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1. Introduction

The Chebyshev polynomials Tn(x) are among the most
important and interesting classical orthogonal polynomials.

Numerous applications, e.g., in Approximation Theory.

They can be defined by T0(x) = 1, T1(x) = x , and

Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1).
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Similarly, Chebyshev polynomials of the second kind, Un(x),
can be defined by U0(x) = 1, U1(x) = 2x , and

Un+1(x) = 2xUn(x)− Un−1(x) (n ≥ 1).

Tn(x) and Un(x) can also be defined as solutions of the
polynomial Pell equation

Tn(x)2 − (x2 − 1)Un−1(x)2 = 1

in the ring Z[x ].

Here we’ll consider a variant of this equation.
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Q[x ] is a Euclidean domain, so for given coprime f ,g ∈ Q[x ]
there are P,Q ∈ Q[x ] with

P(x)f (x) + Q(x)g(x) = 1.

Choose f ,g to be the simplest pair of coprime polynomials of
the same degree, namely

xn+1 and (x + 1)n+1, (n ≥ 0).

If we assume that deg P ≤ n, deg Q ≤ n, then there is a unique
solution P(x) = Pn(x),Q(x) = Qn(x).

Purpose: To study the sequences Pn(x),Qn(x).
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n Pn(x)

0 −1
1 2x + 3
2 −6x2 − 15x − 10
3 20x3 + 70x2 + 84x + 35
4 −70x4 − 315x3 − 540x2 − 420x − 126
n Qn(x)

0 1
1 −2x + 1
2 6x2 − 3x + 1
3 −20x3 + 10x2 − 4x + 1
4 70x4 − 35x3 + 15x2 − 5x + 1

Table 1: Pn(x) and Qn(x) for 0 ≤ n ≤ 4.
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2. Basic Properties

Proposition
For n ≥ 0 we have deg Pn = deg Qn, and

Pn(x) = (−1)n+1Qn(−1− x), Qn(x) = (−1)n+1Pn(−1− x).

Proof: Replace x by −1− x and use uniqueness.

Corollary

Pn(−1) = (−1)n+1, Pn(−1
2) = (−1)n+12n,

Qn(−1
2) = 2n, Qn(0) = 1.

Proof: In Pn(x)xn+1 + Qn(x)(x + 1)n+1 = 1, set x = 0,−1, and
−1/2.
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Explicit formulas:

Proposition
For any n ≥ 0 we have deg Qn = degPn = n, and

Qn(x) =
n∑

i=0

(−1)i
(

n + i
i

)
x i , (1)

Pn(x) = (−1)n+1(2n + 1)

(
2n
n

) n∑
i=0

1
n + i + 1

(
n
i

)
x i . (2)

Idea of Proof: For (1):
• Differentiate Pn(x)xn+1 + Qn(x)(x + 1)n+1 = 1;
• make some divisibility arguments;
• use induction.

For (2): Use (1) and Pn(x) = (−1)n+1Qn(−1− x).
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Proposition
For 1 ≤ k ≤ n + 1 we have

(x +1)Q(k)
n (x)+(n+k)Q(k−1)

n (x) = (−1)n (2n + 1)!

n!

xn−k+1

(n − k + 1)!
,

and in particular

(x + 1)Q′n(x) + (n + 1)Qn(x) = (−1)n(2n + 1)

(
2n
n

)
xn.

Homogeneous ODE:

Corollary
For n ≥ 0 we have

x(x + 1)Q′′n(x) + (2x − n)Q′n(x)− n(n + 1)Qn(x) = 0.
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Recurrence relation:

Proposition

Q0(x) = 1 and Q1(x) = −2x + 1, and for n ≥ 2,

n(x + 1)Qn(x) = −
(
2(2n − 1)x2 + 2(2n − 1)x − n

)
Qn−1(x)

+ 2(2n − 1)xQn−2(x).

Proof: Apply D. Zeilberger’s Maple package EKHAD to the
explicit formula. (Can also be verified by direct computation
with the explicit formula).

Consequence: Generating function.

Corollary

1 + xt + (1 + 2x)
√

1 + 4xt
2(1 + x − t)(1 + 4xt)

=
∞∑

n=0

Qn(x)tn.
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3. Resultants

Suppose we have the two polynomials

f (x) = a0xµ + · · ·+ aµ−1x + aµ = a0(x − α1) · · · (x − αµ),

g(x) = b0xm + · · ·+ bm−1x + bm = b0(x − β1) · · · (x − βm).

