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Preliminaries

• Fq: The finite field of order q where q = ps , p is prime.

• R[x ]: The ring of polynomials with coefficients in R.

Definition

Let a, b and c be elements of an integral domain R.

1 a and b are associates, a = ub, where u is a unit of R.

2 If a is not zero, a is called an irreducible if it is not a unit and, whenever a = bc, then b
or c is a unit.

3 If a is not zero, a is called a prime if a is not a unit and a | bc implies a | b or a | c.
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Preliminaries

Definition (UFD)

An integral domain R is a unique factorization domain if

1 Every nonzero element of R that is not a unit can be written as a product of irreducibles
of R; and

2 The factorization into irreducibles is unique up to associates and the order in which the
factors appear.

Theorem
• Let F be a field. Then, F [x ] is a UFD.

• If R is a UFD, then R[x ] is a UFD.
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Preliminaries
Resultant

Let f (x) =
n∑

i=0
aix

i and g(x) =
m∑
i=0

bix
i be two polynomials over a commutative ring R with

identity. The Sylvester matrix of f and g is the following (n + m)× (n + m) matrix:

Sylv =



am · · · a0
. . . · · · . . .

am · · · a0
bn · · · b0

. . . · · · . . .

bn · · · b0


Definition (Resultant)

The resultant of two polynomials f and g is defined by:

Resx(f , g) = det(Sylv)
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Preliminaries
Properties of Resultants

Theorem

Let f (x) = an
n∏

i=1
(x −αi ) and g(x) = bm

m∏
j=1

(x − βj) be two polynomials of an integral domain

R with indeterminates α1, . . . , αn and β1, . . . , βm.Then

Resx(f , g) = (−1)nmbnm

m∏
i=1

f (βi ). (1)

Resx(f , g) = amn

n∏
i=1

g(αi ). (2)

Resx(f , g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj) (3)
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Preliminaries

Theorem (Rüdiger G.K. Loos 1973)

Let f (x) = an
n∏

i=1
(x − αi ) and g(x) = bm

m∏
j=1

(x − βj) be two polynomials of positive degree

over an integral domain R with roots α1, . . . , αn and β1, . . . , βm respectively. Then the
polynomial

r(x) = (−1)nmgamn b
n
m

n∏
i=1

m∏
j=1

(x − γij)

has nm roots, not necessarily distinct, suct that:

1 r(x) = Resy (f (x − y), g(y)), γij = αi + βj , g = 1.

2 r(x) = Resy (f (x + y), g(y)), γij = αi − βj , g = 1.

3 r(x) = Resy (ymf (x/y), g(y)), γij = αiβj , g = 1.

4 B−m
0 r(x) = Resy (f (xy), g(y)), γij = αi/βj , g = (−1)nmg(0)n

/
bnm , g(0) 6= 0 .
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Preliminaries

Proof.

The proof is based on (1)in all cases.

Corollary

Except for [4], the polynomial r(x) is monic if f and g are.
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Part I

Additive decomposition for polynomials over Fq
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The diamond product

• Let Ω be the algebraic closure of Fq and ∅ 6= G ⊂ Ω such that ∀α ∈ G , σ(α) ∈ G where
σ is the Frobenius automorphism of Ω.

• There is defined a binary operation � on G such that:∀α, β ∈ G : σ(α � β) = σ(α) � σ(β).
• MG [q, x ] denote the set of all monic polynomials f in Fq such that:

1 The degree of f ≥ 1.
2 All the roots of f lie in G .
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The diamond product

• Let f , g ∈ MG [q, x ] such that f =
∏
α

(x − α) and g =
∏
β

(x − β), then:

Definition

The diamond product of f and g is defined as:

f � g =
∏
α

∏
β

(x − α � β) (4)

• Clearly, if deg(f ) = n and deg(g) = m then deg(f � g) = nm.
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The diamond product

Example

1 Let G = Ω and α � β = α + β. We’ll have

f � g =
∏
α

∏
β

(x − (α + β)) (5)

=
∏
α

g(x − α) =
∏
β

f (x − β), (6)

= f ∗ g . (7)

