Additive Decomposition of Polynomials over Unique Factorization Domains

Manar Benoumhani Supervisor: Dr.Leila Benferhat

Department of Mathematics University of sciences and technology Houari Boumediene

October 21, 2019

1 Preliminaries.

- **2** The Diamond Product over \mathbb{F}_q .
- **3** Additive Decompositon Over UFD's.

- \mathbb{F}_q : The finite field of order q where $q = p^s$, p is prime.
- *R*[*x*]: The ring of polynomials with coefficients in *R*.

Definition

Let a, b and c be elements of an integral domain R.

- **1** a and b are associates, a = ub, where u is a unit of R.
- 2 If a is not zero, a is called an irreducible if it is not a unit and, whenever a = bc, then b or c is a unit.
- **(3)** If a is not zero, a is called a prime if a is not a unit and $a \mid bc$ implies $a \mid b$ or $a \mid c$.

Definition (UFD)

An integral domain R is a unique factorization domain if

- Every nonzero element of R that is not a unit can be written as a product of irreducibles of R; and
- 2 The factorization into irreducibles is unique up to associates and the order in which the factors appear.

Definition (UFD)

An integral domain R is a unique factorization domain if

- Every nonzero element of R that is not a unit can be written as a product of irreducibles of R; and
- 2 The factorization into irreducibles is unique up to associates and the order in which the factors appear.

Theorem

- Let F be a field. Then, F[x] is a UFD.
- If R is a UFD, then R[x] is a UFD.

Preliminaries

Resultant

Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{m} b_i x^i$ be two polynomials over a commutative ring R with identity. The Sylvester matrix of f and g is the following $(n + m) \times (n + m)$ matrix:

$$Sylv = \begin{pmatrix} a_m & \cdots & a_0 & & \\ & \ddots & \cdots & \ddots & \\ & & a_m & \cdots & a_0 \\ b_n & \cdots & b_0 & & \\ & \ddots & \cdots & \ddots & \\ & & & b_n & \cdots & b_0 \end{pmatrix}$$

Definition (Resultant)

The resultant of two polynomials f and g is defined by:

$$Res_x(f,g) = \det(Sylv)$$

Let $f(x) = a_n \prod_{i=1}^n (x - \alpha_i)$ and $g(x) = b_m \prod_{j=1}^m (x - \beta_j)$ be two polynomials of an integral domain R with indeterminates $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m . Then

$$Res_{x}(f,g) = (-1)^{nm} b_{m}^{n} \prod_{i=1}^{m} f(\beta_{i}).$$
 (1)

$$\operatorname{Res}_{\mathsf{x}}(f,g) = a_n^m \prod_{i=1}^n g(\alpha_i).$$
⁽²⁾

$$\operatorname{Res}_{x}(f,g) = a_{n}^{m} b_{m}^{n} \prod_{i=1}^{n} \prod_{j=1}^{m} (\alpha_{i} - \beta_{j})$$
(3)

Theorem (Rüdiger G.K. Loos 1973)

Let $f(x) = a_n \prod_{i=1}^n (x - \alpha_i)$ and $g(x) = b_m \prod_{j=1}^m (x - \beta_j)$ be two polynomials of positive degree

over an integral domain R with roots $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m respectively. Then the polynomial

$$r(x) = (-1)^{nm} g a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (x - \gamma_{ij})$$

has nm roots, not necessarily distinct, suct that:

1
$$r(x) = Res_y(f(x - y), g(y)), \gamma_{ij} = \alpha_i + \beta_j, g = 1.$$

2 $r(x) = Res_y(f(x + y), g(y)), \gamma_{ij} = \alpha_i - \beta_j, g = 1.$
3 $r(x) = Res_y(y^m f(x/y), g(y)), \gamma_{ij} = \alpha_i \beta_j, g = 1.$
4 $B_0^{-m} r(x) = Res_y(f(xy), g(y)), \gamma_{ij} = \alpha_i / \beta_j, g = (-1)^{nm} g(0)^n / b_m^n, g(0) \neq 0.$

Proof.