Recall: The resultant of f and g with respect to x can be
defined by

R(f ,g) = am
0 bµ0

∏
1≤i≤m
1≤j≤µ

(
βj − αi

)
.

Some properties:

R(f ,g) = am
0

µ∏
i=1

g(αi),

R(f ,g) = (−1)µmR(g, f ),

R(f ,pq) = R(f ,p) · R(f ,q),
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Another useful property:

Lemma
If we can write

f (x) = q(x)g(x) + r(x)

with polynomials q, r and ν := deg r , then

R(g, f ) = bµ−ν0 R(g, r).

With these properties we can prove:

Theorem
For any integer n ≥ 1 we have

R(Qn(x),Qn−1(x)) = 2n
(

2n
n

)n−2

.
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A result that is similar in nature:

Theorem
For any n ≥ 0 we have

R(Pn(x),Qn(x)) =

(
2n
n

)n+1

.

For the proof we rewrite the defining equation as

Pn(x)xn+1 = −(x + 1)n+1Qn(x) + 1,

and use explicit formlas (in particular the leading coefficients)
and the above properties.
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4. Discriminants

Recall: Given a polynomial

f (x) = amxm + · · ·+ a1x + a0

= am(x − θ1) · · · (x − θm),

(am 6= 0), the discriminant of f is defined by

Disc(f ) = (−1)
m(m−1)

2 a−1
m R(f , f ′)

= (−1)
m(m−1)

2 am−2
m

m∏
i=1

f ′(θi).

It follows that Disc(f ) = 0 iff f has multiple roots.
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Theorem
For integers n > k ≥ 0 we have

Disc(Q(k)
n (x)) = (−1)ε

n + k + 1( 2n
n+k

) (
(n + k)!

(n − k)!

(
2n
n

)
(2n + 1)

)n−k−1

,

where ε := (n − k)(n − k − 1)/2.

In particular, for n ≥ 1,

Disc(Qn(x)) = (−1)
n(n−1)

2 (n + 1)(2n + 1)n−1
(

2n
n

)n−2

.

Main ingredient in proof:

(x +1)Q(k+1)
n (x)+(n+k +1)Q(k)

n (x) = (−1)n (2n + 1)!

n!

xn−k

(n − k)!
.

Let x run through the zeros of Q(k)
n (x); use product identity for

the discriminant.
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Corollary
For integers n > k ≥ 0 we have

Disc(P(k)
n (x)) = Disc(Q(k)

n (x)).

This follows from P(k)
n (x) = (−1)n+k+1Q(k)

n (−x − 1)
and the discriminant identities

Disc(f (ax + b)) = am(m−1)Disc(f (x)),

Disc(cf (x)) = c2(m−1)Disc(f (x)).

Remark: Compare with the Chebyshev polynomials:

Disc(Tn(x)) = 2(n−1)2
nn,

Disc(Un(x)) = 2n2
(n + 1)n−2.
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Why are we interested in discriminants?

Knowledge of the discriminant of a polynomial is often
important for determining the polynomial’s Galois group.

In particular, it is known that if the discriminant is the square of
a nonzero integer, then the Galois group is a subgroup of the
alternating group An.

Question: Can the discriminant of Q(k)
n (x) be a square?

Computations show: Disc(Qn) is a square when
n = 1,24,840,28560.

• Are there more?
• How can we characterize them?
• How about Disc(Q(k)

n ) for k ≥ 1?
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Let n > k ≥ 0, and set Dk ,n := Disc(Q(k)
n ).

Corollary

(a) If n ≡ k + 2 or k + 3 (mod 4), then Dk ,n is not the square of
an integer.

(b) If n ≡ k + 1 (mod 4), then for a given k, Dk ,n is a square for
at most finitely many n.
(c) If n ≡ k (mod 4), then for each k there are infinitely many n
such that Dk ,n is a square.
(d) In particular, D0,n is a square if and only if n = 1 or n = nj ,
where

nj :=
1
8

(
(3 + 2

√
2)2j+1 + (3− 2

√
2)2j+1 − 6

)
, j = 1,2,3, . . .

Remark: Part (d) shows that D0,n is a square for n =
1,24,840,28560,970224,32959080,1119638520,38034750624, . . .
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Proof is based on the formula in the previous theorem:

Dk ,n = (−1)ε
n + k + 1( 2n

n+k

) (
(n + k)!

