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1. Introduction

The Chebyshev polynomials Tn(x) are among the most
important and interesting classical orthogonal polynomials.

Numerous applications, e.g., in Approximation Theory.

They can be defined by T0(x) = 1, T1(x) = x , and

Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1).
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Here is the definition again:

T0(x) = 1, T1(x) = x , and

Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1).

We compute:

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x , T4(x) = 8x4 − 8x2 + 1, . . .

Now consider a slight variant:

V0(x) = 1, V1(x) = x , and

Vn+1(x) = 2xVn(x)− Vn−1(x)− xn+1 (n ≥ 1).

Do we get anything sensible?
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n Vn(x)

1 x
2 x2 − 1
3 x3 − 3x
4 x4 − 7x2 + 1
5 x5 − 15x3 + 5x
6 x6 − 31x4 + 17x2 − 1
7 x7 − 63x5 + 49x3 − 7x
8 x8 − 127x6 + 129x4 − 31x2 + 1
9 x9 − 255x7 + 321x5 − 111x3 + 9x

10 x10 − 511x8 + 769x6 − 351x4 + 49x2 − 1
11 x11 − 1023x9 + 1793x7 − 1023x5 + 209x3 − 11x
12 x12 − 2047x10 + 4097x8 − 2815x6 + 769x4 − 71x2 + 1
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V0(x) = 1, V1(x) = x , and

Vn+1(x) = 2xVn(x)− Vn−1(x)− xn+1 (n ≥ 1).

Some properties:

Vn(x) =
xn+2 − Tn(x)

x2 − 1
; (1)

Vn(x) = xn −
bn

2 c∑
k=1

(
n

2k

)
(x2 − 1)k−1xn−2k . (2)

Compare with

Tn(x) = xn +

bn
2 c∑

k=1

(
n

2k

)
(x2 − 1)kxn−2k ,

from which (2) is derived, by way of (1).
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Some special values:

Vn(1) = 1−
(

n
2

)
, Vn(−1) = (−1)n

(
1−

(
n
2

))
.

Generating function:

1− 2tx
(1− tx)(1− 2tx + t2)

=
∞∑

n=0

Vn(x)tn. (3)

Compare with

1− tx
1− 2tx + t2 =

∞∑
n=0

Tn(x)tn,

from which (3) is derived.
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2. Irreducibility and Zeros

The Chebyshev polynomial Tn(x)
• has a well-known factorization over Q in terms of cyclotomic
polynomials
• is irreducible over Q iff n = 2k , k = 0,1,2, . . ..

How about the Vn(x)?

Easy to see:

V2(x) = (x − 1)(x + 1), V4(x) = (x2 − 3x + 1)(x2 + 3x + 1)

However, all other V2k (x) and 1
x V2k+1(x) appear to be

irreducible.

We can prove a partial result:
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Proposition
The following are irreducible over Q:
(a) V2k−2(x) for all k ≥ 3;

(b) 1
x Vp(x) for all odd primes p.

Sketch of Proof: Using the explicit expansion

Vn(x) = xn −
bn

2 c−1∑
r=0

(−1)r

 bn
2 c∑

k=r+1

(
n

2k

)(
k − 1

r

) xn−2−2r ,

it can be shown that the polynomials in (a) and (b) are
2-Eisenstein.

(No other V2k (x) or 1
x V2k+1(x) is Eisenstein).
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Recall: All zeros of Tn(x) lie in the interval (−1,1).

The zeros of Vn(x) are also all real. However:

n rn n rn
1 0 11 31.956928
2 1 12 45.221645
3 1.7320508 13 63.974591
4 2.6180339 14 90.490325
5 3.8286956 15 127.98534
6 5.5174860 16 181.00828
7 7.8875983 17 255.99169
8 11.223990 18 362.03245
9 15.929112 19 511.99536

10 22.571929 20 724.07389

Table 2: The largest zeros rn of Vn(x), 2 ≤ n ≤ 20.
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Recall: All zeros of Tn(x) lie in the interval (−1,1).

