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1. Introduction

Well-known fact about infinite products:

∞∏
k=2

(
1− 1

k

)
diverges.

On the other hand, e.g.,

∞∏
k=1

(
1− (−1)k

2k + 1

)
=
π

4

√
2.

Related: Weierstrass factorization theorem which gives, e.g.,

zeγz
∞∏

k=1

(
1 +

z
k

)
e−z/k =

1
Γ(z)

.

First indication that the gamma function may be involved.
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Source: Wikipedia, “Gamma Function".
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A general result:

A convergent infinite product of a rational function in the index k
can always be written as a product or quotient of finitely many
values of the gamma function.

The last identity is an ingredient in the proof of this fact.

Goal of this talk: To extend the identity

∞∏
k=1

(
1− (−1)k

2k + 1

)
=
π

4

√
2

in a different direction.
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2. Main Result

Let χ be the unique nontrivial Dirichlet character modulo 4,
i.e., the periodic function of period 4 defined by
χ(1) = 1, χ(3) = −1, and χ(0) = χ(2) = 0.

Then we can rewrite this last identity as

∞∏
k=2

(
1− χ(k)

k

)
=
π

4

√
2, (1)

and as a function of the complex variable z as

∞∏
k=2

(
1− χ(k)

z
k

)
=

√
2

1− z
sin

(1− z)π

4
. (2)

Note: (2) implies (1) by letting z → 1.

This is a special case of the following result.
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Theorem 1
Let χ be a primitive nonprincipal Dirichlet character with
conductor q > 2. Then

∞∏
k=2

(
1− χ(k)

z
k

)
=

(2π)ϕ(q)/2

(1− z)ε(q)
·

q−1∏
j=1

(j,q)=1

1

Γ
(

j−χ(j)z
q

) ,

where ε(q) is defined by

ε(q) =

{√
p when q is a power of a prime p,

1 otherwise.
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Main ingredients in proof:

1. Infinite product expansion for 1/Γ(z) leads to

Γ(u)

Γ(u + v)
= eγv

∞∏
k=0

(
1 +

v
u + k

)
e−v/(k+1),

and this, in turn, gives rise to

Lemma 2
Let n ∈ N, a, z1, . . . , zn ∈ C with zj 6= 0 for j = 1, . . . ,n, and let
f : {1,2, . . . ,n} → C satisfy f (1) + · · ·+ f (n) = 0. Then

∞∏
k=0

n∏
j=1

(
1− f (j)

a
zj + k

)
=

n∏
j=1

Γ(zj)

Γ(zj − f (j)a)
.
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2. Products of certain gamma function values:

Lemma 3 (Chamberland and Straub, 2013)
For any integer n ≥ 2 and prime p we have

n−1∏
j=1

(j,n)=1

Γ

(
j
n

)
=

{
(2π)ϕ(n)/2 if n is not a prime power,

1√
p (2π)ϕ(n)/2 if n = pν , ν ≥ 1.

This extends the well-known identity

n−1∏
j=1

Γ

(
j
n

)
=

(2π)(n−1)/2
√

n
.
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Marc (left) and Armin (middle)
after being hit by a rogue wave in Peggy’s Cove, Nova Scotia.
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Using the reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, z 6= 0,±1,±2, . . . :

Corollary 4
Let χ be an odd primitive Dirichlet character with conductor
q > 2. Then

∞∏
k=2

(
1− χ(k)

z
k

)
=

2ϕ(q)/2

(1− z)ε(q)
·
b q−1

2 c∏
j=1

(j,q)=1

sin
(
π

j − χ(j)z
q

)
,

and in particular,

∞∏
k=2

(
1− χ(k)

k

)
=
π2ϕ(q)/2

qε(q)
·
b q−1

2 c∏
j=2

(j,q)=1

sin
(
π

j − χ(j)
q

)
.
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Example 1. Let q = 3. Then the only nonprincipal character is
given by χ(1) = 1 and χ(2) = −1. Then

∞∏
k=2

(
1− χ(k)

z
k

)
=

2
(1− z)

√
3
· sin(π3 (1− z)),

and with z = 1 and z = 1
2 we get, respectively,

∞∏
k=2

(
1− χ(k)

k

)
=

2π
3
√

3
,

∞∏
k=2

(
1− χ(k)

2k

)
=

2√
3
.
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Example 2. q = 5 is the smallest conductor that has nonreal
characters. We choose the one (of two) that is given by
χ(1) = 1, χ(2) = i , χ(3) = −i and χ(4) = −1. Then

∞∏
k=2

(
1− χ(k)

z
k

)
=

4
(1− z)

√
5
· sin(π5 (1− z)) · sin(π5 (2− iz)),

and
∞∏

k=2

(
1− χ(k)

k

)
=

4π
5
√

5
· sin(π5 (2− i))

=
4π

5
√

5

(
sin(2π

5 ) cosh(π5 )− i cos(2π
5 ) sinh(π5 )

)
.
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3. Some multiple L-series

Example: Let χ3 and χ−4 be the nonprincipal characters with
q = 3 and q = 4, respectively. Well-known identities:

∞∑
k=1

χ3

k
=

π

3
√

3
,

∞∑
k=1

χ−4

k
=
π

4
.

