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Background: p-orderings, p-sequences

A p−ordering of an infinite set, S ⊆ Zp, is a sequence in S such
that for ∀n > 0, an minimizes

vp((x − an−1) . . . (x − a0))

cf: A ρ-ordering of S , a (compact) subset of an ultrametric space
(M, ρ), is a sequence in S such that ∀n > 0, an maximizes

n−1∏
i=0

ρ(x , ai )
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Background: p-orderings, p-sequences

The p-sequence of S is the sequence whose 0th-term is 1 and
whose nth term, for n > 0, is
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Background: valuative and logarithm capacity

The valuative capacity of an infinite set, S ⊆ Zp, is

Lp(S) := lim
n→∞

wS(n, p)

n

where wS(n, p) is the p−sequence of S .

nb: this is the Robin’s constant and can be found via the
equilibrium measure:

Lp(S) = inf
µ∈P(S̄)

∫ ∫
vp(x − y)dµ(x)dµ(y)
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Background: valuative and logarithm capacity

The logarithm capacity of an infinite set, S ⊆ Zp, is

Vp(E ) := p−Lp(E)

nb: this is equal to the transfinite diameter and the Chebychev
constant.
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Fares and Petite, Lemma 5.1

Let A = {0, 1, .., d − 1} be a finite alphabet and AN be the
collection of infinite sequenes with values in A.

Let p ≥ d be a prime number and let φ be the canonical
embedding of AN into Zp via the following continuous map:

φ : AN → Zp by (xn)n≥0 7→
∞∑
k=0

xkp
k



Fares and Petite, Lemma 5.1

Lemma
Let w1,w2, . . . ,ws be s ≥ 2 words with the same length l such
that all the first letters are distinct. Let X ⊂ AN be the set of
sequences such that any factor is a factor of a concatenation of the
words w1,w2, . . . ,ws . Then the set E := φ(X ) ⊂ Zp satisfies:

E = ∪si=1xi + plE, with xi = φ(wi0
∞)

It is a regular compact set and its valuative capacity is

Lp(E ) =
l

s − 1

Notice that this provides examples of sets with empty interiors but
with positive capacities.



Fares and Petite, Lemma 5.1

An example:

w1 = 0,w2 = 2,A = {0, 1, 2}, p = d = 3
Then {xn}n≥0 ∈ X if each term in {xn}n≥0 is either 0 or 2. We
have

E = 0 + 3E ∪ 2 + 3E and

Lp(E ) =
1

2− 1
= 1



Digression: projective k-space

Let k be a field that is complete with respect to a
non-archimedean valuation.

Definition
The projective line over k , denoted P1(k), is the space whose
points are lines l in k2 that intersect (0, 0).

Proposition

Let ψ : k → P1(k) be the map given by ψ(λ0) = [1, λ0], where
[1, λ0] is the line in k2, {λ(1, λ0);λ ∈ k∗}. Then the image of ψ is
P1(k) \ [0, 1] and is isomorphic to k, so that k is identified with
projective space minus a distinguished point, [0, 1], which is
denoted by ∞.



Digression: projective k-space

Definition
We denote by GL(2, k) the set of invertible 2× 2 matrices over k .
A fractional linear automorphism, φ, of P1(k) is a map defined
by z 7→ az+b

cz+d for some
(
a b
c d

)
∈ GL(2, k). The set of fractional

linear automorphisms of P1(k) is denoted PGL(2, k).

Note that PGL(2, k) = GL(2, k)/{
(
λ 0
0 λ

)
;λ ∈ k∗}. In homogeneous

coordinates, we can represent the action of φ by
[x0, x1] 7→ [cx1 + dx0, ax1 + bx0].



Digression: projective k-space

Definition
Suppose Γ is a subgroup of PGL(2, k). A point p ∈ P1(k) is a
limit point of Γ, if there exists a point q in P1(k) and a sequence
{γn}n≥1 in Γ such that limn→∞ γn(q) = p.



Fares and Petite, Lemma 5.1, rephrased (1/2)

Let x1, x2, . . . , xs be s ≥ 2 points in Zp such that | xi − xj |p= 1,
∀i , j ∈ 1, ..., s. Suppose also that there exists an l ∈ N such that
∀i ,

xi =
∞∑
i=0

aip
i =

l∑
i=0

aip
i



Fares and Petite, Lemma 5.1, rephrased (2/2)

Let γi be the fractional linear automorphism of P1(Qp) given by(
pl xi
0 1

)
and let Γ be the subgroup of PGL(2,Qp) generated by the

γi .
Then Γ has a subgroup H such that the limit set L of H has the
property that Z = ψ−1(L) is equal to φ(X ) in the original lemma.
In particular Z is a regular, compact subset of Zp satisfying

Z = ∪si=1xi + plZ = ∪si=1B 1

pl
(xi )

and with vaulative capacity

Lp(Z ) =
l

s − 1



Fares and Petite, Lemma 5.1, rephrased

Sketch of proof:

I We have to show w that the set Z above is equal to
E = φ(X ) in the original lemma.

I That that wi correspond to the xi is not hard to see.

I What is the limit set of Γ?



Limit set of Γ

Let γ ∈ Γ.

I If γ is a product of the generators γi , then γ is represented by
a matrix of the form:

(
plm z
0 1

)
, where m ∈ N and z is an

element of Zp whose coefficient vector is a concatenation of
the coefficient vectors of the xi (for 0 ≤ i ≤ ml and 0 for
i > ml).

I For example,(
pl xi
0 1

)(
pl xj
0 1

)(
pl xk
0 1

)
=
(
p3l p2lxk+plxj+xi
0 1

)
I The action of this map is given by

[a0, a1] 7→ [a0, p
lma1 + za0] ∼ [1, plm

a1

a0
+ z ]



Limit set of Γ

Let γ ∈ Γ.

I If γ is a product of the inverses of the generators γ−1
i , then γ

is represented by a matrix of the form:
(
p−lm −p−lz−1

0 1

)
, where

m ∈ N and z is as above.

I For example,(
p−l −p−lxi

0 1

)(
p−l −p−lxj

0 1

)(
p−l −p−lxk

0 1

)
=
(
p−3l −p−3lxk−p−2lxj−p−lxi

0 1

)
I The action of this map is given by

[a0, a1] 7→ [a0, p
−lma1 − p−lz−1a0] ∼ [1, p−l(p−m

a1

a0
− z−1)]



Limit set of Γ

Let γ ∈ Γ.

I If γ is of the form γ−1
j γi , for i 6= j , then γ is represented by a

matrix of the form:
(

1 p−l (xi−xj )
0 1

)
I The action of this map is given by

[a0, a1] 7→ [a0, a1 + p−l(xi − xj)a0] ∼ [1,
a1

a0
+ p−l(xi − xj)]



Limit set of Γ

Let γ ∈ Γ.

I If γ is of the form γjγ
−1
i , for i 6= j , then γ is represented by a

matrix of the form:
(

1 xj−xi
0 1

)
I The action of this map is given by

[a0, a1] 7→ [a0, a1 + (xi − xj)a0] ∼ [1,
a1

a0
+ (xi − xj)]

I We quotient the group Γ by the group generated by the
translations to obtain H.
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Discussion

In fact, all of the translations commute with each other, so we can
quotient by the entire translation subgroup, ie the subgroup
generated by {γiγ−1

j , γ−1
i γj ;∀i , j ∈ 1, . . . , s}

The resulting quotient group is discontinuous, finitely generated
and every element ( 6= id) is hyperbolic, ie it is a Schottky group.
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Discussion

Consider the following:

S ⊆ Zp Qp

P(Zp) P(Qp)
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