The zeros of Vn(x) are also all real. However:

n rn 2(n−1)/2 n rn 2(n−1)/2

1 0 1 11 31.956928 32
2 1 1.4142135 12 45.221645 45.254833
3 1.7320508 2 13 63.974591 64
4 2.6180339 2.8284271 14 90.490325 90.509667
5 3.8286956 4 15 127.98534 128
6 5.5174860 5.6568542 16 181.00828 181.01933
7 7.8875983 8 17 255.99169 256
8 11.223990 11.313708 18 362.03245 362.03867
9 15.929112 16 19 511.99536 512

10 22.571929 22.627416 20 724.07389 724.07734

Table 2: The largest zeros rn of Vn(x), 2 ≤ n ≤ 20.
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Proposition
Let n ≥ 2, and ±rn be the largest zeros in absolute value of
Vn(x). Then
(a) n − 2 zeros of Vn(x) lie in the interval (−1,1);

(b) (
√

2)n−1 − n
(
√

2)n−1 < rn < (
√

2)n−1.

Idea of proof: For (a), use (x2 − 1)Vn(x) = xn+2 − Tn(x).
Consider graph of y = Tn(x); count intersections with y = xn+2.

(b): Evaluate Vn(x) at the two
boundary points of the interval.

T20(x)
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3. A Related Polynomial

The Chebyshev polynomials Tn(x) satisfy the (2× 2 Hankel
determinant) identity

Tn+1(x)2 − Tn(x)Tn+2(x) = 1− x2 (n ≥ 0).

How about the analogue for {Vn(x)} ?

Define

Wn(x) := Vn+1(x)2 − Vn(x)Vn+2(x) (n ≥ 0).

We’ll see: These polynomials have some interesting properties.
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We’ll see: These polynomials have some interesting properties.
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n Wn(x)

0 1
1 x2 + 1
2 2x4 + x2 + 1
3 4x6 + x4 + x2 + 1
4 8x8 + x4 + x2 + 1
5 16x10 − 4x8 + x6 + x4 + x2 + 1
6 32x12 − 16x10 + 2x8 + x6 + x4 + x2 + 1
7 64x14 − 48x12 + 8x10 + x8 + x6 + x4 + x2 + 1
8 128x16 − 128x14 + 32x12 + x8 + x6 + x4 + x2 + 1
9 256x18 − 320x16 + 112x14 − 8x12 + x10 + x8 + x6

+x4 + x2 + 1
10 512x20 − 768x18 + 352x16 − 48x14 + 2x12 + x10

+x8 + x6 + x4 + x2 + 1
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Some properties:

Wn(x) =
1− xn+2Tn(x)

1− x2 .

Compare:

Vn(x) =
Tn(x)− xn+2

1− x2 .

Recurrence: W0(x) = 1, W1(x) = x2 + 1, and for n ≥ 1,

Wn+1(x) = x2 (2Wn(x)−Wn−1(x)) + 1.

Generating function:

1− tx2 + t2x2

(1− t)(1− 2tx2 + t2x2)
=
∞∑

n=0

Wn(x)tn.
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Let’s look at the table again:

n Wn(x)

0 1
1 x2 + 1
2 2x4 + x2 + 1
3 4x6 + x4 + x2 + 1
4 8x8 + x4 + x2 + 1
5 16x10 − 4x8 + x6 + x4 + x2 + 1
6 32x12 − 16x10 + 2x8 + x6 + x4 + x2 + 1
7 64x14 − 48x12 + 8x10 + x8 + x6 + x4 + x2 + 1
8 128x16 − 128x14 + 32x12 + x8 + x6 + x4 + x2 + 1
9 256x18 − 320x16 + 112x14 − 8x12 + x10 + x8 + x6

+x4 + x2 + 1
10 512x20 − 768x18 + 352x16 − 48x14 + 2x12 + x10

+x8 + x6 + x4 + x2 + 1

Do we get anything sensible if we cut the Wn(x) into two
halves?
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Define the lower and upper parts, respectively, of Wn(x) by

W `
n(x) :=

b n+1
2 c∑

j=0

x2j ,

W u
n (x) :=

1
xn+2

(
Wn(x)−W `

n(x)
)
.

Easy to establish generating functions for both, and with these
we get

W u
n (x) = 2

b n−2
2 c∑

k=0

Un−2−2k (x)

where the Un(x) are the Chebyshev polynomials of the second
kind, which can be defined by the generating function

1
1− 2tx + t2 =

∞∑
n=0

Un(x)tn.
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Using known identities:

W u
2k (x) =

1− T2k (x)

1− x2 = 2Uk−1(x)2,

W u
2k+1(x) =

x − T2k+1(x)

1− x2 = 2Uk−1(x)Uk (x).