On the right: The Gregory-Leibniz formula.

More generally, let χ be a Dirichlet character with q ≥ 2. For
n ≥ 1, consider

Ln(χ) :=
∑

1≤k1<···<kn

χ(k1)

k1
. . .

χ(kn)

kn
.

Expanding the infinite product, we obtain
∞∏

k=1

(
1− χ(k)

z
k

)
= 1 +

∞∑
n=1

(−1)nLn(χ)zn.
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Corollary 5

(a) If χ is the nonprincipal character with q = 3, then

L2n(χ) =
(−1)n

(2n)!

(π
3

)2n
, L2n+1(χ) =

(−1)n

(2n + 1)!
√

3

(π
3

)2n+1
.

(b) If χ is the nonprincipal character with q = 4, then

L2n(χ) =
(−1)n

(2n)!

(π
4

)2n
, L2n+1(χ) =

(−1)n

(2n + 1)!

(π
4

)2n+1
.

(c) If χ is the nonprincipal character with q = 6, then

L2n(χ) =
(−1)n

(2n)!

(π
6

)2n
, L2n+1(χ) =

(−1)n
√

3
(2n + 1)!

(π
6

)2n+1
.

In these cases:
Only one factor on the right of our main result.
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Can this be generalized?

Recall the partial (or incomplete)
exponential Bell polynomial:

Bn,k (x1, x2, . . . , xn−k+1)

=
∑ n!

j1! . . . jn−k+1!

(x1

1!

)j1
· · ·
(

xn−k+1

(n − k + 1)!

)jn−k+1

,

where the summation is over all j1, j2, . . . , jn−k+1 ≥ 0 satisfying

j1 + 2j2 + · · ·+ (n − k + 1)jn−k+1 = k ,
j1 + j2 + · · ·+ jn−k+1 = n;

Example:

Bn,0(x1, x2, . . . , xn+1) = 0, Bn,1(x1, x2, . . . , xn) = xn, Bn,n(x1) = xn
1 .

The smallest case not belonging to these sequences is
B3,2(x1, x2) = 3x1x2.
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Important use: Faà di Bruno’s formula:

dn

dxn f (g(x)) =
n∑

k=1

f (k)(g(x)) ·Bn,k (g′(x),g′′(x), . . . ,g(n−k+1)(x)).

Applying this to the digamma function

ψ(z) = Γ′(z)/Γ(z), z 6= 0,−1,−2, . . . :

Lemma 6
For n ∈ N we have

dn

dxn Γ(y) = Γ(y)
n∑

k=1

Bn,k (ψ(y), ψ1(y), . . . , ψn−k (y)),

dn

dxn
1

Γ(y)
=

1
Γ(y)

n∑
k=1

(−1)kBn,k (ψ(y), ψ1(y), . . . , ψn−k (y)),

where ψj(y) = ψ(j)(y) and ψ0(y) = ψ(y).
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Theorem 7
Let χ be a primitive nonprincipal Dirichlet character with q > 2.
Then for n ∈ N,

Ln(χ)

=
1
qn

∑∗∏
j∈Φ

χ(j)kj

kj !

kj∑
k=1

(−1)kBkj ,k

(
ψ( j

q ), ψ1( j
q ), . . . , ψkj−k ( j

q )
)
,

with index set Φ := {j | 1 ≤ j ≤ q − 1,gcd(j ,q) = 1}, where the
summation

∑∗ is over all kj(j ∈ Φ) that sum to n.

Example 1: For n = 1, the product reduces to a single factor.
Since B1,1(x1) = x1, we get the well-known identity

L1(χ) =
1
q

∑
j∈Φ

χ(j)(−1)ψ( j
q ).
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Corollary 8
Let χ be a primitive nonprincipal odd character with q > 2.
Then ∑

1≤k<`

χ(k)

k
χ(`)

`

=
π2

2q2


b

q−1
2 c∑

j=1

χ(j) cot(πj
q )


2

−
b q−1

2 c∑
j=1

(
χ(j)

sin(πj
q )

)2

 .
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4. Some multiple L-star series

Consider the “star analog" of Ln(χ):

L∗n(χ) :=
∑

1≤k1≤···≤kn

χ(k1)

k1
. . .

χ(kn)

kn
.

Note: ≤ instead of < between subscripts.