The proof is based on (1)in all cases.

Proof.

The proof is based on (1)in all cases.

Corollary

Except for [4], the polynomial r(x) is monic if f and g are.

Part I

Additive decomposition for polynomials over \mathbb{F}_q

• Let Ω be the algebraic closure of \mathbb{F}_q and $\emptyset \neq G \subset \Omega$ such that $\forall \alpha \in G, \sigma(\alpha) \in G$ where σ is the Frobenius automorphism of Ω .

- Let Ω be the algebraic closure of F_q and Ø ≠ G ⊂ Ω such that ∀α ∈ G, σ(α) ∈ G where σ is the Frobenius automorphism of Ω.
- There is defined a binary operation \diamond on G such that: $\forall \alpha, \beta \in G : \sigma(\alpha \diamond \beta) = \sigma(\alpha) \diamond \sigma(\beta)$.

- Let Ω be the algebraic closure of \mathbb{F}_q and $\emptyset \neq G \subset \Omega$ such that $\forall \alpha \in G, \sigma(\alpha) \in G$ where σ is the Frobenius automorphism of Ω .
- There is defined a binary operation \diamond on G such that: $\forall \alpha, \beta \in G : \sigma(\alpha \diamond \beta) = \sigma(\alpha) \diamond \sigma(\beta)$.
- $M_G[q, x]$ denote the set of all monic polynomials f in \mathbb{F}_q such that:
 - 1 The degree of $f \ge 1$. All the roots of f lie in G.

• Let $f,g \in M_G[q,x]$ such that $f = \prod_{\alpha} (x - \alpha)$ and $g = \prod_{\beta} (x - \beta)$, then:

• Let
$$f,g \in M_G[q,x]$$
 such that $f = \prod_{\alpha} (x - \alpha)$ and $g = \prod_{\beta} (x - \beta)$, then:

Definition

The diamond product of f and g is defined as:

$$f \diamond g = \prod_{\alpha} \prod_{\beta} (x - \alpha \diamond \beta)$$
(4)

• Let
$$f,g \in M_G[q,x]$$
 such that $f = \prod_{\alpha} (x - \alpha)$ and $g = \prod_{\beta} (x - \beta)$, then:

Definition

The diamond product of f and g is defined as:

$$f \diamond g = \prod_{\alpha} \prod_{\beta} (x - \alpha \diamond \beta)$$
(4)

• Clearly, if $\deg(f) = n$ and $\deg(g) = m$ then $\deg(f \diamond g) = nm$.

The diamond product

Example

1 Let $G = \Omega$ and $\alpha \diamond \beta = \alpha + \beta$. We'll have

$$\diamond g = \prod_{\alpha} \prod_{\beta} (x - (\alpha + \beta))$$
(5)
$$= \prod_{\alpha} g(x - \alpha) = \prod_{\beta} f(x - \beta),$$
(6)
$$= f * g.$$
(7)

2 If $G = \Omega / \{0\}$ and $\alpha \diamond \beta = \alpha \beta$, then:

$$F \diamond g = \prod_{\alpha} \prod_{\beta} (x - \alpha \beta),$$
(8)
$$= \prod_{\alpha} \alpha^{m} g(x/\alpha) = \prod_{\beta} \beta^{n} f(x/\beta),$$
(9)
$$= f \circ g.$$
(10)

Example

Let $f = x^2 + x + 1$ and $g = x^3 + x + 1$ be two polynomials in $\mathbb{F}_2[x]$. In $\Omega[x]$, we have

$$f = (x - \alpha)(x - \alpha^2), g = (x - \beta)(x - \beta^2)(x - \beta^4)$$

where α and β are the roots of f and g respectively. Applying **(6)** and **(8)**, it follows that:

$$f * g = g(x - \alpha)g(x - \alpha^{2}),$$

= $x^{6} + x^{5} + x^{3} + x^{2} + 1.$
 $f \circ g = \alpha^{3}g(x/\alpha)\alpha^{6}g(x/\alpha^{2}) = (x^{3} + \alpha^{2}x + \alpha^{3})(x^{3} + \alpha^{4}x + \alpha^{6}),$
= $x^{6} + x^{4} + x^{2} + x + 1.$

 $f * f = x^2(x+1)^2$ and $f \circ f = (x+1)^2(x^2+x+1)$.

