Integer-Valued Polynomials over $p \times p$ Matrices

Asmita Sodhi

Dalhousie University

acsodhi@dal.ca

November 4, 2019

Overview

Intro to IVPs

- The ring of integer-valued polynomials
- *p*-orderings and *p*-sequences

IVPs over Matrix Rings

- Moving the problem to maximal orders
- An analogue to *p*-orderings

3

The $p \times p$ Case

- Structure of Δ_p
- Subsets of $T = \pi \Delta_p$
- The ν -sequence of Δ_p
- Characteristic Polynomials
- Computing Minimal Polynomials

IVPs over Matrix Rings 000000

The Ring of Integer-Valued Polynomials

The set

$$\mathsf{Int}(\mathbb{Z}) = \{ f \in \mathbb{Q}[x] : f(\mathbb{Z}) \subseteq \mathbb{Z} \}$$

of rational polynomials taking integer values over the integers forms a subring of $\mathbb{Q}[x]$ called the *ring of integer-valued polynomials* (IVPs).

Int(\mathbb{Z}) is a polynomial ring and has basis $\left\{\binom{x}{k}: k \in \mathbb{Z}_{>0}\right\}$ as a \mathbb{Z} -module, with

$$\binom{x}{k} := \frac{x(x-1)\cdots(x-(k-1))}{k!}, \qquad \binom{x}{0} = 1, \qquad \binom{x}{1} = x.$$

This basis is a *regular basis*, meaning that the basis contains exactly one polynomial of degree k for $k \ge 1$.

The study of IVPs on subsets of the integers greatly benefited from the introduction of p-orderings by Bhargava [1].

Definition

Let S be a subset of \mathbb{Z} and p be a fixed prime. A p-ordering of S is a sequence $\{a_i\}_{i=0}^{\infty} \subseteq S$ defined as follows: choose an element $a_0 \in S$ arbitrarily. Further elements are defined inductively where, given $a_0, a_1, \ldots, a_{k-1}$, the element $a_k \in S$ is chosen so as to minimize the highest power of p dividing

$$\prod_{i=0}^{k-1} (a_k - a_i) \; .$$

p-sequences

The choice of a *p*-ordering gives a corresponding sequence:

Definition

The associated p-sequence of S, denoted $\{\alpha_{S,p}(k)\}_{k=0}^{\infty}$, is the sequence wherein the k^{th} term $\alpha_{S,p}(k)$ is the power of p minimized at the k^{th} step of the process defining a p-ordering. More explicitly, given a p-ordering $\{a_i\}_{i=0}^{\infty}$ of S,

$$\alpha_{S,p}(k) = \nu_p\left(\prod_{i=0}^{k-1}(a_k - a_i)\right) = \sum_{i=0}^{k-1}\nu_p(a_k - a_i)$$

Though the choice of a *p*-ordering of *S* is not unique, the associated *p*-sequence of a subset $S \subseteq \mathbb{Z}$ is independent of the choice of *p*-ordering [1].

These *p*-sequences can be used to define a generalization of the binomial polynomials to a specific set $S \subseteq \mathbb{Z}$ which serve as a basis for the integer-valued polynomials of *S* over \mathbb{Z} ,

$$\operatorname{Int}(S,\mathbb{Z}) = \{f \in \mathbb{Q}[x] : f(S) \subseteq \mathbb{Z}\}$$
.

IVPs over Matrix Rings

We are interested in studying IVPs over matrix rings.

We denote the set of rational polynomials mapping integer matrices to integer matrices by

 $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})) = \{ f \in \mathbb{Q}[x] : f(M) \in M_n(\mathbb{Z}) \text{ for all } M \in M_n(\mathbb{Z}) \} .$

We know from Cahen and Chabert [2] that $Int_{\mathbb{Q}}(M_n(\mathbb{Z}))$ has a regular basis, but it is not easy to describe using a formula in closed form [3].

Link to Maximal Orders

Finding a regular basis for $Int_{\mathbb{Q}}(M_n(\mathbb{Z}))$ is related to finding a regular basis for its integral closure, and we understand the latter object through studying its localizations at rational primes.

If p is a fixed prime, D is a division algebra of degree n^2 over $K = \mathbb{Q}_p$, and Δ_n is its maximal order, then we obtain the following useful result:

Proposition ([3], 2.1)

The integral closure of $Int_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is $Int_{\mathbb{Q}}(\Delta_n)$.

Thus, the problem of describing the integral closure of $\operatorname{Int}_{\mathbb{Q}}(M_n(\mathbb{Z})_{(p)})$ is exactly that of describing $\operatorname{Int}_{\mathbb{Q}}(\Delta_n)$, and so we move our attention towards studying IVPs over maximal orders.