This, together with the definition of the W `
n(z), gives

Proposition
For all n ≥ 1, the zeros
(a) of W `

n(z) lie on the unit circle;
(b) of W u

n (z) lie in the open interval (−1,1).

What can we say about the zeros of Wn(z) as a whole?
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Plot of the zeros of W50(z) (degree 100):

Do they lie on (or near) an identifiable curve?
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Proposition

The zeros of Wn(z), as n→∞, lie arbitrarily close to the curve

3r8 − 8r6 cos(2θ) + 6r4 − 1 = 0, z = reiθ, 0 ≤ θ ≤ 2π. (4)

Furthermore, they all lie outside the closed region defined by
this curve.

Figure: The zeros of W50(z) and the curve (4).
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Proof:
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Ingredients in the proof:

• The identity

Wn(x) =
1− xn+2Tn(x)

1− x2 .

• The Binet-type expression

Tn(x) =
1
2

(
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

)
.

• Concentrate on the larger of the two summands.

• A chain of tricky estimates.

Karl Dilcher Zeros and irreducibility of some classes of special polynomials



Ingredients in the proof:

• The identity

Wn(x) =
1− xn+2Tn(x)

1− x2 .

• The Binet-type expression

Tn(x) =
1
2

(
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

)
.

• Concentrate on the larger of the two summands.

• A chain of tricky estimates.

Karl Dilcher Zeros and irreducibility of some classes of special polynomials



Ingredients in the proof:

• The identity

Wn(x) =
1− xn+2Tn(x)

1− x2 .

• The Binet-type expression

Tn(x) =
1
2

(
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

)
.

• Concentrate on the larger of the two summands.

• A chain of tricky estimates.

Karl Dilcher Zeros and irreducibility of some classes of special polynomials



Ingredients in the proof:

• The identity

Wn(x) =
1− xn+2Tn(x)

1− x2 .

• The Binet-type expression

Tn(x) =
1
2

(
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

)
.

• Concentrate on the larger of the two summands.

• A chain of tricky estimates.

Karl Dilcher Zeros and irreducibility of some classes of special polynomials



Ingredients in the proof:

• The identity

Wn(x) =
1− xn+2Tn(x)

1− x2 .

• The Binet-type expression

Tn(x) =
1
2

(
(x −

√
x2 − 1)n + (x +

√
x2 − 1)n

)
.

• Concentrate on the larger of the two summands.

• A chain of tricky estimates.

Karl Dilcher Zeros and irreducibility of some classes of special polynomials



An older result of a similar flavour:

Let Lp(x), Up(x) be the lower and upper sections of an
even-degree polynomial p(x).

Proposition (D. & Stolarsky, 1992)

There is a sequence of polynomials {Qn(x)} such that
(a) the zeros of Qn(x) lie on the oval |x(x − 1)| = 1/2;
(b) the zeros of LQn(x) lie on the circle of radius 1/

√
2

centered at the origin;
(c) the zeros of UQn(x) lie on the circle of radius 1/

√
2

centered at x = 1.

Remarks: (i) The centers of the circles in (b), (c) are the foci of
the oval (an oval of Cassini) in (a).

(ii) The polynomials can be given explicitly and are also related
to Chebyshev polynomials.
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Part II:

Zeros and irreducibility of gcd-polynomials
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1. Introduction

Some classes of polynomials with special number theoretic
sequences as coefficients:

1. Fekete polynomials:

fp(z) :=

p−1∑
j=0

(
j
p

)
z j (p prime),

where ( a
p ) is the Legendre symbol.

Conrey, Granville, Poonen, and Soundararajan (2000) showed:

For each p, at least half of the zeros of fp(z) lie on the unit
circle.

Deep connections with the distribution of primes.
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2. Ramanujan polynomials:

R2k+1(z) :=
k+1∑
j=0

(
B2jB2k+2−2j

(2j)!(2k + 2− 2j)!

)
z2j ,

where Bn is the nth Bernoulli number.

Murty, Smyth, and Wang (2011) showed:

With the exception of four real zeros, all others zeros lie on the
unit circle and have uniform angular distribution.

Applications to the theory of the Riemann zeta function.