(n − k)!

(
2n
n

)
(2n + 1)

)n−k−1

.

(a) In this case, Dk ,n < 0.

(b) We can show: Dk ,n is a square iff
(n + k + 2)(n + k + 3) · · · (2n − 1) is.

However, by the Prime Number Theorem: for a fixed k and for n
sufficiently large, there is always a prime among the members
of the sequence n + k + 2,n + k + 3, . . . ,2n − 1.
(In fact, we can show that this is the case when n > 3

2(k + 1).)

This means the product cannot be a square.

(c), (d) The condition for squareness can be reduced to a
Pell-type equation, which has infinitely many solutions.
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5. Distribution of Zeros

The nonvanishing of the discriminants implies:

Corollary

For 0 ≤ k ≤ n the polynomial Q(k)
n (x) has no multiple roots.

Recall: Chebyshev polynomials (and in fact all classical
orthogonal polynomials) have only real roots. However:

Theorem

For 0 ≤ k < n the polynomial Q(k)
n (x) has

(a) no real roots when n ≡ k (mod 2),
(b) exactly one positive real root when n 6≡ k (mod 2).

Proof is based on the connection between Q(k)
n (x) and

Q(k+1)
n (x).
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How, then, are the zeros distributed in C?

A preliminary result:

Theorem

For 0 ≤ k < n, all zeros of Q(k)
n (z) have modulus |z| ≤ 1

2 .

Proof: From the explicit expression we get

Q(k)
n (−z

2 ) =
(−1)k

n!

n−k∑
i=0

(n + k + i)!

2i i!
z i .

We can show that the coefficients of z i form an increasing
sequence.

The Eneström-Kakeya theorem can then be used.
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Plotting the zeros:

(25)(25)

x
0.4 0.2 0 0.2 0.4

y

0.4

0.2

0.2

0.4

Z200 fsolve Q 200 , x, complex :
complexplot Z200, x = 0.5 ..0.5, y = 0.5 ..0.5, style = point ;

(25)(25)

x
0.4 0.2 0 0.2 0.4

y

0.4

0.2

0.2

0.4

Zeros of Q100(x) Zeros of Q200(x)

Is there a limiting curve?
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Theorem
The zeros of Qn(−z) get arbitrarily close to the “half lemniscate"

{z ∈ C : |z(1− z)| = 1
4} ∩ {z ∈ C : |z| ≤ 1

2}.

(25)(25)

x
0.2 0.4 0.6 0.8 1.0 1.2

y

0.2

0.1

0.1

0.2

A special case of an Oval of Cassini

Karl Dilcher Some polynomial and geometric Diophantine equations



Theorem
The zeros of Qn(−z) get arbitrarily close to the “half lemniscate"

{z ∈ C : |z(1− z)| = 1
4} ∩ {z ∈ C : |z| ≤ 1

2}.

(25)(25)

x
0.2 0.4 0.6 0.8 1.0 1.2

y

0.2

0.1

0.1

0.2

A special case of an Oval of Cassini

Karl Dilcher Some polynomial and geometric Diophantine equations



Theorem
The zeros of Qn(−z) get arbitrarily close to the “half lemniscate"

{z ∈ C : |z(1− z)| = 1
4} ∩ {z ∈ C : |z| ≤ 1

2}.

(25)(25)

x
0.2 0.4 0.6 0.8 1.0 1.2

y

0.2

0.1

0.1

0.2

A special case of an Oval of Cassini

Karl Dilcher Some polynomial and geometric Diophantine equations



Compare:

(25)(25)

x
0.4 0.2 0 0.2 0.4

y

0.4

0.2

0.2

0.4

(25) (25)

x
0.20.40.60.81.01.2

y

0.2

0.1

0.1

0.2
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Idea of proof. From explicit formula:

Qn(−z) =
n∑

j=0

(
n + j

j

)
z j .

Well-known binomial identity:
∞∑

j=0

(
n + j

j

)
z j =

1
(1− z)n+1 ,

and thus

Qn(−z) =
1

(1− z)n+1 −
∞∑

j=n+1

(
n + j

n

)
z j .

Consequently,∣∣∣∣ 1
zn+1 Qn(−z)

∣∣∣∣ ≥ 1
|z(1− z)|n+1 −

∞∑
j=0

(
2n + 1 + j

n

)
|z|j .

Now estimate the sum on the right.

