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I will also prove:

Theorem
The real part of every non-trivial zero of the Riemann zeta function is 1

2 .
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I will also prove:

Theorem
The real part of every non-trivial zero of the Riemann zeta function is 1

2 .

Proof.
April Fools!!
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Motivation

In 2007 the Stern integer sequence was extended by Klavžar, Milutinović, and
Petr to the Stern polynomials Bn(z), n ∈ N.

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 5 / 109



Motivation

In 2007 the Stern integer sequence was extended by Klavžar, Milutinović, and
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Petr to the Stern polynomials Bn(z), n ∈ N.

Conjecture (Ulas)
Bp(z) is irreducible over Q whenever p is prime.

Verified computationally for the first 106 primes

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 7 / 109



Motivation

In 2007 the Stern integer sequence was extended by Klavžar, Milutinović, and
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Motivation

In 2007 the Stern integer sequence was extended by Klavžar, Milutinović, and
Petr to the Stern polynomials Bn(z), n ∈ N.

Conjecture (Ulas)
Bp(z) is irreducible over Q whenever p is prime.

Verified computationally for the first 106 primes

Various cases proved by Schinzel and by Dilcher, Kidwai, and Tomkins

Here we study the analogous problem for the generalized Stern
polynomials.
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Introduction

Definition (Stern sequence)
The Stern integer sequence, also known as Stern’s diatomic series, is denoted
(a(n))n≥0 and defined by a(0) = 0, a(1) = 1, and for n ≥ 1 by

a(2n) = a(n), (1)

a(2n+ 1) = a(n) + a(n+ 1). (2)
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Introduction

Definition (Stern sequence)
The Stern integer sequence, also known as Stern’s diatomic series, is denoted
(a(n))n≥0 and defined by a(0) = 0, a(1) = 1, and for n ≥ 1 by

a(2n) = a(n), (3)

a(2n+ 1) = a(n) + a(n+ 1). (4)

Dates back as far as Eisenstein; introduced by M. A. Stern; studied by
Lehmer, de Rham, Dijkstra, Calkin and Wilf, and others...
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Introduction

Definition (Stern sequence)
The Stern integer sequence, also known as Stern’s diatomic series, is denoted
(a(n))n≥0 and defined by a(0) = 0, a(1) = 1, and for n ≥ 1 by

a(2n) = a(n), (5)

a(2n+ 1) = a(n) + a(n+ 1). (6)

Dates back as far as Eisenstein; introduced by M. A. Stern; studied by
Lehmer, de Rham, Dijkstra, Calkin and Wilf, and others...

Related to

Stern-Brocot tree

Calkin-Wilf tree

Counting the rationals; random Fibonacci sequences; Fibonacci
representations
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Introduction

Sequence begins as
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, . . . .
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Introduction

Sequence begins as
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, . . . .

The sequence (a(n)/a(n+ 1))n∈N of quotients of consecutive Stern
numbers gives an enumeration without repetition of the positive reduced
rational numbers.
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Introduction

Sequence begins as
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, . . . .

The sequence (a(n)/a(n+ 1))n∈N of consecutive Stern numbers gives
an enumeration without repetition of the positive reduced rational
numbers.

The number a(n+ 1) gives the number of "hyperbinary expansions" of
n, i.e., the number of ways of writing n as a sum of powers of 2 without
repetition.
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Introduction

Extended in 2007 to two different polynomial analogues:
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Introduction

Extended in 2007 to two different polynomial analogues:

one by Klavžar, Milutinović, and Petr

and another independently by Karl Dilcher and Ken Stolarsky!!
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Introduction

Definition (Stern polynomials)
The Stern polynomials are denoted Bn(z) and defined by B0(z) = 0,
B1(z) = 1, and for n ≥ 1,

B2n(z) = zBn(z), (7)

B2n+1(z) = Bn(z) +Bn+1(z). (8)
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Introduction

Definition (Stern polynomials)
The Stern polynomials are denoted Bn(z) and defined by B0(z) = 0,
B1(z) = 1, and for n ≥ 1,

B2n(z) = zBn(z), (9)

B2n+1(z) = Bn(z) +Bn+1(z). (10)

We see immediately that

Bn(1) = a(n) (n ≥ 0), (11)

and by induction that

Bn(2) = n (n ≥ 0). (12)
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Introduction

Convention: From now on, irreducible means irreducible over Q.
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Introduction

Convention: From now on, irreducible means irreducible over Q.

Conjecture (Ulas)
Bp(z) is irreducible whenever p is prime.

