A Survey of Polynomial Results (Number Theory Seminar)

Abdullah Al-Shaghay

Dalhousie University

Monday March 25, 2019

Overview

- 1 Cyclotomic Polynomials
- 2 Sums of Roots of Unity
- 3 Quadrinomials
- 4 Trinomials
- 5 Reciprocal Polynomials

The following is meant to be a survey of results found in papers written by authors other than myself; none of the following are my own results. I am more than happy to point you in the direction of references upon request.

Overview

1 Cyclotomic Polynomials

- 2 Sums of Roots of Unity
- 3 Quadrinomials
- 4 Trinomials
- 5 Reciprocal Polynomials

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ gcd(k,n) = 1}} (x - e^{\frac{2\pi i k}{n}}).$$

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n) = 1}} (x - e^{\frac{2\pi i k}{n}}).$$

$$\Phi_{1} = x - 1$$

$$\Phi_{2} = x + 1$$

$$\Phi_{3} = x^{2} + x + 1$$

$$\Phi_{4} = x^{2} + 1$$

$$\Phi_{5} = x^{4} + x^{3} + x^{2} + x + 1$$

● The case of the 105th cyclotomic polynomial is an interesting one; this is the first polynomial in the sequence to have coefficients outside of the set {−1,0,1}. ● The case of the 105th cyclotomic polynomial is an interesting one; this is the first polynomial in the sequence to have coefficients outside of the set {−1,0,1}.

•
$$\Phi_{105}(x) = x^{48} \pm \ldots - 2x^{41} + \ldots + 2x^7 \pm \ldots + 1$$

- The case of the 105th cyclotomic polynomial is an interesting one; this is the first polynomial in the sequence to have coefficients outside of the set {−1,0,1}.
- $\Phi_{105}(x) = x^{48} \pm \ldots 2x^{41} + \ldots + 2x^7 \pm \ldots + 1$
- 105 = 3 · 5 · 7 is the smallest positive integer that is the product of three distinct primes.

- The case of the 105th cyclotomic polynomial is an interesting one; this is the first polynomial in the sequence to have coefficients outside of the set {−1,0,1}.
- $\Phi_{105}(x) = x^{48} \pm \ldots 2x^{41} + \ldots + 2x^7 \pm \ldots + 1$
- $105 = 3 \cdot 5 \cdot 7$ is the smallest positive integer that is the product of three distinct primes.
- Bounding the magnitude has been a problem of interest to different researchers

Migotti: If n has at most two distinct prime factors then Φ_n(x) has coefficients in the set {-1,0,1}

- Migotti: If n has at most two distinct prime factors then Φ_n(x) has coefficients in the set {-1,0,1}
- Not an if and only if statement: $\Phi_{231=3\cdot7\cdot11}(x)$ has coefficients in $\{-1,0,1\}$

- Migotti: If n has at most two distinct prime factors then Φ_n(x) has coefficients in the set {-1,0,1}
- Not an if and only if statement: $\Phi_{231=3\cdot7\cdot11}(x)$ has coefficients in $\{-1,0,1\}$
- Suzuki: Let a(k, n) be the k th coefficient of the n th cyclotomic polynomial. Then $\{a(k, n)|n, k \in \mathbb{N}\} = \mathbb{Z}$

- Migotti: If n has at most two distinct prime factors then Φ_n(x) has coefficients in the set {-1,0,1}
- Not an if and only if statement: $\Phi_{231=3\cdot7\cdot11}(x)$ has coefficients in $\{-1,0,1\}$
- Suzuki: Let a(k, n) be the k th coefficient of the n th cyclotomic polynomial. Then $\{a(k, n)|n, k \in \mathbb{N}\} = \mathbb{Z}$
- Ji, Li: $\{a(k, p'n)|n, k \in \mathbb{N}\} = \mathbb{Z}$