The diamond product is a binary operation on $M_G[q, x]$.

- The units of $M_G[q, x]$ are the polynomials x c where c is a unit in G.
- f and g are associates $(f \sim g)$ iff $f = (x c) \diamond g$ for some unit x c.
- A polynomial h in M_G[q, x] which is not a unit is said to be decomposable with respect to ◊ iff there are polynomials f and g such that h = f ◊ g, otherwise, h is idecomposable.

Suppose that (G, \diamond) is a group and let f and g be polynomials in $M_G[q, x]$ with $\deg(f) = n$ and $\deg(g) = m$. Then, the diamond product $f \diamond g$ is irreducible iff both f and g are irreducible and (n,m)=1.

Proof.

• Brawley, J. V., and Carlitz, L. (1987). Irreducibles and the composed product for polynomials over a finite field. Discrete Mathematics, 65(2), 115-139.

Suppose that (G, \diamond) is a group and let f and g be polynomials in $M_G[q, x]$ with $\deg(f) = n$ and $\deg(g) = m$. Then, the diamond product $f \diamond g$ is irreducible iff both f and g are irreducible and (n,m)=1.

Proof.

- Brawley, J. V., and Carlitz, L. (1987). Irreducibles and the composed product for polynomials over a finite field. Discrete Mathematics, 65(2), 115-139.
- Munemasa, Akihiro, and Hiroko Nakamura. "A note on the Brawley-Carlitz theorem on irreducibility of composed products of polynomials over finite fields." International Workshop on the Arithmetic of Finite Fields. Springer, Cham, 2016.

Let G denote the additive group of Ω and let f be an irreducible polynomial in $M_G[q, x]$ of degree n. If f is additivley decomposable in $M_G[q, x]$ as

$$f=f_1*f_2*\cdots*f_t=g_1*g_2*\cdots*g_t,$$

where $\deg f_i = \deg g_i = n_i$, i = 1, 2, ..., t, then:

- **1** The n_i 's are pairwise relatively prime, where $n = n_1 \dots n_t$.
- **2** The f_i 's and g_i 's are irreducible, and
- **8** *f*_i and *g*_i are associates for each other.

Part II

Additive decomposition over UFD

Let $h \in \mathbb{F}_q[x]$, a monic polynomial that is decomposable as f * g. Let $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ be the roots of f and g. Clearly we have:

$$(-1)^n f(x-t) = \prod_{i=1}^n (t - (x - \alpha_i))$$

Hence,

$$f * g = \prod_{i=1}^{n} \prod_{j=1}^{m} (x - (\alpha_i + \beta_j)).$$

$$= \operatorname{Res}_t((-1)^n f(x - t), g(t)).$$
(11)
(12)

Using 12, we can define composed additon for polyomials over a commutative ring.

Let *R* be a commutative ring and let $f, g \in R[x]$. Then,

$$f * g = Res_t((-1)^n f(x-t), g(t)) = a^m b^n \prod_{i=1}^n \prod_{j=1}^m (x - (\alpha_i + \beta_j))$$
(13)

where α_i and β_j are the roots of f and g respectively.

Proposition

Let R be an integral domain and K its field of fractions. Let $h, f, g \in R[x]$ such that $h = ch_1$, $f = af_1$ and $g = bg_1$ where c, $a, b \in R$ and $h_1, f_1, g_1 \in K[x]$ are monic polynomials. Then h = f * g iff $h_1 = f_1 * g_1$ over K and $c = a^{deg(g)}b^{deg(f)}$.

