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INTRODUCTION

HOW TO STUDY ARITHMETICAL FUNCTIONS?

Study the distribution of the range of f

Or, study the “non-range” of f , i.e., which integers are not in the
range of f

Specifically, we are interested when f (n) = s∗(n) := σ∗(n)− n
which we will define shortly.
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INTRODUCTION

QUICK DEFINITIONS

DEFINITION

Any function f : N→ C is called an arithmetic or arithmetical
function. Additionally, if f (mn) = f (m)f (n) for all (m, n) = 1, then f
is multiplicative.

DEFINITION

An integer d is called a unitary divisor of n if d | n and (d, n/d) = 1.
We write d ‖ n if d is a unitary divisor of n.

DEFINITION

σ(n) denotes the sum of all the divisors of n. σ∗(n) denotes the sum
of all the unitary divisors of n. Note that both σ(n) and σ∗(n) are
multiplicative.
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INTRODUCTION

QUICK DEFINITIONS

σ(n): Sum of divisors of n (σ(pa) = 1 + p + · · ·+ pa)

s(n): Sum of proper divisors of n (= σ(n)− n)

σ∗(n): Sum of unitary divisors of n (σ∗(pa) = 1 + pa)

s∗(n): Sum of proper unitary divisors of n (= σ∗(n)− n)

Quick comment: if n is square-free, then σ(n) = σ∗(n) and
s(n) = s∗(n).

We will let U := N \ s(N) and U∗ := N \ s∗(N) throughout this
talk.

DEFINITION

If n ∈ U, then n is said to be a nonaliquot number. We shall call n a
unitary nonaliquot number if n ∈ U∗.
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WORK BY ERDŐS

DETOUR

CONJECTURE (GOLDBACH)
Every even number greater than or equal to 8 can be written as a sum
of two distinct primes.

According to this, we can deduce that s(pq) = s∗(pq) = p + q + 1,
where p and q are distinct odd primes, will cover all the odd integers
≥ 9.

Montgomery & Vaughan: The set of odd numbers not of the
form p + q + 1 has density 0.

It will be more exciting to focus on even numbers as far as
N \ s∗(N) is concerned.
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WORK BY ERDŐS

ERDŐS AND NONALIQUOT NUMBERS

Erdős Pál (1913 – 1996)
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WORK BY ERDŐS

ERDŐS AND NONALIQUOT NUMBERS

THEOREM (ERDŐS, 1973)
There is a positive proportion of nonaliquot numbers.

PROOF (SKETCH).
Let Pk be the product of first k primes. We will show that
positive proportion of integers that are 0 mod Pk must be
nonaliquot numbers.

Assume s(n) ≤ x and s(n) ≡ 0 (mod Pk).

If n is odd or 2 | n but n 6≡ 0 (mod Pk), then the density of n
satisfying the two conditions is 0.

So we may assume Pk | n in order for us to have Pk | s(n).
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WORK BY ERDŐS

ERDŐS AND NONALIQUOT NUMBERS

THEOREM (ERDŐS, 1973)
There is a positive proportion of nonaliquot numbers.

PROOF (SKETCH).

Note that we have σ(n) ≥ n
∏
(1 + p−1

i ), so for any ε > 0 we can
choose sufficiently large k such that

σ(n) ≥ n
k∏

i=1

(
1 +

1
pi

)
> n

(
1 +

1
ε

)
.

Observe we can choose such k since the sum of reciprocals of the
primes diverges. Thus, the number of n satisfying the desired
conditions is strictly less than εx/Pk for all sufficiently large x.
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WORK BY ERDŐS

ERDŐS AND NONALIQUOT NUMBERS

THEOREM (ERDŐS, 1973)
There is a positive proportion of nonaliquot numbers.

PROOF (SKETCH).
So if 0 < ε < 1, and k and x are appropriately chosen, the upper
density of aliquot numbers that are multiple of Pk is at most ε/Pk. But
since the density of numbers that are multiple of Pk is 1/Pk, the lower
density of nonaliquot numbers divisible by Pk must be positive.
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WORK BY HERMAN TE RIELE

TE RIELE AND UNITARY NONALIQUOT NUMBERS

Herman te Riele (b. 1947)
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WORK BY HERMAN TE RIELE

TE RIELE AND UNITARY NONALIQUOT NUMBERS

In his doctoral thesis, he tried to tackle unitary nonaliquot
numbers

Problem: integers of the form 2wp (w ≥ 1, p an odd prime)

Problematic, as there are “too many” 2wp’s with s∗(2wp) ≤ x for
any x. Let’s examine further what this means.

