The Squing Function Eccles Tretegral (Mein definition) Idea: Find a function that interpolates (u-i)!. (reasonable)  $T(z) = \int x^{2-1} e^{-x} dx (Re(z) > 0)$ All puperties fellew from this. What does "recessmable" mean ? - ist laast mooth Meromenhie continucitin: dualytic everywhere on C, except for simple - Il pessible defined and and meromerphic poles at  $z = 0, -1, -1, \dots,$ with  $\operatorname{Res}(T, -n) = \frac{(-1)^n}{n!}, n = 0, 1, 2, \dots$ - Latisfie the properties of (U-1)! =: f(U): f(n+1) = n f(n), f(1) = 1.Does this define a unique function . Reflection formula: No: Consider f(=) + sin(kTZ), for any KEZ.  $\Gamma(1-2)\Gamma(2) = \frac{\pi}{Sin(\pi 2)} \quad (2e\mathbb{Z})$ Weed emoth condition: Logarithmic convexity.  $Z = \frac{1}{2}:$   $\Gamma'(\frac{1}{2})^2 = T, \quad \Gamma(\frac{1}{2}) = \sqrt{n^2}.$  $f(t_{X_1}-(1-t)_{X_2}) \leq f(x_1)^t f(x_2)^{t-t}$ Equivalent definition: f'(x) f(x) > f'(x)<sup>2</sup> when f is twice diff. Bohr-Mollerup Theorem. Ilver is a unique funtur fai defined for X>O that satisfier f(1) = 1, f(x+1) = x f(x) (x>0), f(x+1) = x f(x) (x>0), f(x) = T(x).f is legrantly anere,

Jirichle character X: Z -> C, ratisfying 1)  $\chi(mm) = \chi(m)\chi(n)$  for all  $m, m \in \mathbb{Z}$ 1.) There is an integer  $k \ge 1$  such that (G)  $\chi(u) = 0$  if  $gcd(u,k) \ge 1$   $\neq 0$  if gcd(u,k) = 1(6)  $\chi(n+k) = \chi(n)$  for all  $n \in \mathbb{Z}$ k = 4 $E_{\mathbf{x}}$   $\mathbf{k} = 3$ n Zo(u) Z, (u)  $M \left| \chi_{0}(u) \right| \chi_{1}(u)$ 2 k=5 X. X. X. X3 20)=1 01 0 0  $\chi(k-1) = \pm 1$ 1 2 -1 -2 -0 -1 0 Orthogonality -1 -1

Principal character:  $\chi(n) = 1$  for all n, gcd(m, k) = 1

Primitive character: Not induced by a character of smaller modulus



### Happy 103rd birthday, Richard Guy

# Infinite products involving Dirichlet characters and cyclotomic polynomials

Karl Dilcher

#### Dalhousie Number Theory Seminar, Sept. 30, 2019

### Joint work with



### Christophe Vignat

### (Université d'Orsay and Tulane University)

Karl Dilcher Infinite products

Well-known fact about infinite products:

$$\prod_{k=2}^{\infty} \left(1 - \frac{1}{k}\right)$$

diverges.

Well-known fact about infinite products:

$$\prod_{k=2}^{\infty} \left(1 - \frac{1}{k}\right)$$

diverges. On the other hand, e.g.,

$$\prod_{k=1}^{\infty} \left( 1 - \frac{(-1)^k}{2k+1} \right) = \frac{\pi}{4} \sqrt{2}.$$

Well-known fact about infinite products:

$$\prod_{k=2}^{\infty} \left(1 - \frac{1}{k}\right)$$

diverges. On the other hand, e.g.,

$$\prod_{k=1}^{\infty} \left( 1 - \frac{(-1)^k}{2k+1} \right) = \frac{\pi}{4} \sqrt{2}.$$

Related: Weierstrass factorization theorem which gives, e.g.,

$$ze^{\gamma z}\prod_{k=1}^{\infty}\left(1+rac{z}{k}
ight)e^{-z/k}=rac{1}{\Gamma(z)}$$

Well-known fact about infinite products:

$$\prod_{k=2}^{\infty} \left(1 - \frac{1}{k}\right)$$

diverges. On the other hand, e.g.,

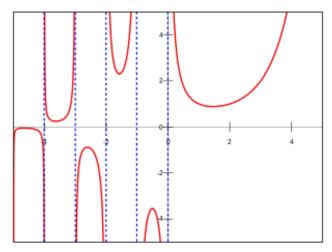
$$\prod_{k=1}^{\infty} \left( 1 - \frac{(-1)^k}{2k+1} \right) = \frac{\pi}{4} \sqrt{2}.$$

Related: Weierstrass factorization theorem which gives, e.g.,

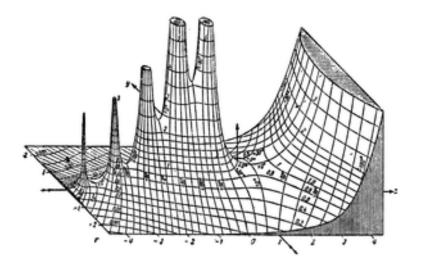
$$ze^{\gamma z}\prod_{k=1}^{\infty}\left(1+rac{z}{k}
ight)e^{-z/k}=rac{1}{\Gamma(z)}$$

First indication that the gamma function may be involved.