An Analogue to *p*-orderings

Definition-Proposition ([4], 1.1, 1.2)

Let K be a local field with valuation ν , D a division algebra over K to which ν extends, Δ the maximal order in D, and S a subset of Δ .

- A ν -ordering of S is a sequence $\{a_i\} \subseteq S$ such that for each k > 0, the element a_k minimizes the quantity $\nu(f_k(a_0, \ldots, a_{k-1})(a))$ over $a \in S$, where $f_k(a_0, \ldots, a_{k-1}(x))$ is the minimal polynomial of the set $\{a_0, a_1, \ldots, a_{k-1}\}$, with the convention that $f_0 = 1$. We call $\alpha_S = \{\alpha_S(k) = \nu(f_k(a_0, \ldots, a_{k-1})(a_k)) : k = 0, 1, \ldots\}$ the ν -sequence of S.
- Additionally, let $\pi \in \Delta$ be a uniformizing element. Then the ν -sequence α_S depends only on the set S, and not on the choice of ν -ordering. The sequence of polynomials

$$\{\pi^{-\alpha_{\mathcal{S}}(k)}f_{k}(a_{0},\ldots,a_{k-1})(x):k=0,1,\ldots\}$$

forms a regular Δ -basis for the Δ -algebra of polynomials which are integer-valued on *S*.

In order to use this proposition, we need to be able to construct a ν -ordering for the maximal order Δ_n . A recursive method for constructing ν -orderings for elements of a maximal order is based on two lemmas.

Lemma (see [4], 6.2)

Let $\{a_i : i = 0, 1, 2, ...\}$ be a ν -ordering of a subset S of Δ_n with associated ν -sequence $\{\alpha_S(i) : i = 0, 1, 2, ...\}$ and let b be an element in the centre of Δ_n . Then:

- i) $\{a_i + b : i = 0, 1, 2, ...\}$ is a ν -ordering of S + b, and the ν -sequence of S + b is the same as that of S
- ii) If p is the characteristic of the residue field of K (so that $(p) = (\pi)^n$ in Δ_n), then $\{pa_i : i = 0, 1, 2, ...\}$ is a ν -ordering for pS and the ν -sequence of pS is $\{\alpha_S(i) + in : i = 0, 1, 2, ...\}$

Lemma ([4], 5.2)

Let S_1 and S_2 be disjoint subsets of S with the property that there is a non-negative integer k such that $\nu(s_1 - s_2) = k$ for any $s_1 \in S_1$ and $s_2 \in S_2$, and that S_1 and S_2 are each closed with respect to conjugation by elements of Δ_n . If $\{b_i\}$ and $\{c_i\}$ are ν -orderings of S_1 and S_2 respectively with associated ν -sequence $\{\alpha_{S_1}(i)\}$ and $\{\alpha_{S_2}(i)\}$, then the ν -sequence of $S_1 \cup S_2$ is the sum of the linear sequence $\{ki : i = 0, 1, 2, ...\}$ with the shuffle $\{\alpha_{S_1}(i) - ki\} \land \{\alpha_{S_2}(i) - ki\}$, and this shuffle applied to $\{b_i\}$ and $\{c_i\}$ gives a ν -ordering of $S_1 \cup S_2$. The theory presented in the previous slides is utilized by Evrard and Johnson [3] to construct a ν -order for Δ_2 and establish a ν -sequence and regular basis for the IVPs on Δ_2 when the division algebra D is over the local field \mathbb{Q}_2 .

We would like to extend these results to the general case, in order to find a regular basis for the integer-valued polynomials on Δ_n over the local field \mathbb{Q}_2 . In particular, this talk focuses on the question when *n* is a prime. IVPs over Matrix Rings 000000

Constructing Δ_p

We can decompose Δ_p as a union of subsets to which the lemmas apply. Let \mathbb{Q}_2 denote the 2-adic numbers, and let ζ be a $(2^p - 1)^{\text{th}}$ root of unity. Let θ be the automorphism of $\mathbb{Q}_2(\zeta)$ that maps $\theta(\zeta) = \zeta^2$. Define $p \times p$ matrices ω_p and π_p as:

$$\omega_{p} = \begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & \theta(\zeta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta^{p-1}(\zeta) \end{pmatrix} \quad \pi_{p} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2 & 0 & \cdots & 0 \end{pmatrix}$$

The maximal order Δ_p with which we concern ourselves can be represented by

$$\Delta_{\boldsymbol{p}} = \mathbb{Z}_2[\omega_{\boldsymbol{p}}, \pi_{\boldsymbol{p}}]$$

where \mathbb{Z}_2 denotes the 2-adic integers.