2 If G = Ω/{0} and α � β = αβ, then:

f � g =
∏
α

∏
β

(x − αβ), (8)

=
∏
α

αmg(x/α) =
∏
β

βnf (x/β), (9)

= f ◦ g . (10)
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The diamond product

Example

Let f = x2 + x + 1 and g = x3 + x + 1 be two polynomials in F2[x ].
In Ω[x ], we have

f = (x − α)(x − α2), g = (x − β)(x − β2)(x − β4)

where α and β are the roots of f and g respectively.
Applying (6) and (8), it follows that:

f ∗ g = g(x − α)g(x − α2),

= x6 + x5 + x3 + x2 + 1.

f ◦ g = α3g(x/α)α6g(x/α2) = (x3 + α2x + α3)(x3 + α4x + α6),

= x6 + x4 + x2 + x + 1.

f ∗ f = x2(x + 1)2 and f ◦ f = (x + 1)2(x2 + x + 1).
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The diamond product

Theorem

The diamond product is a binary operation on MG [q, x ].

• The units of MG [q, x ] are the polynomials x − c where c is a unit in G .

• f and g are associates (f ∼ g) iff f = (x − c) � g for some unit x − c .

• A polynomial h in MG [q, x ] which is not a unit is said to be decomposable with respect
to � iff there are polynomials f and g such that h = f � g , otherwise, h is idecomposable.
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The diamond product

Theorem

Suppose that (G , �) is a group and let f and g be polynomials in MG [q, x ] with deg(f ) = n
and deg(g) = m. Then, the diamond product f � g is irreducible iff both f and g are
irreducible and (n,m)=1.

Proof.
• Brawley, J. V., and Carlitz, L. (1987). Irreducibles and the composed product for

polynomials over a finite field. Discrete Mathematics, 65(2), 115-139.

• Munemasa, Akihiro, and Hiroko Nakamura. ”A note on the Brawley-Carlitz theorem on
irreducibility of composed products of polynomials over finite fields.” International
Workshop on the Arithmetic of Finite Fields. Springer, Cham, 2016.
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Irreducible polynomials and composed addition

Theorem

Let G denote the additive group of Ω and let f be an irreducible polynomial in MG [q, x ] of
degree n. If f is additivley decomposable in MG [q, x ] as

f = f1 ∗ f2 ∗ · · · ∗ ft = g1 ∗ g2 ∗ · · · ∗ gt ,

where deg fi = deg gi = ni , i = 1, 2, . . . , t , then:

1 The ni ’s are pairwise relatively prime, where n = n1 . . . nt .

2 The fi ’s and gi ’s are irreducible, and

3 fi and gi are associates for each other.
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Part II

Additive decomposition over UFD
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Additive decomposition over Commutative Rings

Let h ∈ Fq[x ], a monic polynomial that is decomposable as f ∗ g . Let α1, . . . , αn, β1, . . . , βm
be the roots of f and g . Clearly we have:

(−1)nf (x − t) =
n∏

i=1

(t − (x − αi ))

Hence,

f ∗ g =
n∏

i=1

m∏
j=1

(x − (αi + βj)). (11)

= Rest((−1)nf (x − t), g(t)). (12)

Using 12, we can define composed additon for polyomials over a commutative ring.
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Additive decomposition over Commutative Rings

Let R be a commutative ring and let f , g ∈ R[x ]. Then,

f ∗ g = Rest((−1)nf (x − t), g(t)) = ambn
n∏

i=1

m∏
j=1

(x − (αi + βj)) (13)

where αi and βj are the roots of f and g respectively.
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Additive Decomposition Over Integral Domains

Proposition

Let R be an integral domain and K its field of fractions. Let h, f , g ∈ R[x ] such that h = ch1 ,
f = af1 and g = bg1 where c , a, b ∈ R and h1, f1, g1 ∈ K [x ] are monic polynomials. Then
h = f ∗ g iff h1 = f1 ∗ g1 over K and c = adeg(g)bdeg(f ).
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Some Indecomposable Polynomials

Theorem

Let R be an integral domain. If h ∈ R[x ] has leading coefficient p, where p is prime, then h is
additively indecomposable.

Proof.

We use the previous proposition.