If s∗(2wp) = 2w + p + 1 ≤ x, then 2w ≤ x and p ≤ x, so there are
O(log x) choices for 2w and O(x/ log x) choices for p thanks to
the prime number theorem. Thus there are O(x) numbers of the
form 2wp to consider, which doesn’t help us in finding the
density of U∗.
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WORK BY HERMAN TE RIELE

TE RIELE AND UNITARY NONALIQUOT NUMBERS

CONJECTURE (DE POLIGNAC, 1849)

Every odd number greater than 1 can be written in the form 2k + p,
where k ∈ Z+ and p an odd prime (or p = 1).

te Riele’s astute observation: if de Polignac’s conjecture were
true, then all even numbers > 2 are in s∗(N). So the density of
U∗ would be 0, and we would be done.

The conjecture proved to be false, (independently) by Erdős and
van der Corput. In fact, Erdős used the theory of covering
congruences to disprove this conjecture. This gave us the starting
point.
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ON THE (LOWER) DENSITY OF U∗

MAIN RESULT

THEOREM (POMERANCE-Y., 2012)
The lower density of the set U∗ is positive, and the upper density of
U∗ is smaller than 1

2 .

REMARK

It is not known if the set U has upper density smaller than 1
2 .
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ON THE (LOWER) DENSITY OF U∗

OUTLINE OF OUR STRATEGY

1 The set of positive lower density that we identify will be a subset
of the integers that are 2 mod 4.

2 First, we will get rid of the following three cases that are not too
interesting.

Case I: n = 2wpa (a > 1)
Case II: 4 | n, n has more than one odd prime factor
Case III: n is odd

3 Now, tackle the remaining case:
First, we shall derive an infinite arithmetic progression that is
totally missed by the numbers of the form s∗(2wp) using covering
congruences.
Now show that the constructed residue class has a positive
proportion of integers not of the form s∗(n) for any n ≡ 2
(mod 4).
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ON THE (LOWER) DENSITY OF U∗

UNINTERESTING CASES

LEMMA

Suppose that n > 1 satisfies one of the following:
1 n is odd
2 n is divisible by 4 and also by at least two distinct odd primes.

Then s∗(n) 6≡ 2 (mod 4).

PROOF.
Suppose n is odd, and that pa ‖ n. Then p is odd, and
σ∗(pa) = 1 + pa, which is even. Thus σ∗(n) is even, so s∗(n) is odd.
Now suppose n is divisible by 4 and by at least two distinct odd
primes (say p and q). Then 4 | σ∗(p)σ∗(q) | σ∗(n), so 4 | s∗(n) as
well. The claim follows.
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ON THE (LOWER) DENSITY OF U∗

UNINTERESTING CASES

LEMMA

The set of integers of the form s∗(2wpa) where p is an odd prime and
a ≥ 2 has asymptotic density 0.

PROOF.
Suppose s∗(2wpa) ≤ x. Note s∗(2wpa) = 1 + 2w + pa, so

2w ≤ x and pa ≤ x.

So there are O(log x) choices for 2w. As for pa, since a ≥ 2, there are
O(
√

x/ log x) choices. In total, there are O(
√

x) numbers satisfying
s∗(2wpa) ≤ x, from which the claim follows.
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ON THE (LOWER) DENSITY OF U∗

THE n = 2wp CASE

Every w ∈ Z satisfies at least one of the following six congruences:

w ≡ 1 (mod 2), w ≡ 1 (mod 3)

w ≡ 2 (mod 4), w ≡ 4 (mod 8)

w ≡ 8 (mod 12), w ≡ 0 (mod 24).

Now, for each modulus m ∈ {2, 3, 4, 8, 12, 24}, we find a prime q so
that 2m ≡ 1 (mod q). For ` := s∗(2wp) = 1 + 2w + p we have:

m q 2w mod q ` mod q Conclusion
2 3 2 ` ≡ p ` 6≡ 0 (mod 3) or p = 3
3 7 2 ` ≡ 3 + p ` 6≡ 3 (mod 7) or p = 7
4 5 −1 ` ≡ p ` 6≡ 0 (mod 5) or p = 5
8 17 −1 ` ≡ p ` 6≡ 0 (mod 17) or p = 17
12 13 −4 ` ≡ −3 + p ` 6≡ −3 (mod 13) or p = 13
24 241 1 ` ≡ 2 + p ` 6≡ 2 (mod 241) or p = 241
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ON THE (LOWER) DENSITY OF U∗

THE n = 2wp CASE

Applying the Chinese remainder theorem to the following six
congruences give us which the residue class whose member cannot be
of the form s∗(2wp):

` ≡ 0 (mod 3), ` ≡ 3 (mod 7)

` ≡ 0 (mod 5), ` ≡ 0 (mod 17)

` ≡ −3 (mod 13), ` ≡ 2 (mod 241).