#### Gamma function



Source: Wikipedia, "Gamma Function".



Source: Wikipedia, "Gamma Function".



A general result:

A convergent infinite product of a rational function in the index k can always be written as a product or quotient of finitely many values of the gamma function.

The last identity is an ingredient in the proof of this fact.

A general result:

A convergent infinite product of a rational function in the index k can always be written as a product or quotient of finitely many values of the gamma function.

The last identity is an ingredient in the proof of this fact.

Goal of this talk: To extend the identity

$$\prod_{k=1}^{\infty} \left( 1 - \frac{(-1)^k}{2k+1} \right) = \frac{\pi}{4} \sqrt{2}$$

in a different direction.

Let  $\chi$  be the unique nontrivial Dirichlet character modulo 4, i.e., the periodic function of period 4 defined by  $\chi(1) = 1, \chi(3) = -1$ , and  $\chi(0) = \chi(2) = 0$ .

Let  $\chi$  be the unique nontrivial Dirichlet character modulo 4, i.e., the periodic function of period 4 defined by  $\chi(1) = 1, \chi(3) = -1$ , and  $\chi(0) = \chi(2) = 0$ .

Then we can rewrite this last identity as

$$\prod_{k=2}^{\infty} \left( 1 - \frac{\chi(k)}{k} \right) = \frac{\pi}{4} \sqrt{2}, \tag{1}$$

Let  $\chi$  be the unique nontrivial Dirichlet character modulo 4, i.e., the periodic function of period 4 defined by  $\chi(1) = 1, \chi(3) = -1$ , and  $\chi(0) = \chi(2) = 0$ .

Then we can rewrite this last identity as

$$\prod_{k=2}^{\infty} \left( 1 - \frac{\chi(k)}{k} \right) = \frac{\pi}{4} \sqrt{2}, \tag{1}$$

and as a function of the complex variable z as

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{\sqrt{2}}{1 - z} \sin \frac{(1 - z)\pi}{4}.$$
 (2)

Let  $\chi$  be the unique nontrivial Dirichlet character modulo 4, i.e., the periodic function of period 4 defined by  $\chi(1) = 1, \chi(3) = -1$ , and  $\chi(0) = \chi(2) = 0$ .

Then we can rewrite this last identity as

$$\prod_{k=2}^{\infty} \left( 1 - \frac{\chi(k)}{k} \right) = \frac{\pi}{4} \sqrt{2}, \tag{1}$$

and as a function of the complex variable z as

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{\sqrt{2}}{1 - z} \sin \frac{(1 - z)\pi}{4}.$$
 (2)

Note: (2) implies (1) by letting  $z \rightarrow 1$ .

Let  $\chi$  be the unique nontrivial Dirichlet character modulo 4, i.e., the periodic function of period 4 defined by  $\chi(1) = 1, \chi(3) = -1$ , and  $\chi(0) = \chi(2) = 0$ .

Then we can rewrite this last identity as

$$\prod_{k=2}^{\infty} \left( 1 - \frac{\chi(k)}{k} \right) = \frac{\pi}{4} \sqrt{2}, \tag{1}$$

and as a function of the complex variable z as

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{\sqrt{2}}{1 - z} \sin \frac{(1 - z)\pi}{4}.$$
 (2)

Note: (2) implies (1) by letting  $z \rightarrow 1$ .

This is a special case of the following result.

#### Theorem 1

Let  $\chi$  be a primitive nonprincipal Dirichlet character with conductor q > 2. Then

$$\prod_{k=2}^{\infty} \left(1 - \chi(k) \frac{z}{k}\right) = \frac{(2\pi)^{\varphi(q)/2}}{(1-z)\epsilon(q)} \cdot \prod_{\substack{j=1\\(j,q)=1}}^{q-1} \frac{1}{\Gamma\left(\frac{j-\chi(j)z}{q}\right)},$$

#### Theorem 1

Let  $\chi$  be a primitive nonprincipal Dirichlet character with conductor q > 2. Then

$$\prod_{k=2}^{\infty} \left(1-\chi(k)\frac{z}{k}\right) = \frac{(2\pi)^{\varphi(q)/2}}{(1-z)\epsilon(q)} \cdot \prod_{\substack{j=1\\(j,q)=1}}^{q-1} \frac{1}{\Gamma\left(\frac{j-\chi(j)z}{q}\right)},$$

where  $\epsilon(q)$  is defined by

$$\epsilon(q) = egin{cases} \sqrt{p} & ext{when } q ext{ is a power of a prime } p, \ 1 & ext{otherwise}. \end{cases}$$