- Migotti: If n has at most two distinct prime factors then Φ_n(x) has coefficients in the set {-1,0,1}
- Not an if and only if statement: $\Phi_{231=3\cdot7\cdot11}(x)$ has coefficients in $\{-1,0,1\}$
- Suzuki: Let a(k, n) be the k th coefficient of the n th cyclotomic polynomial. Then $\{a(k, n)|n, k \in \mathbb{N}\} = \mathbb{Z}$
- Ji, Li: $\{a(k, p'n)|n, k \in \mathbb{N}\} = \mathbb{Z}$
- Ji, Li, Moree: $\{a(k,mn)|n \ge 1, k \ge 0\} = \mathbb{Z}$

Moree has some interesting work studying what he calls reciprocal cyclotomic polynomials defined by,

$$\Psi_n=\frac{x^n-1}{\Phi_n(x)}.$$

Moree has some interesting work studying what he calls reciprocal cyclotomic polynomials defined by,

$$\Psi_n=\frac{x^n-1}{\Phi_n(x)}.$$

He has also done interesting work with co-authors on the evaluation of $\Phi_n(x)$ at m - th roots of unity and self-reciprocal polynomials.

Proposition

Let m > n be two integers. If n does not divide m then two polynomial $a(x), b(x) \in \mathbb{Z}[x]$ exist, such that $1 = a(x)\Phi_m(x) + b(x)\Phi_n(x)$.

Proposition

Let m > n be two integers. If n does not divide m then two polynomial $a(x), b(x) \in \mathbb{Z}[x]$ exist, such that $1 = a(x)\Phi_m(x) + b(x)\Phi_n(x)$.

Proposition

Let $\Phi_m(x)$ and $\Phi_n(x)$ be two cyclotomic polynomials, and let n be a divisor of m. Then two polynomial $a(x), b(x) \in \mathbb{Z}[x]$ exist, such that $k = a(x)\Phi_m(x) + b(x)\Phi_n(x)$, where k = 1 if $\frac{m}{n}$ is not a prime power and k = p if $\frac{m}{n} = p^t$.

Overview

1 Cyclotomic Polynomials

2 Sums of Roots of Unity

3 Quadrinomials

4 Trinomials

5 Reciprocal Polynomials

A problem that has been asked/investigated is the following: For a given natural number m, what are the possible integers n for which there exists m - th roots of unity $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ such that $\alpha_1 + \ldots + \alpha_n = 0$.

 $\mathbb{N} = \mathbb{N} \cup \{0\}$ W(m) := the set of weights *n* for which there exits a vanishing sum as above.

 $\mathbb{N} = \mathbb{N} \cup \{0\}$ W(m) := the set of weights *n* for which there exits a vanishing sum as above.

Theorem (Lam, Leung)

For any integer $m = p_1^{a_1} \cdots p_r^{a_r}$, W(m) is exactly the set $\mathbb{N}p_1 + \ldots + \mathbb{N}p_r$.

 $\mathbb{N} = \mathbb{N} \cup \{0\}$ W(m) := the set of weights *n* for which there exits a vanishing sum as above.

Theorem (Lam, Leung)

For any integer $m = p_1^{a_1} \cdots p_r^{a_r}$, W(m) is exactly the set $\mathbb{N}p_1 + \ldots + \mathbb{N}p_r$.

 $\mathbb{N} = \mathbb{N} \cup \{0\}$ W(m) := the set of weights *n* for which there exits a vanishing sum as above.

Theorem (Lam,Leung)

For any integer $m = p_1^{a_1} \cdots p_r^{a_r}$, W(m) is exactly the set $\mathbb{N}p_1 + \ldots + \mathbb{N}p_r$.

Theorem (Sivek)

[Distinct Roots] With m written as above, $n \in W(m)$ if and only if m and m - n are in $\mathbb{N}p_1 + \ldots + \mathbb{N}p_r$.