$$\Delta_{\boldsymbol{p}} = \mathbb{Z}_2[\omega_{\boldsymbol{p}}, \pi_{\boldsymbol{p}}]$$

$$\omega_{p} = \begin{pmatrix} \zeta & 0 & \cdots & 0 \\ 0 & \theta(\zeta) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \theta^{p-1}(\zeta) \end{pmatrix} \quad \pi_{p} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 2 & 0 & \cdots & 0 \end{pmatrix}$$

The elements ω_p and π_p observe the commutativity relation $\pi_p \omega_p = \omega_p^2 \pi_p$, and note also that $\pi_p^p = 2I_p$. An element $z \in \Delta_p$ can be expressed as a \mathbb{Z}_2 -linear combination of the elements $\{\omega_p^i \pi_p^j : 0 \le i, j \le p-1\}$, or else uniquely in the form $z = \alpha_0 + \alpha_1 \pi_p + \cdots + \alpha_{p-1} \pi_p^{p-1}$ with $\alpha_i \in \mathbb{Z}_2(\zeta)$.

Conjugacy Classes mod π

The maximal order $\Delta_p = \mathbb{Z}_2[\omega, \pi]$ can be divided into the following conjugacy classes modulo π :

$$T = \{z \in \Delta_p : z \equiv 0 \pmod{\pi}\}$$
$$T + 1 = \{z \in \Delta_p : z \equiv l_p \pmod{\pi}\}$$
$$S_i = \{z \in \Delta_p : z \equiv \omega^{2^{k_i}} \pmod{\pi}, 0 \le k \le p - 1\}$$

There are $\frac{1}{p}(2^p-2)$ such sets S_i .

Subsets of $T = \pi \Delta_p$

The set $T = \pi \Delta_p$ can be broken up into further subsets that are closed under conjugation modulo powers of π .

Lemma

Let $\widetilde{T} = \{z \in \Delta_p : z \equiv 0 \pmod{\pi^j}\} = \pi^j \Delta_p$. Then \widetilde{T} splits into the sets $\{z \in \Delta_p : z \equiv 0 \pmod{\pi^{j+1}}\} = \pi^{j+1} \Delta_p$ and $\{z \in \Delta_p : z \equiv \omega^i \pi^j \pmod{\pi^{j+1}}, 1 \le i \le 2^p - 1\} = \pi^j \Delta_p \smallsetminus \pi^{j+1} \Delta_p$, which are each closed under conjugation.

Proof.

It is clear that $\{z \in \Delta_p : z \equiv 0 \pmod{\pi^{j+1}}\}$ is closed under conjugation. Conjugating $z \equiv \pi^j \pmod{\pi^{j+1}} \in \Delta_p$ by an element of the form $\omega^k \pi^\ell$ gives

$$\omega^{k(1-2^j)}\pi^j$$

with j fixed such that $1 \le j \le p-1$ and $1 \le \ell \le p-1$, $1 \le k \le 2^p - 1$.

This set of elements will be all of $\pi^j \Delta_p \smallsetminus \pi^{j+1} \Delta_p$ if and only if $k(1-2^j)$ forms a complete set of residues modulo $2^p - 1$, with *j* fixed and *k* variable.

This is indeed the case, and the result follows from a theorem about Mersenne numbers, from which it follows that since gcd(j, p) = 1, we have $gcd(1 - 2^j, 2^m - 1) = 1$. Therefore the set $\{\omega^{k(1-2^j)}\pi^j \pmod{\pi^{j+1}} : 1 \le k \le 2^p - 1\}$ is equivalent to the set $\{\omega^i\pi^j \pmod{\pi^{j+1}} : 1 \le i \le 2^p - 1\}$.

Intro to IVPs 0000 IVPs over Matrix Rings 000000

Tree of Subsets of T

The ν -sequence of Δ_p

The subsets of Δ_p we have described will satisfy the earlier lemmas regarding constructing ν -sequences. We also note that the ν -sequence of each subset of the form S_i will be equal, so we will denote this sequence α_S .

From these lemmas, it is clear that the ν -sequence α_{Δ_p} of Δ_p will depend only on itself, α_S , and $\alpha_{T_{2k}}, 1 \le k \le p-1$.