Verified computationally for the first one-million primes

A. Schinzel proved

Theorem (Schinzel)
For all integers n ≥ 3, B2n−3(z) is irreducible.

also proved for all primes p < 2017, without computation
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Introduction

Further cases proved by Karl Dilcher, Mohammad Kidwai, and Hayley
Tomkins, including the following theorem:

Theorem (Dilcher, Kidwai, Thomkins)
Suppose that the prime p is of the form

p = 2ν ± 2µ ± 1

or

p = 2ν ± 2µ ± 3

where µ ≥ 1 and ν ≥ µ+ 9 are integers, and the instances of "±" are
independent. Then Bp(z) is irreducible.
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Introduction

Definition (Generalized Stern polynomials)
Let t be a fixed positive integer.
(1) The Type-1 generalized Stern polynomials a1,t(n; z) are polynomials in z
defined by a1,t(0; z) = 0, a1,t(1; z) = 1, and for n ≥ 1 by

a1,t(2n; z) = za1,t(n; zt), (13)

a1,t(2n+ 1; z) = a1,t(n; zt) + a1,t(n+ 1; zt). (14)
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Introduction

Definition (Generalized Stern polynomials)
Let t be a fixed positive integer.
(1) The Type-1 generalized Stern polynomials a1,t(n; z) are polynomials in z
defined by a1,t(0; z) = 0, a1,t(1; z) = 1, and for n ≥ 1 by

a1,t(2n; z) = za1,t(n; zt), (15)

a1,t(2n+ 1; z) = a1,t(n; zt) + a1,t(n+ 1; zt). (16)

(2) The Type-2 generalized Stern polynomials a2,t(n; z) are polynomials in z
defined by a2,t(0; z) = 0, a2,t(1; z) = 1, and for n ≥ 1 by

a2,t(2n; z) = a2,t(n; zt), (17)

a2,t(2n+ 1; z) = za2,t(n; zt) + a2,t(n+ 1; zt). (18)
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n a1,t(n; z) a2,t(n; z)

1 1 1
2 z 1
3 1 + zt 1 + z
4 zt+1 1
5 1 + zt + zt

2
1 + z + zt

6 z + zt
2+1 1 + zt

7 1 + zt
2

+ zt
2+t 1 + z + zt+1

8 zt
2+t+1 1

9 1 + zt
2

+ zt
2+t + zt

3
1 + z + zt + zt

2

10 z + zt
2+1 + zt

3+1 1 + zt + zt
2

11 1 + zt + zt
2

+ zt
3

+ zt
3+t 1 + z + zt+1 + zt

2
+ zt

2+1

12 zt+1 + zt
2+t+1 1 + zt

2

13 1 + zt + zt
3

+ zt
3+t + zt

3+t2 1 + z + zt + zt
2+1 + zt

2+t

14 z + zt
3+1 + zt

3+t2+1 1 + zt + zt
2+1

15 1 + zt
3

+ zt
3+t2 + zt

3+t2+t 1 + z + zt
+1 + zt

2+t+1

16 zt
3+t2+t1+1 1

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 28 / 109



Introduction

By comparing (7)-(10) with (1) and (2) we see that for z = 1 both sequences
reduce to the Stern integer sequence a(n), i.e.,

a1,t(n; 1) = a2,t(n; 1) = a(n) (t ≥ 1, n ≥ 0). (19)
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Introduction

By comparing (7)-(10) with (1) and (2) we see that for z = 1 both sequences
reduce to Stern’s diatomic sequence a(n), i.e.,

a1,t(n; 1) = a2,t(n; 1) = a(n) (t ≥ 1, n ≥ 0). (20)

Table indicates that both sequences have a special structure

For t = 1 the exponents in a given polynomial can coincide

The following theorem describes the case t ≥ 2
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Introduction

By comparing (7)-(10) with (1) and (2) we see that for z = 1 both sequences
reduce to Stern’s diatomic sequence a(n), i.e.,

a1,t(n; 1) = a2,t(n; 1) = a(n) (t ≥ 1, n ≥ 0). (21)

Table indicates that both sequences have a special structure

For t = 1 the exponents in a given polynomial can coincide

The following theorem describes the case t ≥ 2

Theorem
For integers t ≥ 2 and n ≥ 0, the coefficients of a1,t(n; z) and a2,t(n; z) are
either 0 or 1. Furthermore, all exponents of z are polynomials in t with only 0
or 1 as coefficients.
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Introduction

Remark
This theorem and (11) show that the number of terms of both polynomials is
given by the Stern number a(n).
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Introduction

Dilcher and Ericksen applied certain subsequences to

tilings, colourings, and lattice paths

continued fractions

hyperbinary expansions
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Introduction

Dilcher and Ericksen applied certain subsequences to

tilings, colourings, and lattice paths

continued fractions

hyperbinary expansions

Example
The hyperbinary expansions of n = 10 are

8 + 2, 8 + 1 + 1, 4 + 4 + 2, 4 + 4 + 1 + 1, 4 + 2 + 2 + 1 + 1,

and notice that 8 + 2 is the unique binary expansion.
Observe that there are 5 = a(11) = a(10 + 1) such hyperbinary expansions.
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Cyclotomic Polynomials

Definition (Root of unity)
Let K be a field and n a positive integer. An element ζ is called an nth root of
unity provided ζn = 1, that is, if ζ is a root of zn − 1 ∈ K[z].
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Cyclotomic Polynomials

Definition (Root of unity)
Let K be a field and n a positive integer. An element ζ is called an nth root of
unity provided ζn = 1, that is, if ζ is a root of zn − 1 ∈ K[z].