Lemma 9
Let χ be a primitive nonprincipal Dirichlet character. Then

∞∏
k=1

(
1− χ(k)

z
k

)−1
= 1 +

∞∑
n=1

L∗n(χ)zn.
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Corollary 10
Let χ be a primitive nonprincipal Dirichlet character. Then for all
n ≥ 1,

L∗n(χ) +
n−1∑
j=1

(−1)jLj(χ)L∗n−j(χ) + (−1)nLn(χ) = 0.

For the “easy cases", we need Bernoulli and Euler polynomials:

xezx

ex − 1
=
∞∑

n=0

Bn(z)
xn

n!
(|x | < 2π),

2ezx

ex + 1
=
∞∑

n=0

En(z)
xn

n!
(|x | < π),

and Bernoulli and Euler numbers defined by

Bn := Bn(0), En := 2nEn(1
2), n = 0,1,2, . . . .
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Corollary 11

(a) If χ is the nonprincipal character with q = 3, then

L∗2n(χ) = (−1)n+13(22n + 1)
B2n+1(1

3)

(2n + 1)!
π2n,

L∗2n+1(χ) = (−1)n
√

3
2

(22n+1 − 1)(32n+2 − 1)
B2n+2

(2n + 2)!

(π
3

)2n+1
.

(b) If χ is the nonprincipal character with q = 4, then

L∗n(χ) = (−1)b
n+1

2 c
En(1

4)

n!
πn.

(c) If χ is the nonprincipal character with q = 6, then

L∗2n(χ) = (−1)n 1
4

(32n+1 + 1)
E2n

(2n)!

(π
6

)2n
,

L∗2n+1(χ) = (−1)n+1
√

3
2

E2n+1(1
6)

(2n + 1)!
π2n+1.
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n B2n+1(1
3) B2n+2 En(1

4) E2n E2n+1(1
6)

0 −1
6

1
6 1 1 −1

3

1 1
27 − 1

30 −1
4 −1 23

108

2 − 5
243

1
42 − 3

16 5 −1681
3888

3 49
2187 − 1

30
11
64 −61 257543

139968

4 − 809
19683

5
66

57
256 1385 −67637281

5038848

5 20317
177147 − 691

2730 − 361
1024 −50521 27138236663

181398528
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The general case:

Theorem 12
Let χ be a primitive nonprincipal Dirichlet character with q > 2.
Then for all n ≥ 1,

L∗n(χ)

=
(−1)n

qn

∑∗∏
j∈Φ

χ(j)kj

kj !

kj∑
k=1

Bkj ,k

(
ψ( j

q ), ψ1( j
q ), . . . , ψkj−k ( j

q )
)
,

with index set Φ := {j | 1 ≤ j ≤ q − 1,gcd(j ,q) = 1}, and
summation

∑∗ over all kj(j ∈ Φ) that sum to n.
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With n = 2 and using the relation

L∗2(χ) + L2(χ) = L1(χ)L∗1(χ) = L1(χ)2 :

Corollary 13
Let χ be a primitive nonprincipal character with q > 2. Then

∞∑
k=1

χ(k)2

k2 =
π2

q2

b q−1
2 c∑

j=1

(
χ(j)

sin(πj
q )

)2

.

In particular,

∞∑
k=1

(k ,q)=1

1
k2 =

π2

q2

b q−1
2 c∑

j=1
(j,q)=1

csc2(πj
q ).
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Example: If q is an odd prime, then the LHS becomes
ζ(2)− ζ(2)/q2, and with ζ(2) = π2/6, we get

q−1
2∑

j=1

csc2(πj
q ) =

q2 − 1
6

.

(This is a well-known identity).

Karl Dilcher Infinite products



5. Products involving cyclotomic polynomials

Theorem 14
If m ≥ 3 is an integer that contains a square, then

∞∏
k=1

Φm( z
k ) =

m−1∏
j=1

(j,m)=1

1
Γ(1− ze2πij/m)

.

Example 1: Let m = 4. Then Φ4( z
k ) = 1 + ( z

k )2, and

∞∏
k=1

(
1 + ( z

k )2
)

=
i
−πz

sin(πiz) =
sinh(πz)

πz
,

a well-known identity.
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Example 2: Let m = 12. Then Φ12(x) = 1− x2 + x4, and thus

∞∏
k=1

(
1− ( z

k )2 + ( z
k )4
)

=
−1
π2z2 sin(πzeπi/6) sin(πze5πi/6)

=
sin2(1

2

√
3πz) + sinh2(1

2πz)

π2z2 .

With z = 1/(2
√

3), we get

∞∏
k=1

(
1− 1

12k2 +
1

144k4

)
=

6
π2 · cosh

(
π

2
√

3

)
.
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Thank you
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