Main ingredients in proof:

**1.** Infinite product expansion for  $1/\Gamma(z)$  leads to

$$\frac{\Gamma(u)}{\Gamma(u+v)} = e^{\gamma v} \prod_{k=0}^{\infty} \left(1 + \frac{v}{u+k}\right) e^{-v/(k+1)},$$

Main ingredients in proof:

**1.** Infinite product expansion for  $1/\Gamma(z)$  leads to

$$\frac{\Gamma(u)}{\Gamma(u+\nu)} = e^{\gamma\nu} \prod_{k=0}^{\infty} \left(1 + \frac{\nu}{u+k}\right) e^{-\nu/(k+1)},$$

and this, in turn, gives rise to

#### Lemma 2

Let  $n \in \mathbb{N}$ ,  $a, z_1, \ldots, z_n \in \mathbb{C}$  with  $z_j \neq 0$  for  $j = 1, \ldots, n$ , and let  $f : \{1, 2, \ldots, n\} \rightarrow \mathbb{C}$  satisfy  $f(1) + \cdots + f(n) = 0$ . Then

Main ingredients in proof:

**1.** Infinite product expansion for  $1/\Gamma(z)$  leads to

$$\frac{\Gamma(u)}{\Gamma(u+v)} = e^{\gamma v} \prod_{k=0}^{\infty} \left(1 + \frac{v}{u+k}\right) e^{-v/(k+1)},$$

and this, in turn, gives rise to

#### Lemma 2

Let  $n \in \mathbb{N}$ ,  $a, z_1, \ldots, z_n \in \mathbb{C}$  with  $z_j \neq 0$  for  $j = 1, \ldots, n$ , and let  $f : \{1, 2, \ldots, n\} \rightarrow \mathbb{C}$  satisfy  $f(1) + \cdots + f(n) = 0$ . Then

$$\prod_{k=0}^{\infty}\prod_{j=1}^{n}\left(1-f(j)\frac{a}{z_{j}+k}\right)=\prod_{j=1}^{n}\frac{\Gamma(z_{j})}{\Gamma(z_{j}-f(j)a)}$$

2. Products of certain gamma function values:

2. Products of certain gamma function values:

#### Lemma 3 (Chamberland and Straub, 2013)

For any integer  $n \ge 2$  and prime p we have

$$\prod_{\substack{j=1\\(j,n)=1}}^{n-1} \Gamma\left(\frac{j}{n}\right) = \begin{cases} (2\pi)^{\varphi(n)/2} & \text{if } n \text{ is not a prime power,} \\ \frac{1}{\sqrt{p}} (2\pi)^{\varphi(n)/2} & \text{if } n = p^{\nu}, \nu \ge 1. \end{cases}$$

2. Products of certain gamma function values:

#### Lemma 3 (Chamberland and Straub, 2013)

For any integer  $n \ge 2$  and prime p we have

$$\prod_{\substack{j=1\\(j,n)=1}}^{n-1} \Gamma\left(\frac{j}{n}\right) = \begin{cases} (2\pi)^{\varphi(n)/2} & \text{if } n \text{ is not a prime power,} \\ \frac{1}{\sqrt{p}} (2\pi)^{\varphi(n)/2} & \text{if } n = p^{\nu}, \nu \ge 1. \end{cases}$$

This extends the well-known identity

$$\prod_{j=1}^{n-1} \Gamma\left(\frac{j}{n}\right) = \frac{(2\pi)^{(n-1)/2}}{\sqrt{n}}.$$



Marc (left) and Armin (middle)

after being hit by a rogue wave in Peggy's Cove, Nova Scotia.

Using the reflection formula

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}, \quad z \neq 0, \pm 1, \pm 2, \ldots$$

Using the reflection formula

$$\Gamma(z)\Gamma(1-z)=rac{\pi}{\sin(\pi z)}, \quad z
eq 0,\pm 1,\pm 2,\ldots:$$

### Corollary 4

Let  $\chi$  be an odd primitive Dirichlet character with conductor q > 2. Then

$$\prod_{k=2}^{\infty} \left(1 - \chi(k)\frac{z}{k}\right) = \frac{2^{\varphi(q)/2}}{(1-z)\epsilon(q)} \cdot \prod_{\substack{j=1\\(j,q)=1}}^{\lfloor\frac{q-1}{2}\rfloor} \sin\left(\pi\frac{j - \chi(j)z}{q}\right),$$

Using the reflection formula

$$\Gamma(z)\Gamma(1-z)=rac{\pi}{\sin(\pi z)}, \quad z\neq 0,\pm 1,\pm 2,\ldots:$$