Remark
(1) If ζn is an nth root of unity, then ζn = e2πik/n for some k ∈ N.
(2) The nth roots of unity form a cyclic subgroup of the multiplicative group
K∗ of nonzero elements of K.
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Definition (Primitive root of unity)
An nth root of unity ζn is primitive if it is not a kth root of unity for any
k < n. In other words, ζn is a primitive nth root of unity if it has order n in
the group of nth roots of unity.
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Definition (Primitive root of unity)
An nth root of unity ζn is primitive if it is not a kth root of unity for some
k < n. In other words, ζn is a primitive nth root of unity if it has order n in
the group of nth roots of unity.

Theorem
The primitive nth roots of unity are the elements
{ζkn | ζn = e2πi/n, gcd(k, n) = 1}.
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Cyclotomic Polynomials

Definition (Cyclotomic polynomial)
For a positive integer n the nth cyclotomic polynomial Φn(z) is the unique
irreducible polynomial in Z[z] given by

Φn(z) =
∏

1≤k<n,
gcd(k,n)=1

(z − ζkn) (22)

where ζn is a primitive nth root of unity.

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 39 / 109



Cyclotomic Polynomials

Definition (Cyclotomic polynomial)
For a positive integer n the nth cyclotomic polynomial Φn(z) is the unique
irreducible polynomial in Z[z] given by

Φn(z) =
∏

1≤k<n,
gcd(k,n)=1

(z − ζkn) (23)

where ζn is a primitive nth root of unity.

Remark
(1) The roots of Φn(z) are precisely the primitive nth roots of unity.
(2) Φn(z) divides zn − 1 but doesn’t divide zk − 1 for any positive integer
k < n.
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Cyclotomic Polynomials

We have the following identites.
If p is prime, then

Φp(z) = 1 + z + z2 + . . .+ zp−1 =

p−1∑
k=0

zk, (24)

and if n = 2p where p is an odd prime, then

Φ2p(z) = 1− z + z2 − . . .+ zp−1 =

p−1∑
k=0

(−z)k. (25)
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Cyclotomic Polynomials

Theorem (Eisenstein’s Criterion)

Suppose that f(x) =
∑n

k=0 akx
k ∈ Z[x]. If there exists a prime p for which

p - an, p | ak for all k < n, and p2 - a0, then f is irreducible over Q.
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Cyclotomic Polynomials

Theorem (Eisenstein’s Criterion)

Suppose that f(x) =
∑n

k=0 akx
k ∈ Z[x]. If there exists a prime p for which

p - an, p | ak for all k < n, and p2 - a0, then f is irreducible over Q.

Lemma
Φp(z) is irreducible if and only if Φp(z + 1) is.
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Cyclotomic Polynomials

Theorem (Eisenstein’s Criterion)

Suppose that f(x) =
∑n

k=0 akx
k ∈ Z[x]. If there exists a prime p for which

p - an, p | ak for all k < n, and p2 - a0, then f is irreducible over Q.

Lemma
Φp(z) is irreducible if and only if Φp(z + 1) is.

Theorem
If p is prime, then the pth cyclotomic polynomial Φp(z) is irreducible.
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Cyclotomic Polynomials

Proof.
Let p be prime. First notice that the binomial coefficient

(
p
r

)
is divisible by p

for all 0 ≤ r ≤ p− 1. Indeed, let

N =

(
p

r

)
=

p!

r!(p− r)!
.

Then p! = Nr!(p− r)!. Clearly p divides p! and hence p also divides
Nr!(p− r)!. Since p is prime, it must divide N or r!(p− r)!. But
r, p− r < p so that p - r!, (p− r)!. Thus p divides N . Now, we have

Φp(z + 1) =
(z + 1)p − 1

z
= zp−1 +

(
p

p− 2

)
zp−2 + . . .+

(
p

2

)
z + p.

Every coefficient of Φp(z + 1) except the coefficient of zp−1 is divisible by p
by the above, and p2 - p. Hence by Eisenstein’s Criterion Φp(z + 1) is
irreducible. Thus by the Lemma, Φp(z) is irreducible.
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Cyclotomic Polynomials

In fact, it is true that the nth cyclotomic polynomial is irreducible for all
positive integers n.
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Cyclotomic Polynomials

In fact, it is true that the nth cyclotomic polynomial is irreducible for all
positive integers n.

Proof.
Exercise.
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Cyclotomic Polynomials

In fact, it is true that the nth cyclotomic polynomial is irreducible for all
positive integers n.

