Reduce modulo 5: y2z = x3 + 2z3.
Find solutions (“trial and error"):

(x , y , z) = (0,1,0), (2,0,1)

(3,2,1)

(3,3,1)

(4,1,1)

(4,4,1)

Hence b5 = 6, and thus a5 = 0.
Karl Dilcher Fermat’s Last Theorem



The surprise now is:
These numbers ap will appear in a different, seemingly
unrelated setting as Fourier coefficients of certain functions.
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6. Modular Forms

Recall from complex analysis:

g(z) =
az + b
cz + d

, ad − bc 6= 0,

(a,b, c,d ∈ C) is called a Möbius map.

It maps circles on C ∪ {∞} to circles on C ∪ {∞}
(this includes straight lines in C)
and is conformal (angle-preserving).

The modular group is the group of all Möbius maps

g(z) =
az + b
cz + d

,

with a,b, c,d ∈ Z and ad − bc = 1.

It maps the upper-half plane
H = {x + iy | y > 0} into itself.
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The modular group can (basically) be identified with the group

SL2(Z) =
{(

a b
c d

)
| a,b, c,d ∈ Z, ad − bc = 1

}
.

Subgroups of these turn out to be more interesting: Define

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

We want to consider functions on H which “transform well"
under one of the subgroups Γ0(N). In particular, we require that
there be an integer k such that

f
(

az + b
cz + d

)
= (cz + d)k f (z) for all γ ∈ Γ0(N).
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For γ =
(

1 1
0 1

)
, we have f (z + 1) = f (z),

so f must have a Fourier expansion

f (z) =
∞∑

n=−∞
anqn, q = e2πiz .

If only non-negative powers of q are involved, and a few other
technical conditions are satisfied, then this function is called
• a modular form of weight k on Γ0(N).
• N is called the level of f .

We further specialize the set of modular forms.

There is a family of operators, called “Hecke operators", acting
on the space of modular forms of given weight and level.
Eigenvectors of Hecke operators are called eigenforms.

There are other technical conditions that make a modular form
a “cusp form" and a “new form".
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Suppose now we have a modular form f (z) which is
• of weight 2 and level N,
• an eigenform,
• a cusp form,
• a new form.

Under these conditions it can be normalized so that

f (z) =
∞∑

n=1

anqn, a1 = 1.

Now suppose that all other coefficients an are integers.

Then there exists an elliptic curve with
• integer coefficients,
• conductor N,
• the ap (as defined earlier) agreeing with the Fourier

coefficients of f .
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Y. Taniyama (1927–1958) was the first to suggest (mid-1950s):

Every elliptic curve arises in this manner;
such curves are called modular.

G. Shimura (1930–) expanded on this idea, and

A. Weil (1906–1998) made it more precise:
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Taniyama-Shimura-Weil Conjecture:
Every elliptic curve over Q is modular.

Recall:

Theorem (Wiles):
Every semistable elliptic curve over Q is modular.

Corollary: Every Frey curve is modular.

Contradiction: (Ribet)
A Frey curve cannot be modular.

This proves Fermat’s Last Theorem.
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Andrew John Wiles (1953 – )

Wednesday 23 June 1993, around 10.30 a.m.
The Newton Institute, Cambridge, England

“Having written the theorem on the blackboard he said,
‘I will stop here’, and sat down".
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It didn’t quite end there . . .

Later in 1993 it became clear that there was a serious gap in
Wiles’ proof.

Wiles and Richard Taylor (a former student) spent almost a
year trying to repair the proof.

At first they had no success.

In September, 1994, they finally succeeded.

Two manuscripts were submitted, and published in 1995, one
joint with Taylor.

Wiles received the famous “Wolfskehl Prize" in 1997.
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Richard Taylor (1962 –), Princeton, 1999
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Later developments:

Recall that Wiles proved the TSW-conjecture “only" for
semistable curves.

The full conjecture was later proved by
C. Breuil, B. Conrad, F. Diamond, and R. Taylor;
announced 1999, published 2001.
(Using methods first developed by Wiles).

Karl Dilcher Fermat’s Last Theorem



Later developments:

Recall that Wiles proved the TSW-conjecture “only" for
semistable curves.

The full conjecture was later proved by
C. Breuil, B. Conrad, F. Diamond, and R. Taylor;
announced 1999, published 2001.
(Using methods first developed by Wiles).

Karl Dilcher Fermat’s Last Theorem



The generalized Fermat conjecture:
Consider

xp + yq = zr , (p,q, r ∈ N,1/p + 1/q + 1/r < 1).

Are there solutions in integers x , y , z that have no common
divisor?

Conjecture (Darmon, Granville, 1990’s):
The above equation has precisely 10 nontrivial solutions.

For instance, the 10th solution is

338 + 15490342 = 156133.

Some partial results are known.
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Henri Darmon Andrew Granville
McGill Univ. Univ. de Montréal
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Thank you
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Cartoons were removed due to copyright concerns.
Please visit
http://www.sciencecartoonsplus.com/
or get these books:
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