#### Corollary 4

Let  $\chi$  be an odd primitive Dirichlet character with conductor q > 2. Then

$$\prod_{k=2}^{\infty} \left(1 - \chi(k)\frac{z}{k}\right) = \frac{2^{\varphi(q)/2}}{(1-z)\epsilon(q)} \cdot \prod_{\substack{j=1\\(j,q)=1}}^{\lfloor\frac{q-1}{2}\rfloor} \sin\left(\pi\frac{j - \chi(j)z}{q}\right),$$

and in particular,

$$\prod_{k=2}^{\infty} \left(1 - \frac{\chi(k)}{k}\right) = \frac{\pi 2^{\varphi(q)/2}}{q\epsilon(q)} \cdot \prod_{\substack{j=2\\(j,q)=1}}^{\lfloor \frac{q-1}{2} \rfloor} \sin\left(\pi \frac{j - \chi(j)}{q}\right).$$

**Example 1.** Let q = 3. Then the only nonprincipal character is given by  $\chi(1) = 1$  and  $\chi(2) = -1$ . Then

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{2}{(1-z)\sqrt{3}} \cdot \sin(\frac{\pi}{3}(1-z)),$$

**Example 1.** Let q = 3. Then the only nonprincipal character is given by  $\chi(1) = 1$  and  $\chi(2) = -1$ . Then

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{2}{(1-z)\sqrt{3}} \cdot \sin(\frac{\pi}{3}(1-z)),$$

and with z = 1 and  $z = \frac{1}{2}$  we get, respectively,

$$\prod_{k=2}^{\infty}\left(1-\frac{\chi(k)}{k}\right)=\frac{2\pi}{3\sqrt{3}},\qquad\prod_{k=2}^{\infty}\left(1-\frac{\chi(k)}{2k}\right)=\frac{2}{\sqrt{3}}.$$

**Example 2.** q = 5 is the smallest conductor that has nonreal characters. We choose the one (of two) that is given by  $\chi(1) = 1$ ,  $\chi(2) = i$ ,  $\chi(3) = -i$  and  $\chi(4) = -1$ . Then

**Example 2.** q = 5 is the smallest conductor that has nonreal characters. We choose the one (of two) that is given by  $\chi(1) = 1$ ,  $\chi(2) = i$ ,  $\chi(3) = -i$  and  $\chi(4) = -1$ . Then

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{4}{(1-z)\sqrt{5}} \cdot \sin(\frac{\pi}{5}(1-z)) \cdot \sin(\frac{\pi}{5}(2-iz)),$$

**Example 2.** q = 5 is the smallest conductor that has nonreal characters. We choose the one (of two) that is given by  $\chi(1) = 1$ ,  $\chi(2) = i$ ,  $\chi(3) = -i$  and  $\chi(4) = -1$ . Then

$$\prod_{k=2}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = \frac{4}{(1-z)\sqrt{5}} \cdot \sin(\frac{\pi}{5}(1-z)) \cdot \sin(\frac{\pi}{5}(2-iz)),$$

and

$$\prod_{k=2}^{\infty} \left( 1 - \frac{\chi(k)}{k} \right) = \frac{4\pi}{5\sqrt{5}} \cdot \sin(\frac{\pi}{5}(2-i)) \\ = \frac{4\pi}{5\sqrt{5}} \left( \sin(\frac{2\pi}{5}) \cosh(\frac{\pi}{5}) - i \cos(\frac{2\pi}{5}) \sinh(\frac{\pi}{5}) \right).$$

### 3. Some multiple *L*-series

**Example:** Let  $\chi_3$  and  $\chi_{-4}$  be the nonprincipal characters with q = 3 and q = 4, respectively. Well-known identities:

$$\sum_{k=1}^{\infty} \frac{\chi_3}{k} = \frac{\pi}{3\sqrt{3}}, \qquad \sum_{k=1}^{\infty} \frac{\chi_{-4}}{k} = \frac{\pi}{4}.$$

On the right: The Gregory-Leibniz formula.

### 3. Some multiple *L*-series

**Example:** Let  $\chi_3$  and  $\chi_{-4}$  be the nonprincipal characters with q = 3 and q = 4, respectively. Well-known identities:

$$\sum_{k=1}^{\infty} \frac{\chi_3}{k} = \frac{\pi}{3\sqrt{3}}, \qquad \sum_{k=1}^{\infty} \frac{\chi_{-4}}{k} = \frac{\pi}{4}.$$

On the right: The Gregory-Leibniz formula.

More generally, let  $\chi$  be a Dirichlet character with  $q \ge 2$ . For  $n \ge 1$ , consider

$$L_n(\chi) := \sum_{1 \le k_1 < \cdots < k_n} \frac{\chi(k_1)}{k_1} \cdots \frac{\chi(k_n)}{k_n}.$$

### **3.** Some multiple *L*-series

**Example:** Let  $\chi_3$  and  $\chi_{-4}$  be the nonprincipal characters with q = 3 and q = 4, respectively. Well-known identities:

$$\sum_{k=1}^{\infty} \frac{\chi_3}{k} = \frac{\pi}{3\sqrt{3}}, \qquad \sum_{k=1}^{\infty} \frac{\chi_{-4}}{k} = \frac{\pi}{4}.$$

On the right: The Gregory-Leibniz formula.