This gives us ` ≡ −1518780 (mod 3 · 5 · 7 · 13 · 17 · 241). Let
c = −1518780 and d = 3 · 5 · 7 · 13 · 17 · 241 = 5592405. We
established the following lemma:

LEMMA

Let n = 2wp, with w ≥ 1 and p an odd prime. Then there exist c and
odd d such that s∗(n) 6≡ c (mod d) for any w and p.
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ON THE (LOWER) DENSITY OF U∗

PROOF OF THE MAIN THEOREM

We constructed this residue class that is totally missed by
s∗(2wp) for all w ≥ 1 and p an odd prime.
Recall that we are interested in finding a subset of integers 2 mod
4 that are not in the range of s∗(n).
Let Q := 2 · 3α · 5β · 17γ .
Also, c ≡ 0 (mod 3 · 5 · 17), meaning an integer can be both c
(mod d) and have Q as its unitary divisor.
One can see that there are 510 residue classes mod 2dQ that are
both c mod d and 0 mod Q, since lcm(d,Q) = dQ/255. Of
these, ϕ(510) = 128 of these have Q as a unitary divisor.
Also, there are six different ways of coverings (fixing the three
red-coloured congruences so that c remains divisible by 255).
Thus, we can compute the lower density for an arbitrary residue
class satisfying the desirable conditions, and multiply it by
128 · 6.
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OVERVIEW ERDŐS AND TE RIELE MAIN RESULTS FUTURE DIRECTION & REFERENCES

ON THE (LOWER) DENSITY OF U∗

PROOF OF THE MAIN THEOREM

We constructed this residue class that is totally missed by
s∗(2wp) for all w ≥ 1 and p an odd prime.
Recall that we are interested in finding a subset of integers 2 mod
4 that are not in the range of s∗(n).
Let Q := 2 · 3α · 5β · 17γ .
Also, c ≡ 0 (mod 3 · 5 · 17), meaning an integer can be both c
(mod d) and have Q as its unitary divisor.
One can see that there are 510 residue classes mod 2dQ that are
both c mod d and 0 mod Q, since lcm(d,Q) = dQ/255. Of
these, ϕ(510) = 128 of these have Q as a unitary divisor.
Also, there are six different ways of coverings (fixing the three
red-coloured congruences so that c remains divisible by 255).
Thus, we can compute the lower density for an arbitrary residue
class satisfying the desirable conditions, and multiply it by
128 · 6.
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both c mod d and 0 mod Q, since lcm(d,Q) = dQ/255. Of
these, ϕ(510) = 128 of these have Q as a unitary divisor.
Also, there are six different ways of coverings (fixing the three
red-coloured congruences so that c remains divisible by 255).
Thus, we can compute the lower density for an arbitrary residue
class satisfying the desirable conditions, and multiply it by
128 · 6.
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ON THE (LOWER) DENSITY OF U∗

PROOF OF THE MAIN THEOREM

Suppose that r (mod 2dQ) is one of the 128 congruence classes we
are interested in. We shall consider integers n satisfying the following:

s∗(n) ≤ x

s∗(n) ≡ r (mod 2dQ).

As Cases I, II, and III show, we may assume that n ≡ 2 (mod 4) or n
is of the form 2wp where w ≥ 2. But s∗(2wp) 6≡ c (mod d), so we
may assume n ≡ 2 (mod 4).
Since 2 is a unitary divisor of n, it follows n < 2x. A theorem by E. J.
Scourfield implies that almost all n’s have 2dQ | σ∗(n). Thus, we may
assume n ≡ −r (mod 2dQ), so Q is a unitary divisor of n.
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PROOF OF THE MAIN THEOREM

It follows that we have

s∗(n) = σ∗(n)− n = σ∗(Q)σ∗(n/Q)− n ≥ (s∗(Q)/Q)n.

It follows that n ≤ (Q/s∗(Q))x, so the number of n’s we are looking
for is

Q
s∗(Q)

· x
2dQ

+ o(x) as x→∞.