Later extended by other authors to similar polynomials
(Lalín & Smyth, 2013; Berndt & Straub, 2017).
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3. Dedekind polynomials:

pk (z) :=
k−1∑
j=0

s(j , k)z j ,

where s(d , c) is the Dedekind sum

defined by

s(d , c) =
c∑

j=1

((
j
c

))((
dj
c

))
,

with ((x)) denoting the “sawtooth function"

((x)) =

{
0, if x ∈ Z,
x − [x ]− 1

2 , otherwise.

Observation:
For each k , most of the zeros of pk (z) lies on the unit circle.

In an effort to prove this, we were led to studying the following
class of polynomials.
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2. GCD Polynomials

What can we say about the polynomials
n∑

j=0

gcd(n, j)z j?

It turns out: A more general class has basically the same
properties. For k ≥ 0 and n ≥ 1, let

g(k)
n (z) :=

n∑
j=0

gcd(n, j)kz j .

For k = 0, obviously

g(0)
n (z) =

zn+1 − 1
z − 1

,

so all the zeros are roots of unity and thus lie on the unit circle.

For n = p − 1 (p a prime), these are cyclotomic polynomials;
hence irreducible.
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From now on: Disregard the case k = 0.

However, we will see:
g(k)

n (z) for k ≥ 1 have properties similar to the case k = 0.

Theorem

For all k ≥ 1 and all n ≥ 1, all the zeros of g(k)
n (z) lie on the unit

circle and have uniform angular distribution.

Idea of proof: Consider

g(k)
n (e2πix )

and show it has n real zeros for 0 < x < 1.
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3. Zeros; proof of the Theorem

Since gcd(j ,n) = gcd(n − j ,n) for 0 ≤ j ≤ n,
the g(k)

n (z) are self-inversive (or reciprocal):

g(k)
n (z) = zng(k)

n ( 1
z ).

Set z = e2πix for a real variable x . Then

e−πinxg(k)
n (e2πix ) = eπinxg(k)

n (e−2πix ).

If we define
h(k)

n (x) := e−πinxg(k)
n (e2πix ),

then h(k)
n (x) = h(k)

n (x) for x ∈ R.

Hence h(k)
n (x) is real-valued.
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h(k)
n (x) := e−πinxg(k)

n (e2πix ).

For m = 0,1, . . . ,n, consider

h(k)
n (m

n ) = e−πimg(k)
n (e2πim/n) = (−1)m

n∑
j=0

gcd(j ,n)ke2πijm/n.

Last sum is, essentially, discrete Fourier transform of gcd(j ,n)k .
Denote it here by

S(k)(m,n) :=
n∑

j=1

gcd(j ,n)ke2πijm/n.

So we have

h(k)
n (m

n ) = (−1)m
(

S(k)(m,n) + nk
)
.
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h(k)
n (m

n ) = (−1)m
(

S(k)(m,n) + nk
)
.

Thus, if we can show

S(k)(m,n) > 0, (5)

then for fixed k and n, h(k)
n (m

n ) is alternating positive and
negative.

This means that h(k)
n (x) has n real zeros between the n + 1

points 0,1/n,2/n, . . . ,1.

This in turn implies that g(k)
n (z)

• has all its n zeros on the unit circle, and
• one each in adjacent sectors of angle 2π/n.

This proves Theorem 1, provided we can prove (5).
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h(k)
n (m

n ) = (−1)m
(

S(k)(m,n) + nk
)
.

DFTs have recently been studied for
• arithmetic, especially multiplicative, functions in general;
• the gcd and its powers as special cases.

For instance:

Theorem (L. Tóth, 2011)
For all m ∈ Z and n ∈ N,

S(1)(m,n) =
∑

d | gcd(m,n)

dϕ( n
d ).

This proves our theorem for k = 1.

Can this be extended to general k ≥ 1?
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4. Jordan’s totient function

We need a generalization of Euler’s ϕ-function.

Definition
Jordan’s totient function is defined by

Jk (n) = nk
∏
p|n

(
1− 1

pk

)
,

or equivalently as the number of different sets of k (equal or
distinct) positive integers ≤ n whose gcd is relatively prime to n.

This equivalence was first established by Camille Jordan in
1870.

Clearly, J1(n) = ϕ(n).
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Camille Jordan
(1838–1922)
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Other properties are similar to those of Euler’s ϕ-function; e.g.,

mk =
∑
d |m

Jk (d).