More generally, let  $\chi$  be a Dirichlet character with  $q \ge 2$ . For  $n \ge 1$ , consider

$$L_n(\chi) := \sum_{1 \le k_1 < \cdots < k_n} \frac{\chi(k_1)}{k_1} \cdots \frac{\chi(k_n)}{k_n}.$$

Expanding the infinite product, we obtain

$$\prod_{k=1}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right) = 1 + \sum_{n=1}^{\infty} (-1)^n L_n(\chi) z^n.$$

(a) If  $\chi$  is the nonprincipal character with q = 3, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!\sqrt{3}} \left(\frac{\pi}{3}\right)^{2n+1}$$

(a) If  $\chi$  is the nonprincipal character with q = 3, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!\sqrt{3}} \left(\frac{\pi}{3}\right)^{2n+1}$$

(b) If  $\chi$  is the nonprincipal character with q = 4, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{4}\right)^{2n+1}$$

(a) If  $\chi$  is the nonprincipal character with q = 3, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!\sqrt{3}} \left(\frac{\pi}{3}\right)^{2n+1}$$

(b) If  $\chi$  is the nonprincipal character with q = 4, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{4}\right)^{2n+1}$$

(c) If  $\chi$  is the nonprincipal character with q = 6, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{6}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n \sqrt{3}}{(2n+1)!} \left(\frac{\pi}{6}\right)^{2n+1}.$$

(a) If  $\chi$  is the nonprincipal character with q = 3, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{3}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!\sqrt{3}} \left(\frac{\pi}{3}\right)^{2n+1}$$

(b) If  $\chi$  is the nonprincipal character with q = 4, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{4}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n}{(2n+1)!} \left(\frac{\pi}{4}\right)^{2n+1}$$

(c) If  $\chi$  is the nonprincipal character with q = 6, then

$$L_{2n}(\chi) = \frac{(-1)^n}{(2n)!} \left(\frac{\pi}{6}\right)^{2n}, \qquad L_{2n+1}(\chi) = \frac{(-1)^n \sqrt{3}}{(2n+1)!} \left(\frac{\pi}{6}\right)^{2n+1}.$$

In these cases: Only one factor on the right of our main result. Can this be generalized?

Can this be generalized? Recall the partial (or incomplete) exponential Bell polynomial:

$$B_{n,k}(x_1, x_2, \dots, x_{n-k+1}) = \sum \frac{n!}{j_1! \dots j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},$$

where the summation is over all  $j_1, j_2, \ldots, j_{n-k+1} \ge 0$  satisfying

$$j_1 + 2j_2 + \dots + (n - k + 1)j_{n-k+1} = k,$$
  
 $j_1 + j_2 + \dots + j_{n-k+1} = n;$ 

Can this be generalized? Recall the partial (or incomplete) exponential Bell polynomial:

$$B_{n,k}(x_1, x_2, \dots, x_{n-k+1}) = \sum \frac{n!}{j_1! \dots j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},$$

where the summation is over all  $j_1, j_2, \ldots, j_{n-k+1} \ge 0$  satisfying

$$j_1 + 2j_2 + \dots + (n - k + 1)j_{n-k+1} = k,$$
  
 $j_1 + j_2 + \dots + j_{n-k+1} = n;$ 

#### Example:

$$B_{n,0}(x_1, x_2, \ldots, x_{n+1}) = 0, \ B_{n,1}(x_1, x_2, \ldots, x_n) = x_n, \ B_{n,n}(x_1) = x_1^n.$$

Can this be generalized? Recall the partial (or incomplete) exponential Bell polynomial:

$$B_{n,k}(x_1, x_2, \dots, x_{n-k+1}) = \sum \frac{n!}{j_1! \dots j_{n-k+1}!} \left(\frac{x_1}{1!}\right)^{j_1} \cdots \left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},$$

where the summation is over all  $j_1, j_2, \ldots, j_{n-k+1} \ge 0$  satisfying

$$j_1 + 2j_2 + \dots + (n - k + 1)j_{n-k+1} = k,$$
  
 $j_1 + j_2 + \dots + j_{n-k+1} = n;$ 

#### Example:

 $B_{n,0}(x_1, x_2, \ldots, x_{n+1}) = 0, \ B_{n,1}(x_1, x_2, \ldots, x_n) = x_n, \ B_{n,n}(x_1) = x_1^n.$ 

The smallest case not belonging to these sequences is  $B_{3,2}(x_1, x_2) = 3x_1x_2$ .