Example

All polynomials f ∈ Z[x ] are additively indecomposable if their leading coefficient is a prime
number.
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Some Idecomposable Polynomials

Theorem

Let R be a unqiue factorization domain and let h ∈ R[x ] with deg h > 1. If h has leading
coefficient that is a square-free and not a unit of R, then h is not additively deomposable.

Proof.

Let c = adeg gbdeg f be the leading coefficient of h where a and b are the leading coefficients of
f and g (respectively).
Suppose for the contradiction that h is ADD. Since c is a square-free, c = up1p2 . . . pr

1 pi | a.

2 pi | b.

3 p1p2 . . . pk | a and pk+1 . . . pr | b.
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Additively Decomposable Polynomials

Let R and S be two commutative rings and let

σ : R −→ S

be a unit-preserving homomorphism.

σ : R[x ] −→ S [x ]

anx
n + · · ·+ a0 7→ σ(an)xn + · · ·+ σ(a0)
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Additively Decomposable Polynomials

Theorem

Let σ : R −→ S be a unit-preserving ring homomorphism from an integral domain R to an
integral domain S, and let h ∈ R[x ]. If deg σ(h) = deg h and h = f ∗ g over R , then
σ(h) = σ(f ) ∗ σ(g) over S.

Proof.

We will extend σ to an homomorphism form R[x , t] to S [x , t].

σ(Resx(f , g)) = Resx(σ(f ), σ(g)),

f ∗ g = Rest((−1)deg f f (x − t), g(t)).
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Additively Decomposable Polynomials
Linear Polynomials

Lemma

Let R be a unique factorization domain and let h = ax + b ∈ R[x ], where a is not a unit in R.
Then h = f1 ∗ · · · ∗ fr for some linear polynomials f1, . . . , fr ∈ R[x ] which are additively
indecomposable.

Theorem

Let R be a unique factorization domain, let h ∈ R[x ] be a nonunit with respect to composed
addition. Then h = f1 ∗ · · · ∗ fr , for some polynomials f1, . . . , fr ∈ R[x ] which are additively
indecomposable.
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Additively Decomposable Polynomials
Irreducible Polynomials

Over a finite field, the additive decomposition of an irreducible is unique up to unit. For
example,

(x2 + x + 1) ∗ (x3 + x + 1) = (x2 + x + 1) ∗ (x3 + x2 + 1) = x6 + x5 + x3 + x2 + 1

where x3 + x2 + 1 = (x + 1) ∗ (x3 + x + 1). However, that is not the case over Z.

36x4 = (2x2) ∗ (3x2) = x2 ∗ (6x2)

but there’s no polynomial ax + b ∈ Z[x ] such that x2 ∗ (ax + b) is either 3x2 or 6x2.
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Additively Decomposable Polynomials
Irreducible Polynomials

Let h ∈ Fq[x ] , monic and irreducible.

h=f*g if and only if f and g are irreducible ,(deg f , deg g) = 1

Let h = x4 − 10x + 1 ∈ Z[x ], we have:

h = (x2 − 2) ∗ (x2 − 3).

Theorem

Let R be an integral domain and let h ∈ R[x ] be an irreducible polynomial over R. If h = f ∗ g
over R then both f and g are irreducible.
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Additively Decomposable Polynomials
Primitive Polynomials

The content of a polynomial f is defined by Cont(f ) = gcd(a0, . . . , am). When Cont(f ) = 1,
f is said to be primitive.

Theorem

Let R be a unique factorization domain and h ∈ R[x ]. Suppose that h = f ∗ g is additively
decomposable, where

f (x) =
n∑

i=0

fix
i and g(x) =

m∑
i=0

gix
i ,

such that deg(f ) = n and deg(g) = m. Suppose in addition that gcd(Cont(g), fn) = 1 and
gcd(Cont(f ), gm) = 1. Then, h primitive implies f and g primitive.

• 2x3 + 3x2 − 11x − 6 and 4x2 − 13x − 12 are both primitive in Z[x ] but

f ∗ g = 256x6 − 1728x5 − 2672x4 + 26604x3 − 16610x2 − 37350x + 31500

is not primitive.
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Thank you!
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