The ν -sequence of Δ_p

Proposition

The $\nu\text{-sequence }\alpha_{\Delta_p}$ of the maximal order Δ_p is determined by the recursive formula

$$\alpha_{\Delta_p} = \left[\left[\cdots \left[\left[(\alpha_{\Delta_p} + (n)) \land \left(\alpha_{T_{2(p-1)}} - ((p-1)n) \right) + (n) \right] \right. \\ \left. \land \left(\alpha_{T_{2(p-2)}} - ((p-2)n) \right) + (n) \right] \land \cdots \right] \\ \left. \land (\alpha_{T_2} - (n)) + (n) \right]^{\land 2} \land \alpha_S^{\land \frac{1}{p}(2^p-2)} \right]$$

Characteristic Polynomials

To use a construction of IVPs analogous to that in [3], we would like to be able to describe subsets of Δ_p entirely in terms of their characteristic polynomials.

Lemma

Let $z \in \Delta_p$ be a non-constant element. The characteristic polynomial of z is irreducible over \mathbb{Q}_2 .

Lemma ([5], 12.9 restated)

Let
$$f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + x^n \in K[x]$$
 be irreducible.
Then

$$u(\mathbf{a}_j) \geq \frac{n-j}{n} \nu(\mathbf{a}_0) , \qquad 0 \leq j \leq n-1 .$$

Proposition

Let $T_{2k} = \pi^k \Delta_p \smallsetminus \pi^{k+1} \Delta_p = \{z \in \Delta_p : z \equiv \omega^i \pi^k \pmod{\pi^{k+1}}, 1 \leq i \leq 2^p - 1\}$ for $k \geq 1$. Then for $z \in T_{2k}$, the coefficients of the characteristic polynomial $f_z(x) = a_0 + a_1x + \cdots + a_{p-1}x^{p-1} + x^p$ satisfy

$$\begin{aligned} \nu_2(\mathsf{a}_0) &= k\\ \mathsf{a}_0 &\equiv 2^k \;(\text{mod } 2^{k+1})\\ \nu_2(\mathsf{a}_j) &\geq k \left(\frac{p-j}{p}\right) = k \left(1 - \frac{j}{p}\right) \end{aligned}$$

and, conversely, any element $z \in \Delta_p$ with characteristic polynomial satisfying the above conditions is an element of T_{2k} .

The $p \times p$ Case

Computing Minimal Polynomials

Consider the subset $T_{2k} = \pi^k \Delta_p \smallsetminus \pi^{k+1} \Delta_p \subseteq \Delta_p$.

Let $\phi = (\phi_0, \phi_1, \dots, \phi_{p-1})$ be defined on $\mathbb Z$ so that

$$\phi_{0}(b) = 2^{k} + 2^{k+1} \sum_{i \ge 0} b_{pi+p-1} 2^{i}$$

$$\phi_{j}(b) = 2^{\left\lceil \frac{(p-j)k}{p} \right\rceil} \sum_{i \ge 0} b_{pi+((jk-1) \pmod{p})} 2^{i}$$

where $1 \le j \le p-1$ and $b = \sum_{i \ge 0} b_i 2^i$ is the expansion of $b \in \mathbb{Z}$ in base 2. Define a function

$$g_n(x) = \prod_{b=0}^{n-1} (x^p - \phi_{p-1}(b) x^{p-1} + \phi_{p-2}(b) x^{p-2} + \dots + (-1)^p \phi_0(b)) .$$

Proposition

Let $z \in T_{2k}$, and let $m \in \mathbb{Z}$ be such that $\phi(m)$ gives a tuple consisting of the coefficients of the characteristic polynomial of z, with $\phi_i(m)$ being the coefficient of x^j , and let $0 \le b \le p$. Then

$$u(z^p - \phi_{p-1}(b)z^{p-1} + \phi_{p-2}(b)z^{p-2} + \dots + (-1)^p \phi_0(b))$$

= $pk + 1 + \nu_2(m-b)$

Lemma

If $z \in T_{2k}$ then

$$u(g_n(z)) \ge (pk+1)n + \sum_{i>0} \left\lfloor \frac{n}{2^i} \right\rfloor$$

with equality if $\phi(n) = (\phi_0(n), \dots, \phi_{p-1}(n))$ gives the tuple of coefficients a_0, \dots, a_{p-1} of the characteristic polynomial for $z \in T_{2k}$.

References

M. Bhargava.

The factorial function and generalizations. The American Mathematical Monthly, 107(9):783–799, 2000.

Integer-Valued Polynomials, volume 48 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, USA, 1997.

S. Evrard and K. Johnson.

The ring of integer valued polynomials on 2×2 matrices and its integral closure. *Journal of Algebra*, 441:660–677, 2015.

K. Johnson.

p-orderings of noncommutative rings.

Proceedings of the American Mathematical Society, 143(8):3265-3279, 2015.

I. Reiner.

Maximal Orders.

London Mathematical Society. Academic Press, London, 1975.