W. Schramm (2008) showed;

S(k)(1,n) = Jk (n) (n ≥ 1).

This can be extended:
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Proposition
For all k ,n ∈ N and all m ∈ Z we have

S(k)(m,n) =
∑

d | gcd(m,n)

dJk ( n
d ).

In particular, S(k)(m,n) is always a positive integer.

Since the summands on the right are positive, this proves the
Theorem.

Compare with Tóth’s result:

S(1)(m,n) =
∑

d | gcd(m,n)

dϕ( n
d ).
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Proof of Proposition. Using

gcd(j ,n)k =
∑

d | gcd(j,n)

Jk (d),

we have

S(k)(m,n) =
n∑

j=1

∑
`| gcd(n,j)

Jk (`)e2πijm/n

=
∑
`|n

Jk (`)

n/`∑
j=1

e2πijm/(n/`).

Inner sum in the last term is
• n/` if n/` divides m;
• 0 otherwise.

Hence, setting d = n/`, we get the desired identity.
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An interesting consequence: Recall

S(k)(m,n) :=
n∑

j=1

gcd(j ,n)ke2πijm/n

and
S(k)(m,n) =

∑
d | gcd(m,n)

dJk ( n
d ).

Set m = n; then

Corollary
For all k ,n ∈ N we have

∑
d |n

dJk ( n
d ) =

n∑
j=1

gcd(j ,n)k .

This was published by K. Alladi (1975) when he was 19 years
old, and with a different goal in mind.
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5. Irreducibility

Recall:

g(k)
n (z) :=

n∑
j=0

gcd(n, j)kz j .

Observation: When n is odd then by symmetry,

g(k)
n (−1) = 0,

so z + 1 is always a factor of g(k)
n (z) in that case.

However, it appears that this is the only factor. In fact:

Theorem
For α, k ∈ N and odd primes p,

g(k)
2α (z) and

g(k)
pα (z)

z + 1

are irreducible over Q.
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Proof. (Sketch).

Part 1: We begin with the smallest cases:

g(k)
2 (z) = 2k +z+2kz2,

1
z + 1

g(k)
3 (z) = 3k +(1−3k )z+3kz2.

The only self-reciprocal reducible quadratics are z2 ± 2z + 1
and their integer multiples.
But none of the polynomials above are of this form.
This proves the Theorem for p = 2, p = 3 and α = 1.

For the remaining cases, let p ≥ 2 be any prime, and α, k ∈ N.
Set

g(k)
n (z) =

{
g(k)

n (z) when n is even,
1

z+1g(k)
n (z) when n is odd.
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Part 2: Assume that g(k)
n (z) is reducible for n ≥ 4.

Then it’s a product of r ≥ 2 irreducible polynomials with integer
coefficients.

These are themselves self-inversive and thus have even
degrees since all their zeros are conjugate pairs of complex
numbers with modulus 1.

So we can write, for any n ≥ 4,

g(k)
n (z) = (a1 + b1z + . . . )(a2 + b2z + . . . ) . . . (ar + br z + . . . )

= a1a2 . . . ar + a1a2 . . . ar

 r∑
j=1

bj

aj

 z + . . .
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On the other hand, it is clear from the definition that

g(k)
pα (z) =

{
pαk + (1− pαk )z + . . . when p ≥ 3,
pαk + z + . . . when p = 2.

Equating coefficients, we therefore have

a1a2 . . . ar = pαk , (6)
b1a2 . . . ar + a1b2 . . . ar + . . .

+ a1a2 . . . br = 1− [p ≥ 3]pαk , (7)

• By (6): the aj can only be powers of p;
• by (7): at least one of them has to be 1
(otherwise p would divide LHS of (7) — contradiction.)
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This means: at least one of the r irreducible factors (which are
self-inversive) is monic, with all its zeros on the unit circle.

We now use a classical theorem of Kronecker (1857):

Leopold Kronecker 1823 – 1891
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These polynomials have to be cyclotomic, i.e., of the form

Φn(z) =
n∏

j=1
(j,n)=1

(
z − e2πij/n

)
.

Our proof is complete if we can show that this cannot happen.

Proof requires a detailed analysis using resultants of
polynomials.