Proof.
Exercise. [There’s a nice one in A Classical Introduction to Modern Number
Theory by Ireland and Rosen.]
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Cyclotomic Polynomials

Definition (Euler’s totient function)
For a positive integer n, the number of positive integers less than n and
relatively prime to n is given by Euler’s totient function, ϕ(n). That is,
ϕ(n) := #{k ∈ N | k < n, gcd(k, n) = 1}.
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Cyclotomic Polynomials

Definition (Euler’s totient function)
For a positive integer n, the number of positive integers less than n and
relatively prime to n is given by Euler’s totient function, ϕ(n). That is,
ϕ(n) := #{k ∈ N | k < n, gcd(k, n) = 1}.

Theorem
The degree of Φn(z) is ϕ(n).

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 50 / 109



Cyclotomic Polynomials

Definition (Euler’s totient function)
For a positive integer n, the number of positive integers less than n and
relatively prime to n is given by Euler’s totient function, ϕ(n). That is,
ϕ(n) := #{k ∈ N | k < n, gcd(k, n) = 1}.

Theorem
The degree of Φn(z) is ϕ(n).

Proof.
By definition,

Φn(z) =
∏

1≤k<n,
gcd(k,n)=1

(z − ζkn),

which is a product of ϕ(n) factors, each having as its leading term z with
coefficient 1.
Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 51 / 109



Newman Polynomials, Borwein Polynomials, and
Irreducibility

Definition (Borwein polynomial, Newman polynomial)
Let

P = {zn + an−1z
n−1 + · · ·+ a1z + a0 | ai ∈ {−1, 0, 1}}.

A polynomial f ∈ P is called a Borwein polynomial if f(0) 6= 0 and called a
Newman polynomial if every ai ∈ {0, 1}.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Definition (Borwein polynomial, Newman polynomial)
Let

P = {zn + an−1z
n−1 + · · ·+ a1z + a0 | ai ∈ {−1, 0, 1}}.

A polynomial f ∈ P is called a Borwein polynomial if f(0) 6= 0 and called a
Newman polynomial if every ai ∈ {0, 1}.

The length of a polynomial is the number of nonzero terms.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Definition (Borwein polynomial, Newman polynomial)
Let

P = {zn + an−1z
n−1 + · · ·+ a1z + a0 | ai ∈ {−1, 0, 1}}.

A polynomial f ∈ P is called a Borwein polynomial if f(0) 6= 0 and called a
Newman polynomial if every ai ∈ {0, 1}.

The length of a polynomial is the number of nonzero terms.

Notice that if a0 = 0, then f(z) is trivially reducible. So, we will
sometimes restrict to the case a0 = 1.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Definition (Borwein polynomial, Newman polynomial)
Let

P = {zn + an−1z
n−1 + · · ·+ a1z + a0 | ai ∈ {−1, 0, 1}}.

A polynomial f ∈ P is called a Borwein polynomial if f(0) 6= 0 and called a
Newman polynomial if every ai ∈ {0, 1}.

The length of a polynomial is the number of nonzero terms.

Notice that if a0 = 0, then f(z) is trivially reducible. So, we will
sometimes restrict to the case a0 = 1.

S = {z ∈ C : |z| = 1} will denote the unit circle in C. Some but not all
Newman polynomials have roots on S, and some Newman polynomials
are reducible over Q while others are not.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Remark
In light of these new definitions, we see that for t ≥ 2 and n ≥ 0 the
polynomials a1,t(n; z) and a2,t(n; z) are Newman polynomials of length a(n).
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Remark
In light of these new definitions, we see that for t ≥ 2 and n ≥ 0 the
polynomials a1,t(n; z) and a2,t(n; z) are Newman polynomials of length a(n).

Theorem (Lehmer)
Given an integer k ≥ 2, the number of integers n in the interval
2k−1 ≤ n ≤ 2k for which a(n) = k is ϕ(k). Furthermore, it is the same
number in any subsequent interval between two consecutive powers of 2.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Remark
In light of these new definitions, we see that for t ≥ 2 and n ≥ 0 the
polynomials a1,t(n; z) and a2,t(n; z) are Newman polynomials of length a(n).

Theorem (Lehmer)
Given an integer k ≥ 2, the number of integers n in the interval
2k−1 ≤ n ≤ 2k for which a(n) = k is ϕ(k). Furthermore, it is the same
number in any subsequent interval between two consecutive powers of 2.

Corollary
The number of type-1 generalized Stern polynomials of length k in the
interval [2k−1, 2k] is ϕ(k).
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Ljunggren)
If a Newman polynomial of length 3 or 4 is reducible, then it has a cyclotomic
factor (equivalently, it vanishes at some root of unity). That is, if

f(z) = zn + zm + zr + 1, n > m > r ≥ 0

is reducible, then f has a cyclotomic factor.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Ljunggren)
If a Newman polynomial of length 3 or 4 is reducible, then it has a cyclotomic
factor (equivalently, it vanishes at some root of unity). That is, if

f(z) = zn + zm + zr + 1, n > m > r ≥ 0

is reducible, then f has a cyclotomic factor.