Let R be an integral domain. If $h \in R[x]$ has leading coefficient p, where p is prime, then h is additively indecomposable.

Proof.

We use the previous proposition.

Let R be an integral domain. If $h \in R[x]$ has leading coefficient p, where p is prime, then h is additively indecomposable.

Proof.

We use the previous proposition.

Example

All polynomials $f \in \mathbb{Z}[x]$ are additively indecomposable if their leading coefficient is a prime number.

Let R be a unque factorization domain and let $h \in R[x]$ with deg h > 1. If h has leading coefficient that is a square-free and not a unit of R, then h is not additively deomposable.

Proof.

Let $c = a^{\deg g} b^{\deg f}$ be the leading coefficient of h where a and b are the leading coefficients of f and g (respectively). Suppose for the contradiction that h is ADD. Since c is a square-free, $c = up_1p_2 \dots p_r$ $p_i \mid a$.

Let R be a unque factorization domain and let $h \in R[x]$ with deg h > 1. If h has leading coefficient that is a square-free and not a unit of R, then h is not additively deomposable.

Proof.

Let $c = a^{\deg g} b^{\deg f}$ be the leading coefficient of h where a and b are the leading coefficients of f and g (respectively). Suppose for the contradiction that h is ADD. Since c is a square-free, $c = up_1p_2 \dots p_r$

- **1** *p_i* | *a*.
- **2** *p*_{*i*} | *b*.

Let R be a unque factorization domain and let $h \in R[x]$ with deg h > 1. If h has leading coefficient that is a square-free and not a unit of R, then h is not additively deomposable.

Proof.

Let $c = a^{\deg g} b^{\deg f}$ be the leading coefficient of h where a and b are the leading coefficients of f and g (respectively). Suppose for the contradiction that h is ADD. Since c is a square-free, $c = up_1p_2 \dots p_r$

1
$$p_i \mid a$$
.
2 $p_i \mid b$.
3 $p_1 p_2 \dots p_k \mid a \text{ and } p_{k+1} \dots p_r \mid b$.

Let R and S be two commutative rings and let

$$\sigma: R \longrightarrow S$$

be a unit-preserving homomorphism.

$$\overline{\sigma}: R[x] \longrightarrow S[x]$$
$$a_n x^n + \dots + a_0 \mapsto \sigma(a_n) x^n + \dots + \sigma(a_0)$$

Let $\sigma : R \longrightarrow S$ be a unit-preserving ring homomorphism from an integral domain R to an integral domain S, and let $h \in R[x]$. If deg $\overline{\sigma}(h) = \text{deg } h$ and h = f * g over R, then $\overline{\sigma}(h) = \overline{\sigma}(f) * \overline{\sigma}(g)$ over S.

Proof.

We will extend σ to an homomorphism form R[x, t] to S[x, t].

$$\sigma(\operatorname{Res}_{x}(f,g)) = \operatorname{Res}_{x}(\sigma(f),\sigma(g)),$$

$$f * g = \operatorname{Res}_t((-1)^{\deg f} f(x-t), g(t)).$$

Lemma

Let R be a unique factorization domain and let $h = ax + b \in R[x]$, where a is not a unit in R. Then $h = f_1 * \cdots * f_r$ for some linear polynomials $f_1, \ldots, f_r \in R[x]$ which are additively indecomposable.

Lemma

Let R be a unique factorization domain and let $h = ax + b \in R[x]$, where a is not a unit in R. Then $h = f_1 * \cdots * f_r$ for some linear polynomials $f_1, \ldots, f_r \in R[x]$ which are additively indecomposable.