Important use: Faà di Bruno's formula:

$$\frac{d^n}{dx^n}f(g(x)) = \sum_{k=1}^n f^{(k)}(g(x)) \cdot B_{n,k}(g'(x), g''(x), \dots, g^{(n-k+1)}(x)).$$

Important use: Faà di Bruno's formula:

$$\frac{d^n}{dx^n}f(g(x)) = \sum_{k=1}^n f^{(k)}(g(x)) \cdot B_{n,k}(g'(x), g''(x), \dots, g^{(n-k+1)}(x)).$$

Applying this to the digamma function

$$\psi(z) = \Gamma'(z)/\Gamma(z), \qquad z \neq 0, -1, -2, \ldots$$

Important use: Faà di Bruno's formula:

$$\frac{d^n}{dx^n}f(g(x)) = \sum_{k=1}^n f^{(k)}(g(x)) \cdot B_{n,k}(g'(x), g''(x), \dots, g^{(n-k+1)}(x)).$$

Applying this to the digamma function

$$\psi(z) = \Gamma'(z)/\Gamma(z), \qquad z \neq 0, -1, -2, \ldots$$

### Lemma 6

For  $n \in \mathbb{N}$  we have

$$\frac{d^n}{dx^n}\Gamma(y) = \Gamma(y)\sum_{k=1}^n B_{n,k}(\psi(y),\psi_1(y),\ldots,\psi_{n-k}(y)),$$
$$\frac{d^n}{dx^n}\frac{1}{\Gamma(y)} = \frac{1}{\Gamma(y)}\sum_{k=1}^n (-1)^k B_{n,k}(\psi(y),\psi_1(y),\ldots,\psi_{n-k}(y)),$$

where  $\psi_j(\mathbf{y}) = \psi^{(j)}(\mathbf{y})$  and  $\psi_0(\mathbf{y}) = \psi(\mathbf{y})$ .

#### Theorem 7

Let  $\chi$  be a primitive nonprincipal Dirichlet character with q > 2. Then for  $n \in \mathbb{N}$ ,

$$L_n(\chi)$$

$$=\frac{1}{q^n}\sum_{j\in\Phi}^*\prod_{kj\in\Phi}\frac{\chi(j)^{k_j}}{k_j!}\sum_{k=1}^{k_j}(-1)^kB_{k_j,k}\left(\psi(\frac{j}{q}),\psi_1(\frac{j}{q}),\ldots,\psi_{k_j-k}(\frac{j}{q})\right),$$

with index set  $\Phi := \{j \mid 1 \le j \le q - 1, \gcd(j, q) = 1\}$ , where the summation  $\sum^*$  is over all  $k_j (j \in \Phi)$  that sum to n.

#### Theorem 7

Let  $\chi$  be a primitive nonprincipal Dirichlet character with q > 2. Then for  $n \in \mathbb{N}$ ,

$$L_n(\chi)$$

$$=\frac{1}{q^n}\sum_{j\in\Phi}^*\prod_{j\in\Phi}\frac{\chi(j)^{k_j}}{k_j!}\sum_{k=1}^{k_j}(-1)^kB_{k_j,k}\left(\psi(\frac{j}{q}),\psi_1(\frac{j}{q}),\ldots,\psi_{k_j-k}(\frac{j}{q})\right),$$

with index set  $\Phi := \{j \mid 1 \le j \le q - 1, \gcd(j, q) = 1\}$ , where the summation  $\sum^*$  is over all  $k_j (j \in \Phi)$  that sum to n.

**Example 1:** For n = 1, the product reduces to a single factor. Since  $B_{1,1}(x_1) = x_1$ , we get the well-known identity

$$L_1(\chi) = \frac{1}{q} \sum_{j \in \Phi} \chi(j)(-1)\psi(\frac{j}{q}).$$

Let  $\chi$  be a primitive nonprincipal odd character with q > 2. Then

$$\sum_{1 \le k < \ell} \frac{\chi(k)}{k} \frac{\chi(\ell)}{\ell}$$
$$= \frac{\pi^2}{2q^2} \left[ \left( \sum_{j=1}^{\lfloor \frac{q-1}{2} \rfloor} \chi(j) \cot(\frac{\pi j}{q}) \right)^2 - \sum_{j=1}^{\lfloor \frac{q-1}{2} \rfloor} \left( \frac{\chi(j)}{\sin(\frac{\pi j}{q})} \right)^2 \right].$$

### 4. Some multiple *L*-star series

Consider the "star analog" of  $L_n(\chi)$ :

$$L_n^*(\chi) := \sum_{1 \le k_1 \le \cdots \le k_n} \frac{\chi(k_1)}{k_1} \cdots \frac{\chi(k_n)}{k_n}.$$

Note:  $\leq$  instead of < between subscripts.

### 4. Some multiple *L*-star series

Consider the "star analog" of  $L_n(\chi)$ :

$$L_n^*(\chi) := \sum_{1 \le k_1 \le \cdots \le k_n} \frac{\chi(k_1)}{k_1} \cdots \frac{\chi(k_n)}{k_n}.$$

Note:  $\leq$  instead of < between subscripts.