Conjecture (Mercer)
If a Newman polynomial of length 5 is reducible, then it has a cyclotomic
factor. That is, if

f(z) = zn + zm + zr + zs + 1, n > m > r > s > 0

is reducible, then f has a cyclotomic factor.
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Mercer checked his conjecture for all Newman polynomials up to degree
24.
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Corollary
The number of type-1 generalized Stern polynomials which have a cyclotomic
factor in the interval [4, 8] is at most ϕ(3) = 2, in the interval [8, 16] at most
ϕ(4) = 2, and in the interval [16, 32] at most ϕ(5) = 4.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Tverberg)
The trinomial

f(z) = zn + zm ± 1 (26)

is irreducible whenever no root of f lies on S. If f has roots on S, then f has
a cyclotomic factor and a rational factor.
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Theorem (Koley & Reddy)
Let f(z) be a Newman polynomial of length 5 with a cyclotomic factor. Then
f is divisible by either Φ5γ (z) or Φ2α3β (z) for some α, β, γ ≥ 1.
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Koley & Reddy)
Let f(z) be a Newman polynomial of length 5 with a cyclotomic factor. Then
f is divisible by either Φ5γ (z) or Φ2α3β (z) for some α, β, γ ≥ 1.

Example
We have

a1,2(5; z) = z4 + z2 + 1 = (z2 + z + 1)(z2 − z + 1) = Φ3(z)Φ6(z).

Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 65 / 109



Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Koley & Reddy)
Let f(z) be a Newman polynomial of length 5 with a cyclotomic factor. Then
f is divisible by either Φ5γ (z) or Φ2α3β (z) for some α, β, γ ≥ 1.

Example

a1,2(5; z) = z4 + z2 + 1 = (z2 + z + 1)(z2 − z + 1) = Φ3(z)Φ6(z).

Example

a1,2(17; z) = z16 + z14 + z12 + z8 + 1

= (z4 + z3 + z2 + z + 1)(z4 − z3 + z2 − z + 1)(z8 − z2 + 1)

= Φ5(z)Φ10(z)(z
8 − z2 + 1)
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Koley & Reddy)
Suppose that f is a Borwein polynomial and Φk(z) | f(z) for some k ∈ N.
Then Φk1(z) | f(z) for some k1 | k such that every prime factor of k1 is at
most `(f), where `(f) denotes the length of f .
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Newman Polynomials, Borwein Polynomials, and
Irreducibility

Theorem (Koley & Reddy)
Suppose that f is a Borwein polynomial and Φk(z) | f(z) for some k ∈ N.
Then Φk1(z) | f(z) for some k1 | k such that every prime factor of k1 is at
most `(f), where `(f) denotes the length of f .

Returning to the pevious example, we see that indeed

Example

a1,2(17; z) = z16 + z14 + z12 + z8 + 1

= (z4 + z3 + z2 + z + 1)(z4 − z3 + z2 − z + 1)(z8 − z2 + 1)

= Φ5(z)Φ10(z)(z
8 − z2 + 1)

and 5 | 10 and 5 = `(Φ5(z)), `(Φ10(z)) ≤ `(a1,2(17; z)) = 5.
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Theorem (Koley & Reddy)
Let q ≥ 5 be a prime and f a primitive Newman polynomial of length q. Then
Φ2q(z) - f(z) and Φ3q(z) - f(z).
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Theorem (Koley & Reddy)
Let q ≥ 5 be a prime and f a primitive Newman polynomial of length q. Then
Φ2q(z) - f(z) and Φ3q(z) - f(z).

Example
We have

a1,4(41; z) =z1088 + z1044 + z1040 + z1024 + z276

+ z272 + z256 + z64 + z20 + z16 + 1

=Φ40(z) · f(z)

for a huge polynomial f(z). Indeed, `(a1,4(41; z)) = a(41) = 11 is a prime
greater than 5, and neither Φ22(z) nor Φ33(z) divides a1,4(41; z).
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Previous Irreducibility Results for a2,t(n; z)

The irreducibility and factors of the type-2 generalized Stern
polynomials a2,t(n; z) have been studied by Dilcher and Ericksen.
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Previous Irreducibility Results for a2,t(n; z)

The irreducibility and factors of the type-2 generalized Stern
polynomials a2,t(n; z) have been studied by Dilcher and Ericksen.

Here we state without proof their major results.
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Previous Irreducibility Results for a2,t(n; z)

The irreducibility and factors of the type-2 generalized Stern
polynomials a2,t(n; z) have been studied by Dilcher and Ericksen.

Here we state without proof their major results.