We skip this.
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Thank you
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Part 3: Given

f (z) = amzm + · · ·+ a1z + a0,

g(z) = bnzn + · · ·+ b1z + b0,

the resultant of f and g is usually defined by the Sylvester
determinant,
i.e., the determinant of a certain (m + n)× (m + n) matrix which
has the coefficients of f and g as entries.

In particular, this means:
• the resultant of two integer polynomials is a rational integer;
• reducing the coefficients of f and g modulo some integer will
carry through to their resultant.

We denote the resultant of f and g by

Res(f ,g)

if there is no ambiguity as to the variable z.
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Suppose that the zeros of f and g are α1, . . . , αm and
β1, . . . , βn, respectively. Then the most important property is

Res(f ,g) = an
mbm

n

m∏
i=1

n∏
j=1

(αi − βj),

an alternative definition.

Some consequences:

Res(f ,g) = an
m

m∏
i=1

g(αi),

Res(f ,g) = (−1)nmRes(g, f ),

Res(f ,g1g2) = Res(f ,g1)Res(f ,g2).

The first identity shows that Res(f ,g) = 0
iff f and g have a factor in common.
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Important for us:

Lemma (Apostol (1970))
For m > n > 1 we have

Res(Φm(z),Φn(z)) =

{
pϕ(n) if m

n is a power of a prime p,
1 otherwise.

With this we will prove

Lemma
Let p be any prime and α, k be positive integers. Then

Res(g(k)
pα (z),Φn(z)) 6= 0

for any n ≥ 3.

Hence no cyclotomic polynomial of degree ≥ 2 can divide any
g(k)

pα (z). This completes the proof of the Theorem.
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Part 4: Proof of the Lemma.

Case 1: p is odd. We’ll prove the Lemma by showing:
Resultant cannot be simultaneously 0 (mod 2) and 0 (mod p).

(a) The gcd’s are all odd, and therefore

g(k)
pα (z) ≡ 1 + z + · · ·+ zpα

=
∏

d |pα+1
d 6=1

Φd (z) (mod 2),

so by multiplicativity of resultants,

Res(g(k)
pα (z),Φn(z)) ≡

∏
d |pα+1

d 6=1

Res(Φd (z),Φn(z)) (mod 2).

By Apostol’s result and commutativity (up to sign) of resultants:

Res(g(k)
pα (z),Φn(z)) ≡ 1 (mod 2)

unless n = 2jd for some nonzero j and d > 1 where d | pα + 1
(j may be positive or negative).
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(b) On the other hand,

g(k)
pα (z) ≡ (z + · · ·+ zp−1) + (zp+1 + · · ·+ z2p−1)

+ · · ·+ (zpα−p+1 + · · ·+ zpα−1) (mod p)

= z
(

1 + z + · · ·+ zp−2
)(

1 + zp + · · ·+ z(pα−1−1)p
)

= z · zp−1 − 1
z − 1

· zpα − 1
zp − 1

= z
∏

d |p−1
d 6=1

Φd (z)
α∏

j=2

Φpj (z).
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By properties of resultants,

Res(z,Φn(z)) = 1 for n ≥ 3,

and so

Res(g(k)
pα (z),Φn(z)) ≡ ±

∏
d |p−1
d 6=1

Res(Φd (z),Φn(z))

×
α∏

j=2

Res(Φpj (z),Φn(z)) (mod p).

By Apostol’s result:

Res(g(k)
pα (z),Φn(z)) ≡ ±1 (mod p)

unless n = p`d for some ` ≥ 1 and d ≥ 1 with d | p − 1.
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Combining the conditions:

The above congruences (mod 2) and (mod p) fail
simultaneously only if

2jd1 = p`d2, where d1 | pα + 1, d2 | p − 1.

Impossible for an odd prime p since ` ≥ 1 and p - d1.

Hence at least one of the congruences holds, which means that
the resultant is nonzero.

Case 2: p = 2 — Similar.

This completes the proof of the resultant lemma, and thus of
the irreducibility theorem.
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6. Further Remarks

1. Irreducibility proof fails when n has ≥ 2 prime divisors.

Still, we propose

Conjecture

For any integers n ≥ 2 and k ≥ 1, the polynomial g(k)
n (z) is

irreducible, apart from the obvious factor z + 1 when n is odd.

Verified by computation for all n ≤ 1000 and 1 ≤ k ≤ 10.

2. Our results give a large supply of algebraic numbers on the
unit circle that are not roots of unity.
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Thank you
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