### Lemma 9

Let  $\chi$  be a primitive nonprincipal Dirichlet character. Then

$$\prod_{k=1}^{\infty} \left( 1 - \chi(k) \frac{z}{k} \right)^{-1} = 1 + \sum_{n=1}^{\infty} L_n^*(\chi) z^n.$$

Let  $\chi$  be a primitive nonprincipal Dirichlet character. Then for all  $n \ge 1$ ,

$$L_n^*(\chi) + \sum_{j=1}^{n-1} (-1)^j L_j(\chi) L_{n-j}^*(\chi) + (-1)^n L_n(\chi) = 0.$$

Let  $\chi$  be a primitive nonprincipal Dirichlet character. Then for all  $n \ge 1$ ,

$$L_n^*(\chi) + \sum_{j=1}^{n-1} (-1)^j L_j(\chi) L_{n-j}^*(\chi) + (-1)^n L_n(\chi) = 0.$$

For the "easy cases", we need Bernoulli and Euler polynomials:

$$rac{xe^{zx}}{e^{x}-1} = \sum_{n=0}^{\infty} B_n(z) rac{x^n}{n!} \qquad (|x| < 2\pi),$$
 $rac{2e^{zx}}{e^x+1} = \sum_{n=0}^{\infty} E_n(z) rac{x^n}{n!} \qquad (|x| < \pi),$ 

and Bernoulli and Euler numbers defined by

$$B_n := B_n(0), \qquad E_n := 2^n E_n(\frac{1}{2}), \qquad n = 0, 1, 2, \dots$$

(a) If  $\chi$  is the nonprincipal character with q = 3, then

$$L_{2n}^{*}(\chi) = (-1)^{n+1} 3(2^{2n}+1) \frac{B_{2n+1}(\frac{1}{3})}{(2n+1)!} \pi^{2n},$$
  
$$L_{2n+1}^{*}(\chi) = (-1)^{n} \frac{\sqrt{3}}{2} (2^{2n+1}-1)(3^{2n+2}-1) \frac{B_{2n+2}}{(2n+2)!} \left(\frac{\pi}{3}\right)^{2n+1}$$

(b) If  $\chi$  is the nonprincipal character with q = 4, then

$$L_n^*(\chi) = (-1)^{\lfloor \frac{n+1}{2} \rfloor} \frac{E_n(\frac{1}{4})}{n!} \pi^n.$$

(c) If  $\chi$  is the nonprincipal character with q = 6, then

$$L_{2n}^{*}(\chi) = (-1)^{n} \frac{1}{4} (3^{2n+1} + 1) \frac{E_{2n}}{(2n)!} \left(\frac{\pi}{6}\right)^{2n}$$
$$L_{2n+1}^{*}(\chi) = (-1)^{n+1} \frac{\sqrt{3}}{2} \frac{E_{2n+1}(\frac{1}{6})}{(2n+1)!} \pi^{2n+1}.$$

| n | $B_{2n+1}(\frac{1}{3})$ | <i>B</i> <sub>2<i>n</i>+2</sub> | $E_n(\frac{1}{4})$  | E <sub>2n</sub> | $E_{2n+1}(\frac{1}{6})$     |
|---|-------------------------|---------------------------------|---------------------|-----------------|-----------------------------|
| 0 | $-\frac{1}{6}$          | <u>1</u> 6                      | 1                   | 1               | $-\frac{1}{3}$              |
| 1 | 1<br>27                 | $-\frac{1}{30}$                 | $-\frac{1}{4}$      | -1              | <u>23</u><br>108            |
| 2 | $-\frac{5}{243}$        | $\frac{1}{42}$                  | $-\frac{3}{16}$     | 5               | $-\frac{1681}{3888}$        |
| 3 | <u>49</u><br>2187       | $-\frac{1}{30}$                 | <u>11</u><br>64     | -61             | <u>257543</u><br>139968     |
| 4 | $-\frac{809}{19683}$    | <u>5</u><br>66                  | <u>57</u><br>256    | 1385            | $-\frac{67637281}{5038848}$ |
| 5 | <u>20317</u><br>177147  | $-\frac{691}{2730}$             | $-\frac{361}{1024}$ | -50521          | 27138236663<br>181398528    |

The general case:

### Theorem 12

1\*/ )

Let  $\chi$  be a primitive nonprincipal Dirichlet character with q > 2. Then for all  $n \ge 1$ ,

$$= \frac{(-1)^n}{q^n} \sum_{j \in \Phi} \prod_{k \in I} \frac{\chi(j)^{k_j}}{k_j!} \sum_{k=1}^{k_j} B_{k_j,k}\left(\psi(\frac{j}{q}), \psi_1(\frac{j}{q}), \dots, \psi_{k_j-k}(\frac{j}{q})\right),$$

with index set  $\Phi := \{j \mid 1 \le j \le q - 1, \gcd(j, q) = 1\}$ , and summation  $\sum^*$  over all  $k_j (j \in \Phi)$  that sum to n.