Throughout, they often employ the theorem of Lehmer mentioned
earlier:

Theorem (Lehmer)
Given an integer k ≥ 2, the number of integers n in the interval
2k−1 ≤ n ≤ 2k for which a(n) = k is ϕ(k). Furthermore, it is the same
number in any subsequent interval between two consecutive powers of 2.
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Previous Irreducibility Results for a2,t(n; z)

Since for t ≥ 2 the a2,t(n; z) are all Newman polynomials, by earlier results
this means we can write down all binomials, trinomials, quadrinomials, and
pentanomials among the a2,t(n; z) for t ≥ 2, of which there are
ϕ(2) + · · ·+ ϕ(5) = 9 different classes.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
For k ≥ 1 the binomial a2,t(3 · 2k; z) is irreducible if and only if t ≥ 1 is a
power of 2.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t ≡ 0, 1 mod 3, then a2,t(5 · 2k; z) is irreducible.
(b) If t ≡ 2 mod 3, then we have z2 + z + 1 | a2,t(5 · 2k; z). That is,
a2,t(5 · 2k; z) is reducible except for a2,2(5; z) = z2 + z + 1.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t ≡ 0, 1 mod 3, then a2,t(5 · 2k; z) is irreducible.
(b) If t ≡ 2 mod 3, then we have z2 + z + 1 | a2,t(5 · 2k; z). That is,
a2,t(5 · 2k; z) is reducible except for a2,2(5; z) = z2 + z + 1.

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t ≡ 0, 2 mod 3, then a2,t(7 · 2k; z) is irreducible.
(b) If t ≡ 1 mod 3, then a2,t(7 · 2k; z) is reducible.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t ≡ 0, 1 mod 3, then a2,t(5 · 2k; z) is irreducible.
(b) If t ≡ 2 mod 3, then we have z2 + z + 1 | a2,t(5 · 2k; z). That is,
a2,t(5 · 2k; z) is reducible except for a2,2(5; z) = z2 + z + 1.

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t ≡ 0, 2 mod 3, then a2,t(7 · 2k; z) is irreducible.
(b) If t ≡ 1 mod 3, then a2,t(7 · 2k; z) is reducible.

Theorem
For all integers k ≥ 0 and t ≥ 2, the quadrinomial a2,t(9 · 2k; z) is
irreducible.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t is even, then a2,t(15 · 2k; z) is irreducible.
(b) If t is odd, then a2,t(15 · 2k; z) is divisible by 1 + zt

k
.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let k ≥ 0 and t ≥ 2 be integers.
(a) If t is even, then a2,t(15 · 2k; z) is irreducible.
(b) If t is odd, then a2,t(15 · 2k; z) is divisible by 1 + zt

k
.

Theorem
Let t ≥ 2 be an integer.
(a) If t ≡ 2, 3 mod 5, then Φ5(z) | a2,t(17; z).
(b) If t ≡ 1 mod 5, then Φ5(z) | a2,t(31; z).
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let t ≥ 2 be an integer, and let p ≥ 3 be a prime which has t as a primitive
root. Then

(1 + z + z2 + · · ·+ zp−1) | a2,t(2p−1 + 1; z).

In particular, a2,t(2p−1; z) is reducible in this case, with the exception of
a2,t(5; z) = 1 + z + z2.
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let t ≥ 2 be an integer, and let p ≥ 3 be a prime which has t as a primitive
root. Then

(1 + z + z2 + · · ·+ zp−1) | a2,t(2p−1 + 1; z).

In particular, a2,t(2p−1; z) is reducible in this case, with the exception of
a2,t(5; z) = 1 + z + z2.

Corollary
If t ≡ 3, 5 mod 7, then Φ7(z) | a2,t(65; z).
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let t ≥ 2 be an integer, and let p ≥ 3 be a prime which has t as a primitive
root. Then

(1 + z + z2 + · · ·+ zp−1) | a2,t(2p−1 + 1; z).

In particular, a2,t(2p−1; z) is reducible in this case, with the exception of
a2,t(5; z) = 1 + z + z2.

Corollary
If t ≡ 3, 5 mod 7, then Φ7(z) | a2,t(65; z).
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Previous Irreducibility Results for a2,t(n; z)

Theorem
Let p ≥ 3 be a prime and t ≥ 2 be an integer satisfying t ≡ 1 mod p. Then

1 + z + z2 + · · ·+ zp−1 = Φp(z) | a2,t(2p − 1; z).

In particular, a2,t(2p − 1; z) is reducible in this case.
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My Results

Corollary
Due to Ljunggren, we have that every reducible type-1 generalized Stern
polynomial of length 3 or 4 has a cyclotomic factor.
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My results

Corollary
Due to Ljunggren, we have that every reducible type-1 generalized Stern
polynomial of length 3 or 4 has a cyclotomic factor.