Karl Dilcher Some polynomial and geometric Diophantine equations



Idea of proof. From explicit formula:

Qn(−z) =
n∑

j=0

(
n + j

j

)
z j .

Well-known binomial identity:
∞∑

j=0

(
n + j

j

)
z j =

1
(1− z)n+1 ,

and thus

Qn(−z) =
1

(1− z)n+1 −
∞∑

j=n+1

(
n + j

n

)
z j .

Consequently,∣∣∣∣ 1
zn+1 Qn(−z)

∣∣∣∣ ≥ 1
|z(1− z)|n+1 −

∞∑
j=0

(
2n + 1 + j

n

)
|z|j .

Now estimate the sum on the right.

Karl Dilcher Some polynomial and geometric Diophantine equations



Idea of proof. From explicit formula:

Qn(−z) =
n∑

j=0

(
n + j

j

)
z j .

Well-known binomial identity:
∞∑

j=0

(
n + j

j

)
z j =

1
(1− z)n+1 ,

and thus

Qn(−z) =
1

(1− z)n+1 −
∞∑

j=n+1

(
n + j

n

)
z j .

Consequently,∣∣∣∣ 1
zn+1 Qn(−z)

∣∣∣∣ ≥ 1
|z(1− z)|n+1 −

∞∑
j=0

(
2n + 1 + j

n

)
|z|j .

Now estimate the sum on the right.

Karl Dilcher Some polynomial and geometric Diophantine equations



Idea of proof. From explicit formula:

Qn(−z) =
n∑

j=0

(
n + j

j

)
z j .

Well-known binomial identity:
∞∑

j=0

(
n + j

j

)
z j =

1
(1− z)n+1 ,

and thus

Qn(−z) =
1

(1− z)n+1 −
∞∑

j=n+1

(
n + j

n

)
z j .

Consequently,∣∣∣∣ 1
zn+1 Qn(−z)

∣∣∣∣ ≥ 1
|z(1− z)|n+1 −

∞∑
j=0

(
2n + 1 + j

n

)
|z|j .

Now estimate the sum on the right.

Karl Dilcher Some polynomial and geometric Diophantine equations



Idea of proof. From explicit formula:

Qn(−z) =
n∑

j=0

(
n + j

j

)
z j .

Well-known binomial identity:
∞∑

j=0

(
n + j

j

)
z j =

1
(1− z)n+1 ,

and thus

Qn(−z) =
1

(1− z)n+1 −
∞∑

j=n+1

(
n + j

n

)
z j .

Consequently,∣∣∣∣ 1
zn+1 Qn(−z)

∣∣∣∣ ≥ 1
|z(1− z)|n+1 −

∞∑
j=0

(
2n + 1 + j

n

)
|z|j .

Now estimate the sum on the right.
Karl Dilcher Some polynomial and geometric Diophantine equations



Part II

Diophantine equations related to triangles
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Joint work with

John B. Cosgrave

Dublin, Ireland
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1. Heronian Triangles

Heronian triangle:
A triangle whose side lengths and area are all integers.

Do they exist? Consider

All Pythagorean triangles are Heronian.
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Heronian triangles are named after

Hero or Heron of Alexandria, c. 10 AD – c. 70 AD.

(17th-century German depiction)
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A mathematician and engineer, active in his native city of
Alexandria, Roman Egypt.

Considered the greatest experimenter of antiquity.

His work is representative of the Hellenistic scientific tradition.
(Wikipedia)
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Hero’s mathematical contributions:

• A method for iteratively computing the square root of a
number.

• The Heronian mean: For A,B ≥ 0,

H =
1
3

(A +
√

AB + B) =
2
3
· A + B

2
+

1
3
·
√

AB.

• A formula for finding the area of a triangle from its side
lengths: Given a triangle with side lengths a,b, c, the area is

A =
√

s(s − a)(s − b)(s − c), where s =
a + b + c

2
.

Back to Heronian triangles:
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Can an equilateral triangle be Heronian?

Obviously not.

Then, how about “near equilateral"?
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The 2nd-smallest example of a Heronian triangle of side
lenghts (n − 1,n,n + 1), after (3,4,5).

Are there more Heronian triangles of this type?
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The condition for a triangle of side lenghts (n− 1,n,n + 1) to be
Heronian leads to the Pell equation

n2 − 12y2 = 4,

or x2 − 3y2 = 1.