Overview

1 Cyclotomic Polynomials

2 Sums of Roots of Unity

3 Quadrinomials

Reciprocal Polynomials

Motivated by the following result of Harrington,

Theorem

Let n, c, and d be positive integers with $n \ge 3, d \ne c, d \le 2(c-1)$, and $(n, c) \ne (3, 3)$. If the trinomial $f(x) = x^n \pm x^{n-1} \pm d$ is reducible in $\mathbb{Z}[x]$, then $f(x) = (x \pm 1)g(x)$ for some irreducible $g(x) \in \mathbb{Z}[x]$.

I was interested in studying quadrinomials of the form:

$$x^{n+1} - x^n + cx^{n-a} - c$$

Motivated by the following result of Harrington,

Theorem

Let n, c, and d be positive integers with $n \ge 3, d \ne c, d \le 2(c-1)$, and $(n, c) \ne (3, 3)$. If the trinomial $f(x) = x^n \pm x^{n-1} \pm d$ is reducible in $\mathbb{Z}[x]$, then $f(x) = (x \pm 1)g(x)$ for some irreducible $g(x) \in \mathbb{Z}[x]$.

I was interested in studying quadrinomials of the form:

$$x^{n+1} - x^n + cx^{n-a} - c.$$

Along the way, I came across the following results on quadrinomials of different types:

Let P(x) be a polynomial with integer coefficients. P(x) is called primitive if it cannot be written as $P(x) = P_1(x^l)$ for some positive integer l > 1 and $P_1(x) \in \mathbb{Z}[x]$.

Let P(x) be a polynomial with integer coefficients. P(x) is called primitive if it cannot be written as $P(x) = P_1(x^l)$ for some positive integer l > 1 and $P_1(x) \in \mathbb{Z}[x]$.

Theorem

The only primitive polynomial irreducible polynomial $P \in \mathbb{Z}[x]$ of the form $P(x) = x^i + x^j + x^k + 4, i > j > k > 0$, such that the polynomial $P(x^l)$ for some positive integer l factors in $\mathbb{Z}[x]$, is the polynomial $P(x) = x^4 + x^3 + x^2 + 4$. More precisely, for l = 2, $P(x^2) = x^8 + x^6 + x^4 + 4 = (x^4 - x^3 + x^2 - 2x + 2)(x^4 + x^3 + x^2 + 2x + 2)$.

Proposition

Let $p \ge 5$ be a prime. Then the quadrinomial $x^n + x^m + x^k + p$, $n > m > k \ge 1$ is irreducible over \mathbb{Q} .

Proposition

Let $p \ge 5$ be a prime. Then the quadrinomial $x^n + x^m + x^k + p$, $n > m > k \ge 1$ is irreducible over \mathbb{Q} .

Proof.

Suppose, towards a contradiction, that $x^n + x^m + x^k + p = f_1(x)f_2(x)$ with $f_1, f_2 \in \mathbb{Z}[x]$ and $n > deg(f_1), deg(f_2) \ge 1$. Without loss of generality, the constant coefficient of f_1 is $\pm p$ and the constant coefficient of f_2 is ± 1 . This implies that not all of the roots of f_2 can have absolute value greater than 1. Choose $z \in \mathbb{C}$ such that $|z| \le 1$. Then $p = |z^n + z^m + z^k| \le |z|^m + |z|^n + |z|^k \le 3$.

Theorem

For any distinct positive integers n, m, and p, and for any choice of $\epsilon_j \in \{-1, 1\}$, the polynomial $x^n + \epsilon_1 x^m + \epsilon_2 x^p + \epsilon_3$, with its cyclotomic factors removed is either the identity 1 or is irreducible over the integers.

Overview

- 1 Cyclotomic Polynomials
- 2 Sums of Roots of Unity
- 3 Quadrinomials

Reciprocal Polynomials

Theorem (Perron)

The polynomial $f(x) = x^n + ax \pm 1$ is irreducible for $|a| \ge 3$. For |a| = 2, f(x) is either irreducible or has the factor $(x \pm 1)$. In the latter case, the second factor of f(x) is irreducible.