With n = 2 and using the relation

$$L_2^*(\chi) + L_2(\chi) = L_1(\chi)L_1^*(\chi) = L_1(\chi)^2$$
:

With n = 2 and using the relation

$$L_2^*(\chi) + L_2(\chi) = L_1(\chi)L_1^*(\chi) = L_1(\chi)^2$$
:

### Corollary 13

Let  $\chi$  be a primitive nonprincipal character with q > 2. Then

$$\sum_{k=1}^{\infty} \frac{\chi(k)^2}{k^2} = \frac{\pi^2}{q^2} \sum_{j=1}^{\lfloor \frac{q-1}{2} \rfloor} \left(\frac{\chi(j)}{\sin(\frac{\pi j}{q})}\right)^2$$

With n = 2 and using the relation

$$L_2^*(\chi) + L_2(\chi) = L_1(\chi)L_1^*(\chi) = L_1(\chi)^2$$
:

### Corollary 13

Let  $\chi$  be a primitive nonprincipal character with q > 2. Then

$$\sum_{k=1}^{\infty} \frac{\chi(k)^2}{k^2} = \frac{\pi^2}{q^2} \sum_{j=1}^{\lfloor \frac{q-1}{2} \rfloor} \left( \frac{\chi(j)}{\sin(\frac{\pi j}{q})} \right)^2$$

In particular,

$$\sum_{\substack{k=1\\(k,q)=1}}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{q^2} \sum_{\substack{j=1\\(j,q)=1}}^{\lfloor \frac{q-1}{2} \rfloor} \csc^2(\frac{\pi j}{q}).$$

**Example:** If *q* is an odd prime, then the LHS becomes  $\zeta(2) - \zeta(2)/q^2$ , and with  $\zeta(2) = \pi^2/6$ , we get

$$\sum_{j=1}^{\frac{q-1}{2}} \csc^2(\frac{\pi j}{q}) = \frac{q^2 - 1}{6}.$$

(This is a well-known identity).

## 5. Products involving cyclotomic polynomials

### Theorem 14

If  $m \ge 3$  is an integer that contains a square, then

$$\prod_{k=1}^{\infty} \Phi_m(\frac{z}{k}) = \prod_{\substack{j=1 \ (j,m)=1}}^{m-1} \frac{1}{\Gamma(1 - z e^{2\pi i j/m})}.$$

# 5. Products involving cyclotomic polynomials

### Theorem 14

If  $m \ge 3$  is an integer that contains a square, then

$$\prod_{k=1}^{\infty} \Phi_m(\frac{z}{k}) = \prod_{\substack{j=1\\(j,m)=1}}^{m-1} \frac{1}{\Gamma(1 - z e^{2\pi i j/m})}.$$

**Example 1:** Let m = 4. Then  $\Phi_4(\frac{z}{k}) = 1 + (\frac{z}{k})^2$ , and

$$\prod_{k=1}^{\infty} \left(1 + \left(\frac{z}{k}\right)^2\right) = \frac{i}{-\pi z} \sin(\pi i z) = \frac{\sinh(\pi z)}{\pi z},$$

a well-known identity.

**Example 2:** Let m = 12. Then  $\Phi_{12}(x) = 1 - x^2 + x^4$ , and thus

$$\prod_{k=1}^{\infty} \left( 1 - \left(\frac{z}{k}\right)^2 + \left(\frac{z}{k}\right)^4 \right) = \frac{-1}{\pi^2 z^2} \sin(\pi z e^{\pi i/6}) \sin(\pi z e^{5\pi i/6})$$
$$= \frac{\sin^2(\frac{1}{2}\sqrt{3}\pi z) + \sinh^2(\frac{1}{2}\pi z)}{\pi^2 z^2}.$$

**Example 2:** Let m = 12. Then  $\Phi_{12}(x) = 1 - x^2 + x^4$ , and thus

$$\prod_{k=1}^{\infty} \left( 1 - \left(\frac{z}{k}\right)^2 + \left(\frac{z}{k}\right)^4 \right) = \frac{-1}{\pi^2 z^2} \sin(\pi z e^{\pi i/6}) \sin(\pi z e^{5\pi i/6})$$
$$= \frac{\sin^2(\frac{1}{2}\sqrt{3}\pi z) + \sinh^2(\frac{1}{2}\pi z)}{\pi^2 z^2}.$$

With  $z = 1/(2\sqrt{3})$ , we get  $\prod_{k=1}^{\infty} \left(1 - \frac{1}{12k^2} + \frac{1}{144k^4}\right) = \frac{6}{\pi^2} \cdot \cosh\left(\frac{\pi}{2\sqrt{3}}\right).$ 

# Thank you