Theorem

Let R be a unique factorization domain, let $h \in R[x]$ be a nonunit with respect to composed addition. Then $h = f_1 * \cdots * f_r$, for some polynomials $f_1, \ldots, f_r \in R[x]$ which are additively indecomposable. Over a finite field, the additive decomposition of an irreducible is unique up to unit. For example,

$$(x^{2} + x + 1) * (x^{3} + x + 1) = (x^{2} + x + 1) * (x^{3} + x^{2} + 1) = x^{6} + x^{5} + x^{3} + x^{2} + 1$$

where $x^3 + x^2 + 1 = (x + 1) * (x^3 + x + 1)$. However, that is not the case over \mathbb{Z} .

$$36x^4 = (2x^2) * (3x^2) = x^2 * (6x^2)$$

but there's no polynomial $ax + b \in \mathbb{Z}[x]$ such that $x^2 * (ax + b)$ is either $3x^2$ or $6x^2$.

Let $h \in \mathbb{F}_q[x]$, monic and irreducible.

h=f*g if and only if f and g are irreducible , $(\deg f, \deg g) = 1$

Let $h = x^4 - 10x + 1 \in \mathbb{Z}[x]$, we have:

$$h = (x^2 - 2) * (x^2 - 3).$$

Let $h \in \mathbb{F}_q[x]$, monic and irreducible.

h=f*g if and only if f and g are irreducible ,(deg f, deg g) = 1

Let $h = x^4 - 10x + 1 \in \mathbb{Z}[x]$, we have:

$$h = (x^2 - 2) * (x^2 - 3).$$

Theorem

Let R be an integral domain and let $h \in R[x]$ be an irreducible polynomial over R. If h = f * g over R then both f and g are irreducible.

Additively Decomposable Polynomials Primitive Polynomials

The content of a polynomial f is defined by $Cont(f) = gcd(a_0, \ldots, a_m)$. When Cont(f) = 1, f is said to be primitive.

Additively Decomposable Polynomials Primitive Polynomials

The content of a polynomial f is defined by $Cont(f) = gcd(a_0, ..., a_m)$. When Cont(f) = 1, f is said to be primitive.

Theorem

Let R be a unique factorization domain and $h \in R[x]$. Suppose that h = f * g is additively decomposable, where

$$f(x) = \sum_{i=0}^{n} f_i x^i$$
 and $g(x) = \sum_{i=0}^{m} g_i x^i$,

such that $\deg(f) = n$ and $\deg(g) = m$. Suppose in addition that $gcd(Cont(g), f_n) = 1$ and $gcd(Cont(f), g_m) = 1$. Then, h primitive implies f and g primitive.

Additively Decomposable Polynomials Primitive Polynomials

The content of a polynomial f is defined by $Cont(f) = gcd(a_0, ..., a_m)$. When Cont(f) = 1, f is said to be primitive.

Theorem

Let R be a unique factorization domain and $h \in R[x]$. Suppose that h = f * g is additively decomposable, where

$$f(x) = \sum_{i=0}^{n} f_i x^i$$
 and $g(x) = \sum_{i=0}^{m} g_i x^i$,

such that $\deg(f) = n$ and $\deg(g) = m$. Suppose in addition that $gcd(Cont(g), f_n) = 1$ and $gcd(Cont(f), g_m) = 1$. Then, h primitive implies f and g primitive.

• $2x^3 + 3x^2 - 11x - 6$ and $4x^2 - 13x - 12$ are both primitive in $\mathbb{Z}[x]$ but

$$f * g = 256x^6 - 1728x^5 - 2672x^4 + 26604x^3 - 16610x^2 - 37350x + 31500x^2 - 3750x^2 - 3750x$$

is not primitive.

- L. BENFERHAT, S. M. E. BENOUMHANI, R. BOUMAHDI, AND J. LARONE, *Additive decompositions of polynomials over unique factorization domain*, Journal of Algebra and Its Applications.
- J. V. BRAWLEY AND L. CARLITZ, *Irreducibles and the composed product for polynomials over a finite field*, Discrete Mathematics, 65 (1987), pp. 115–139.
- J. GALLIAN, Contemporary abstract algebra, Nelson Education, 2012.
- R. LOOS, Computing in algebraic extensions, in Computer algebra, Springer, 1982, pp. 173–187.

Thank you!