Solving these: We get n = nj with n0 = 2,n1 = 4, and

nj = 4nj−1 − nj−2 (j ≥ 2),

and the explicit expansion

nj =
(

2 +
√

3
)j

+
(

2−
√

3
)j
.

This goes back to Edward Sang (1864) and R. Hoppe (1880).

Rediscovered later, for instance by L. Aubry (1911).

Karl Dilcher Some polynomial and geometric Diophantine equations



The condition for a triangle of side lenghts (n− 1,n,n + 1) to be
Heronian leads to the Pell equation

n2 − 12y2 = 4, or x2 − 3y2 = 1.

Solving these: We get n = nj with n0 = 2,n1 = 4, and

nj = 4nj−1 − nj−2 (j ≥ 2),

and the explicit expansion

nj =
(

2 +
√

3
)j

+
(

2−
√

3
)j
.

This goes back to Edward Sang (1864) and R. Hoppe (1880).

Rediscovered later, for instance by L. Aubry (1911).

Karl Dilcher Some polynomial and geometric Diophantine equations



The condition for a triangle of side lenghts (n− 1,n,n + 1) to be
Heronian leads to the Pell equation

n2 − 12y2 = 4, or x2 − 3y2 = 1.

Solving these: We get n = nj with n0 = 2,n1 = 4, and

nj = 4nj−1 − nj−2 (j ≥ 2),

and the explicit expansion

nj =
(

2 +
√

3
)j

+
(

2−
√

3
)j
.

This goes back to Edward Sang (1864) and R. Hoppe (1880).

Rediscovered later, for instance by L. Aubry (1911).

Karl Dilcher Some polynomial and geometric Diophantine equations



The condition for a triangle of side lenghts (n− 1,n,n + 1) to be
Heronian leads to the Pell equation

n2 − 12y2 = 4, or x2 − 3y2 = 1.

Solving these: We get n = nj with n0 = 2,n1 = 4, and

nj = 4nj−1 − nj−2 (j ≥ 2),

and the explicit expansion

nj =
(

2 +
√

3
)j

+
(

2−
√

3
)j
.

This goes back to Edward Sang (1864) and R. Hoppe (1880).

Rediscovered later, for instance by L. Aubry (1911).

Karl Dilcher Some polynomial and geometric Diophantine equations



The condition for a triangle of side lenghts (n− 1,n,n + 1) to be
Heronian leads to the Pell equation

n2 − 12y2 = 4, or x2 − 3y2 = 1.

Solving these: We get n = nj with n0 = 2,n1 = 4, and

nj = 4nj−1 − nj−2 (j ≥ 2),

and the explicit expansion

nj =
(

2 +
√

3
)j

+
(

2−
√

3
)j
.

This goes back to Edward Sang (1864) and R. Hoppe (1880).

Rediscovered later, for instance by L. Aubry (1911).

Karl Dilcher Some polynomial and geometric Diophantine equations



Can there be Heronian triangles that are even closer to being
equilateral, namely with side lengths (n,n,n − 1)?

Again, the answer is Yes: Combine these two:

In this case we get the sequence 1, 17, 241, 3361, 46817, . . .,
satisfying the 3-rd order recurrence

pk = 15pk−1 − 15pk−2 + pk−3 (k ≥ 3).
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2. Multiplicative Orders of Factorials

Surprisingly, the two “Heronian sequences" occur in an entirely
different setting.

We begin with Wilson’s Theorem: p is a prime if and only if

(p − 1)! ≡ −1 (mod p).

Write out the factorial (p − 1)!, exploit symmetry mod p:

1·2·. . .· p−1
2

p+1
2 ·. . .·(p−1) ≡

(
p−1

2

)
!(−1)

p−1
2
(

p−1
2

)
! (mod p).

Thus, with Wilson’s Theorem,(
p−1

2

)
!2 ≡ (−1)

p+1
2 (mod p).

This was apparently first observed by Lagrange (1773).
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John Wilson Joseph-Louis Lagrange
1741–1793 1736–1813
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This congruence,(
p−1

2

)
!2 ≡ (−1)

p+1
2 (mod p),

has the following consequences:

For p ≡ 1 (mod 4) the RHS is −1, so

ordp

((
p−1

2

)
!
)

= 4 for p ≡ 1 (mod 4).

In the case p ≡ 3 (mod 4) we get(
p−1

2

)
! ≡ ±1 (mod p).