Theorem (Perron)

The polynomial $f(x) = x^n + ax \pm 1$ is irreducible for $|a| \ge 3$. For |a| = 2, f(x) is either irreducible or has the factor $(x \pm 1)$. In the latter case, the second factor of f(x) is irreducible.

Theorem (Nagell) Let $g(x) = x^n + qx^p + r$ with $1 \le p \le n - 1$. Then g(x) is irreducible if $|q| > 1 + |r|^{n-1}$. If h|n, h > 1, then |r| is not an h - th power. In particular, we must have |r| > 1.

Theorem

Let $f(x) = x^n + ax^m + b$ with m < n be an irreducible trinomial satisfying the conditions

- $2^3 \not| a, 2 \not| b, n \neq 2m$, or
- $a \equiv 1,2 \pmod{4}, 2|b.$

Then $f(x^2)$ is also irreducible.

Overview

- 1) Cyclotomic Polynomials
- 2 Sums of Roots of Unity
- 3 Quadrinomials

Given a polynomial $f(x) \in \mathbb{Q}[x]$,

$$f_{rev}(x) = x^{deg(f)}f(\frac{1}{x}).$$

Given a polynomial $f(x) \in \mathbb{Q}[x]$,

$$f_{rev}(x) = x^{deg(f)}f(\frac{1}{x}).$$

f(x) is a reciprocal polynomial if $f(x) = f_{rev}(x)$. Sometimes also called self-reciprocal or palindromic.

Given a polynomial $f(x) \in \mathbb{Q}[x]$,

$$f_{rev}(x) = x^{deg(f)}f(\frac{1}{x}).$$

f(x) is a reciprocal polynomial if $f(x) = f_{rev}(x)$. Sometimes also called self-reciprocal or palindromic.

Let $f(x) \in \mathbb{Q}[x]$ be of even degree and also be a reciprocal polynomial. Then there is a unique polynomial p(x) = R(f(x)) defined by the mapping

$$f(x) = x^{deg(p)}p(1+\frac{1}{x}).$$

Theorem

Theorem

Let f(x) be a primitive polynomial in $\mathbb{Z}[x]$ and assume that the image polynomial $p(x) \in \mathbb{Q}[x]$ is irreducible.

• If |f(-1)| or |f(1)| are not perfect squares, then f(x) is irreducible in $\mathbb{Q}[x]$.

Theorem

- If |f(-1)| or |f(1)| are not perfect squares, then f(x) is irreducible in $\mathbb{Q}[x]$.
- If f(1) and the middle coefficient of f have different signs, then f is irreducible in Q[x].

Theorem

- If |f(-1)| or |f(1)| are not perfect squares, then f(x) is irreducible in $\mathbb{Q}[x]$.
- If f(1) and the middle coefficient of f have different signs, then f is irreducible in Q[x].
- If the middle coefficient of f is 0 or ± 1 , then f is irreducible in $\mathbb{Q}[x]$.

Theorem

- If |f(-1)| or |f(1)| are not perfect squares, then f(x) is irreducible in $\mathbb{Q}[x]$.
- If f(1) and the middle coefficient of f have different signs, then f is irreducible in Q[x].
- If the middle coefficient of f is 0 or ± 1 , then f is irreducible in $\mathbb{Q}[x]$.

Theorem

Let f(x) be a primitive polynomial in $\mathbb{Z}[x]$ and assume that the image polynomial $p(x) \in \mathbb{Q}[x]$ is irreducible.

- If |f(-1)| or |f(1)| are not perfect squares, then f(x) is irreducible in $\mathbb{Q}[x]$.
- If f(1) and the middle coefficient of f have different signs, then f is irreducible in Q[x].
- If the middle coefficient of f is 0 or ± 1 , then f is irreducible in $\mathbb{Q}[x]$.

Theorem

Almost all reciprocal polynomials with integer coefficients are irreducible over \mathbb{Q} .

Thank you very much for your time and patience ! Please feel free to ask any questions and I will do my best to answer them.