If Mercer’s conjecture is true, then we can say more:

Corollary
Given Mercer’s conjecture, every reducible type-1 generalized Stern
polynomial of length 5 has a cyclotomic factor.
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My results

Using Maple, determined analogous conjecture to that of Ulas for the
generalized Stern polynomials is false
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My results

Using Maple, determined analogous conjecture to that of Ulas for the
generalized Stern polynomials is false

I.e., there are primes p for which a1,t(p; z) and a2,t(p; z) are not
irreducible over Q
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My results

Using Maple, determined analogous conjecture to that of Ulas for the
generalized Stern polynomials is false

I.e., there are primes p for which a1,t(p; z) and a2,t(p; z) are not
irreducible over Q

Example
We have

a1,2(5; z) = z4 + z2 + 1 = (z2 + z + 1)(z2 − z + 1) = Φ3(z)Φ6(z).
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My results

Using Maple, determined analogous conjecture to that of Ulas for the
generalized Stern polynomials is false

I.e., there are primes p for which a1,t(p; z) and a2,t(p; z) are not
irreducible over Q

Example
We have

a1,2(5; z) = z4 + z2 + 1 = (z2 + z + 1)(z2 − z + 1) = Φ3(z)Φ6(z).

Example
We have

a2,1(7; z) = 2z2 + z = z(2z + 1).
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My results

Observation: when p is prime and a1,t(p; z) is not irreducible, the
polynomial always has cyclotomic factors.
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My results

Observation: when p is prime and a1,t(p; z) is not irreducible, the
polynomial always has cyclotomic factors.

Example
We have

a1,2(17; z) = z16 + z14 + z12 + z8 + 1

= (z4 + z3 + z2 + z + 1)(z4 − z3 + z2 − z + 1)(z8 − z2 + 1)

= Φ5(z)Φ10(z)(z
8 − z2 + 1)
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My results

Observation: when p is prime and a1,t(p; z) is not irreducible, the
polynomial always has cyclotomic factors.

Example
We have

a1,2(17; z) = z16 + z14 + z12 + z8 + 1

= (z4 + z3 + z2 + z + 1)(z4 − z3 + z2 − z + 1)(z8 − z2 + 1)

= Φ5(z)Φ10(z)(z
8 − z2 + 1)

Example
We have

a1,4(7; z) = z20 + z16 + 1

= (z2 + z + 1)(z2 − z + 1)(z4 − z2 + 1)(z12 − z4 + 1)

= Φ3(z)Φ6(z)Φ12(z)(z
12 − z4 + 1).
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My results

Conjecture
Let p be a prime. If a1,t(p; z) is not irreducible and t = pe11 · · · perr is the
prime factorization of t, then

a1,t(p; z) = Φj1(z) · · ·Φjr+2(z)f1(z) · · · fm(z), (27)

for at least two cyclotomic polynomials Φj1 , . . . ,Φjr+2 with
gcd(j1, . . . , jr+2) = j1 and polynomials f1, . . . , fm.
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My results

Furthermore:

Conjecture
If a1,t(p; z) factors completely into a product of cyclotomic polynomials

a1,t(p; z) = Φj1(z) · · ·Φjr+2(z), j1 < j2 < · · · < jr+2, (28)

then
(1) If t = pe11 is a prime power and gcd(j1, t) = 1, then

jk = j1p
k−1
1 (1 ≤ k − 1 ≤ e1)

(2) If gcd(j1, t) = pi for some 1 ≤ i ≤ r, then pi is not a factor of any of the
jk;
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My results

Conjecture (Cont’d)
(3) If t = p1 · · · pr is squarefree, then

j2 = p1j1,

j3 = p2j1,

...

jr = pr−1j1,

jr+1 = prj1,

jr+2 = p1 · · · prj1.

(4) If t = pe11 · · · perr , r > 1, is a product of distinct prime powers and
gcd(t, j1) = 1, then ???
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My results

If a prime-indexed type-1 generalized Stern polynomial is not
irreducible, then it has at least two cyclotomic polynomial factors whose
indices are not relatively prime
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My results

If a prime-indexed type-1 generalized Stern polynomial is not
irreducible, then it has at least two cyclotomic polynomial factors whose
indices are not relatively prime

Furthermore, if a1,t(p, z) equals the product of cyclotomic polynomials,
then the indices of the cyclotomic factors follow a multiplication rule
with the prime factorization of the parameter t
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My results

If a prime-indexed type-1 generalized Stern polynomial is not
irreducible, then it has at least two cyclotomic polynomial factors whose
indices are not relatively prime

Furthermore, if a1,t(p, z) equals the product of cyclotomic polynomials,
then the indices of the cyclotomic factors follow a multiplication rule
with the prime factorization of the parameter t

Corollary
The number of type-1 generalized Stern polynomials which have a cyclotomic
factor is equal to the number of reducible type-1 generalized Stern
polynomials.
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t n a1,t(n; z) {j : Φj | a1,t(n; z)} Case
2 5 z4 + z2 + 1 3, 6 1