What is the sign on the right?
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Theorem (Mordell, 1961)

For a prime p ≡ 3 (mod 4),(
p−1

2

)
! ≡ −1 (mod p) ⇔ h(−p) ≡ 1 (mod 4),

where h(−p) is the class number of Q(
√
−p).

First mentioned in a book by Venkov (1937, in Russian).
Discovered independently by Chowla.

This completely determines the order mod p of
(

p−1
2

)
!.
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Louis J. Mordell Sarvadaman Chowla
1888–1972 1907–1995
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More generally, what can we say about the orders (mod p) of(
p − 1

M

)
!, (p ≡ 1 (mod M))

for M ≥ 3?

In general, the orders are unbounded.

Of particular interest are the cases M = 3,4 and 6.

Reason is the existence of some deep binomial coefficient
congruences.

Here: We’ll consider the case M = 4.
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In 1828, Gauss proved the following remarkable congruence.

Let p ≡ 1 (mod 4), and write p = a2 + b2 with a ≡ 1 (mod 4).
(a is then uniquely determined).

Theorem (Gauss, 1828)
Let p and a be as above. Then(p−1

2
p−1

4

)
≡ 2a (mod p).

There are similar congruences for
( 2(p−1)

3
p−1

3

)
(Jacobi, 1837), and

others.
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C. F. Gauss C. G. J. Jacobi
1777–1855 1804–1851
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Let’s look at the first 30 primes p ≡ 1 (mod 4):

p p−1
4 !(p) order p p−1

4 !(p) order p p−1
4 !(p) order

5 1 1 97 20 32 197 92 98
13 6 12 101 46 100 229 168 38
17 7 16 109 7 27 233 36 116
29 23 7 113 32 28 241 130 16
37 21 18 137 90 136 257 120 32
41 13 40 149 23 148 269 258 67
53 26 52 157 145 6 277 221 276
61 19 30 173 40 86 281 157 28
73 18 18 181 3 45 293 69 73
89 22 22 193 89 64 313 109 312

• Orders seem to be unbounded.

• Some p−1
4 ! are primitive roots.
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Theorem
Let p ≡ 1 (mod 4) be a prime. Then
(a) p−1

4 ! ≡ 1 (mod p) only if p = 5.

(b)
(

p−1
4 !
)k
6≡ −1 (mod p) for k = 1,2,4.

(c)
(

p−1
4 !
)8
≡ −1 (mod p) if and only if p = pk ,

a prime element of the sequence defined by
p0 = 1, p1 = 17, p2 = 241, and

pk = 15pk−1 − 15pk−2 + pk−3 (k ≥ 3).

The proof relies on Gauss’s binomial coefficient theorem.

Recall: The sequence pk is the second “Heronian" sequence.
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Related to this we introduce the following terminology.

Definition
Let p ≡ 1 (mod 4) be a prime. If

ordp
(p−1

4 !
)

= 2` for some ` ≥ 0,

we say that p is a Gauss prime of level `.

By the Theorem:
• p = 5 is the only Gauss prime of level 0.
• There are no Gauss primes of levels 1, 2, or 3.

By the Definition:
• Any Fermat prime Fn is a Gauss prime of level n + 2.
• For instance, F2 = 17 is indeed a Gauss prime of level 4.
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All Gauss primes p < 1014 (p < 1016 for ` = 5) and ` ≤ 20.

` primes
0 5 only

1–3 none
4 17, 241, 3361, 46817, 652081, . . .
5 97, 257, 929, 262337, 200578817
6 193, 65537
7 641, 12055618177
8 3200257
9 93418448897

10 285697, 345089, 11118593
11 120833, 1249520060417
12 12289
13 1908737, 10812547073
14 114689, 8780414977
15
16 1179649, 27590657, 2742091777
17
18 786433, 3225052512257

Karl Dilcher Some polynomial and geometric Diophantine equations



Recall: Theorem says that p ≡ 1 (mod 4) is a level-4 Gauss
prime iff p = pk is a prime element of the sequence defined by
p0 = 1, p1 = 17, p2 = 241, and

pk = 15pk−1 − 15pk−2 + pk−3 (k ≥ 3).

When are these elements prime?

k pk prime
1 17 yes
2 241 yes
3 3 361 yes
4 46 817 yes
5 652 081 yes
6 9 082 321 no

Surprisingly, the next prime in this sequence is p131, then p200.
We’ll return to this later.
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3. Gauss Factorials

We define the Gauss factorial by

Nn! =
∏

1≤j≤N
gcd(j,n)=1

j .

Analogue of Wilson’s theorem for composite moduli:

Theorem (Gauss)
For any integer n ≥ 2 we have

(n − 1)n! ≡

{
−1 (mod n) for n = 2,4,pα, or 2pα,
1 (mod n) otherwise,

where p is an odd prime and α is a positive integer.

The first case indicates exactly those n that have primitive roots.
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Many questions can be extended to composite moduli.

E.g., the multiplicative orders of (n−1
2 )n! modulo n

were completely determined; only orders 1, 2, 4 occur.

We obtained numerous other results on (n−1
M )n! modulo n for

general M ≥ 3, and in particular for M = 3,4 and 6.

Here: One specific question: For which integers n ≡ 1 (mod 4)
do we have (n−1

4

)
n! ≡ 1 (mod n)?

• Obviously, this holds for n = 5.
• Next: n = 205, 725, 1025, 1105, . . .
• A total of 37 109 solutions up to 106.
• All of these (except n = 5) have at least two distinct

prime factors ≡ 1 (mod 4).
• Is this true in general?
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Again, for which integers n ≡ 1 (mod 4) do we have(n−1
4

)
n! ≡ 1 (mod n)?

Surprisingly, there are other solutions with only one prime
factor ≡ 1 (mod 4). The three smallest ones are:

n n factored p
205479813 3 · 7 · 11 · 19 · 46817 46817

1849318317 33 · 7 · 11 · 19 · 46817 46817
233456083377 3 · 11 · 19 · 571 · 652081 652081

Recall: 46817 and 652081 are in our “Heronian" sequence.

The next smallest solution known to us has 155 digits, with p133
(mentioned above) being its only prime factor ≡ 1 (mod 4).

All this can be fully explained.
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4. Factors of pk

All k ≤ 105 for which pk is a prime or a probable prime:

1 200 5 598 12 483
2 296 6 683 13 536
3 350 7 445 18 006
4 519 8 775 18 995
5 704 8 786 48 773

131 950 11 565 93 344

Are there necessary conditions for pk to be a prime?

This would speed up computations.
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Using standard methods from theory of linear recurrences:

pk = a2
k+1 + a2

k (k ≥ 0),

where the sequence {ak} satisfies a0 = 0,a1 = 1, and

ak = 4ak−1 − ak−2 (k ≥ 2).

In fact, ak = Uk (4,1), an instance of a generalized Lucas
sequence. Known from the general case:

ak =
1

2
√

3

((
2 +
√

3
)k
−
(

2−
√

3
)k
)

(k ≥ 0).

To simplify notation, we set

α := 2 +
√

3, m := 2k + 1,

Then α is a unit in Q[
√

3]; in particular, 2−
√

3 = α−1.
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Combining everything:

pk =
1

3αm

(
α2m − αm + 1

)
.

This indicates: Divisibility of cyclotomic polynomials in α will be
involved. An immediate factorization gives

pk =
1

3αm
(α6m − 1)(αm − 1)

(α3m − 1)(α2m − 1)
.

We also need the well-known factorization

xn − 1 =
∏
d |n

Φd (x).

and the following lemma: If n ≥ 3 and α = 2 +
√

3, then

1

α
1
2ϕ(n)

Φn(α) ∈ Z,

where ϕ(n) is the Euler totient function.
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Using this and further technical lemmas, we get

Theorem
Let k ≥ 0 and suppose that γ ≥ 0 is such that 3γ || 2k + 1.
Then pn | pk whenever 2n + 1 | 2k + 1 and 3γ | 2n + 1.

An immediate consequence:

Corollary
If pk is a prime, then 2k + 1 is a prime or a power of 3.

Example:

k 2k + 1 k 2k + 1
1 3 5 11
2 5 131 263
3 7 200 401
4 9 296 593
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5. Back to Heronian Triangles

Recall:

ak = Uk (4,1) =
1

2
√

3

((
2 +
√

3
)k
−
(

2−
√

3
)k
)
.

It turns out: The sequence {nk} that gives Heronian triangles
with sides (nk − 1,nk ,nk + 1) is the companion sequence

nk = Vk (4,1) =
(

2 +
√

3
)k

+
(

2−
√

3
)k
.

It follows from the theory that

nk = ak+1 − ak−1 (k ≥ 1).
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Thank you
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