17 z16 + z14 + z12 + z8 + 1 5, 10 1
3 3 z3 + 1 2, 6 1

73 z756+too big for this margin 5, 15 1
4 7 z20 + z16 + 1 3, 6, 12 3

41 z1088 + z1044 + z1040 + z1024 +
z276

+z272+z256+z64+z20+z16+1

40 (up to 10,000) 3

5 3 z5 + 1 2, 10 1
5 z25 + z5 + 1 5, 15 1

6 3 z6 + 1 4, 12 2
31 z1554 +z1548 +z1512 +z1296 +1 5, 10, 15, 30 3

7 3 z7 + 1 2, 14 1
7 z56 + z49 + 1 3, 21 1

17 z2401 + z399 + z392 + z343 + 1 5, 35 1
8 5 z64 + z8 + 1 3, 6, 12, 24 1
9 3 z9 + 1 2, 6, 18 1

Table: Classification of a1,t(n; z) by cyclotomic factorsMason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 100 / 109



t n a1,t(n; z) {j : Φj | a1,t(n; z)} Case
10 3 z10 + 1 4, 20 2

7 z110 + z100 + 1 3, 6, 15, 30 3
11 3 z11 + 1 2, 22 1

5 z121 + z11 + 1 3, 33 1
12 3 z12 + 1 8, 24 2
13 3 z13 + 1 2, 26 1

7 z182 + z169 + 1 3, 39 1
14 3 z14 + 1 4, 28 2

5 z196 + z14 + 1 3, 6, 21, 42 3
15 3 z15 + 1 2, 6, 10, 30 3?
16 7 z272 + z256 + 1 3, 6, 12, 24, 48 1
17 3 z17 + 1 2, 34 1

5 z289 + z17 + 1 3, 51 1
18 3 z18 + 1 4, 12, 36 2

Table: Classification of a1,t(n; z) by cyclotomic factors
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My Results

Notice that the first instance of Case 4 doesn’t occur until t = 2232 = 36.
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My Results

Notice that the first instance of Case 4 doesn’t occur until t = 2233 = 36.

Since the "size" of these polynomials grows very quickly, it becomes
computationally expensive to factor them for large n and t.
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My Results

Notice that the first instance of Case 4 doesn’t occur until t = 2233 = 36.

Since the "size" of these polynomials grows very quickly, it becomes
computationally expensive to factor them for large n and t.

Use cluster for this
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n a1,t(n; z)

17 zt
4

+ zt
3+t2+t + zt

3+t2 + zt
3

+ 1

18 zt
4+1 + zt

3+t2+1 + zt
3+1 + z

19 zt
4+1 + zt

4
+ zt

3+t2 + zt
3+1 + zt

3
+ zt + 1

20 zt
4+t+1 + zt

3+t+1 + zt+1

21 zt
4+t2 + zt

4+t + zt
4

+ zt
3+t + zt

3
+ zt

2
+ zt + 1

22 zt
4+t2+1 + zt

4+1 + zt
3+1 + zt

2+1 + z

23 zt
4+t2+t + zt

4+t2 + zt
4

+ zt
3

+ zt
2+t + zt

2
+ 1

24 zt
4+t2+t+1 + zt

2+t+1

25 zt
4+t3 + zt

4+t2+t + zt
4+t2 + zt

4
+ zt

2+t + zt
2

+ 1

26 zt
4+t3+1 + zt

4+t2+1 + zt
4+1 + zt

2+1 + z

27 zt
4+t3+t + zt

4+t3 + zt
4+t2 + zt

4+t + zt
4

+ zt
2

+ zt + 1

28 zt
4+t3+t+1 + zt

4+t3+t + zt
4+t3 + zt

4+t + zt
4

+ zt + 1

29 zt
4+t3+t2 + zt

4+t3+t + zt
4+t3 + zt

4+t + zt
4

+ zt + 1

30 zt
4+t3+t2+1 + zt

4+t3+1 + zt
4+1 + z

31 zt
4+t3+t2+t + zt

4+t3+t2 + zt
4+t3 + zt

4
+ 1

32 zt
4+t3+t2+t+1

Table: a1,t(n; z), 17 ≤ n ≤ 32Mason Maxwell (Dalhousie University) Irreducibility of Generalized Stern Polynomials 1 April 2019 105 / 109



My results

Proposition
For t > 0 and m ≥ 1,

a1,t(2
m; z) = zt

m−1+tm−2+···+t+1 (29)

is trivially reducible.
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My results

Proposition
For t > 0 and m ≥ 1,

a1,t(2
m; z) = zt

m−1+tm−2+···+t+1 (30)

is trivially reducible.

Proof.
First note that a(n) = 1 if and only if n = 2m, m ≥ 0. Furthermore,
a1,t(2

m; z) is a positive power of z for every m ≥ 1.
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Questions, comments, suggestions?
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