This shows that the lower density of U∗ is at least
(1− Q/s∗(Q))/(2dQ), within r (mod 2dQ). There are 128 possible
r’s. Also, fixing 1 (mod 2), 2 (mod 4), 4 (mod 8), we can pick six
different choices for the three remaining congruence classes. In
conclusion, the lower density of U∗ within c (mod d) is(

1− Q
s∗(Q)

)
384
dQ

.
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ON THE (LOWER) DENSITY OF U∗

STATEMENT OF THE THEOREM

THEOREM (POMERANCE-Y., 2012)
Let

Q := 2 · 3α · 5β · 17γ ,

where α, β, γ are positive integers. If s∗(Q)/Q > 1 then the set of the
numbers in U∗ which have Q as a unitary divisor has lower density at
least (

1− Q
s∗(Q)

)
384
dQ

,

where d = 3 · 5 · 7 · 13 · 17 · 241.
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ON THE (LOWER) DENSITY OF U∗

QUICK REMARKS

REMARK

Let Q = 2 · 3 · 5 · 17. Then this theorem implies that the lower density
of U∗ must be at least(

1− 85
131

)
384

5592405 · 510
> 4.727 · 10−8.

REMARK

As for the upper density of U∗, consider numbers of the form
s∗(2wp) = 2w + p + 1. The lower density of numbers of the form
s∗(2wp) is equal to the lower density of number of the form 2w + p.
Habsieger and Roblot (and Lü and Pintz, each independently) showed
that the lower density is at least 0.09368. Hence the upper density of
U∗ is at most 0.5− 0.09368 = 0.40632.



OVERVIEW ERDŐS AND TE RIELE MAIN RESULTS FUTURE DIRECTION & REFERENCES

ON THE (LOWER) DENSITY OF U∗

QUICK REMARKS

REMARK

Let Q = 2 · 3 · 5 · 17. Then this theorem implies that the lower density
of U∗ must be at least(

1− 85
131

)
384

5592405 · 510
> 4.727 · 10−8.

REMARK

As for the upper density of U∗, consider numbers of the form
s∗(2wp) = 2w + p + 1. The lower density of numbers of the form
s∗(2wp) is equal to the lower density of number of the form 2w + p.
Habsieger and Roblot (and Lü and Pintz, each independently) showed
that the lower density is at least 0.09368. Hence the upper density of
U∗ is at most 0.5− 0.09368 = 0.40632.
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COMPUTATIONAL RESULT

COMPUTATIONS OF UNITARY NONALIQUOTS UP TO N

We computed the number of UNA’s using the following relation:

PROPOSITION

For j ∈ Z+ and m odd,

(I) s∗(2jm) = 2js∗(m) + σ∗(m)

(II) s∗(2j+1m) = 2s∗(2jm)− σ∗(m)

1 s∗(2jm) strictly increases as j increases, so we keep going until
s∗(2jm) > N

2 Move on to the next odd integer until m ≥ N
3 Most recently known result: up to 105, by David Wilson (2001)
4 Table (up to 108!1) next slide

1

‘Here the “!” symbol is merely an exclamation mark, and not a factorial sign!’ –
Roger Heath-Brown, arXiv:1002.3754
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OVERVIEW ERDŐS AND TE RIELE MAIN RESULTS FUTURE DIRECTION & REFERENCES

COMPUTATIONAL RESULT

COMPUTATIONS OF UNITARY NONALIQUOTS UP TO N

We computed the number of UNA’s using the following relation:

PROPOSITION

For j ∈ Z+ and m odd,

(I) s∗(2jm) = 2js∗(m) + σ∗(m)

(II) s∗(2j+1m) = 2s∗(2jm)− σ∗(m)

1 s∗(2jm) strictly increases as j increases, so we keep going until
s∗(2jm) > N

2 Move on to the next odd integer until m ≥ N
3 Most recently known result: up to 105, by David Wilson (2001)
4 Table (up to 108!1) next slide

1

‘Here the “!” symbol is merely an exclamation mark, and not a factorial sign!’ –
Roger Heath-Brown, arXiv:1002.3754
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COMPUTATIONAL RESULT

COMPUTATIONS OF UNITARY NONALIQUOTS UP TO 108

x N(x) 100D(x) x N(x) 100D(x)
1000000 9903 0.99030 15000000 152930 1.01953
2000000 19655 0.98275 20000000 203113 1.01557
3000000 29700 0.99000 30000000 304631 1.01544
4000000 40302 1.00755 40000000 405978 1.01495
5000000 50081 1.00162 50000000 509695 1.01939
6000000 60257 1.00428 60000000 615349 1.02558
7000000 70518 1.00740 70000000 720741 1.02963
8000000 80987 1.01234 80000000 821201 1.02650
9000000 91087 1.01208 90000000 923994 1.02666

10000000 101030 1.01030 100000000 1028263 1.02826
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CONJECTURE & OPEN QUESTIONS

CONJECTURE

The density of U∗ exists and is about 0.01.

Open questions:

(Asymptotic) Density of unitary nonaliquot numbers (if it
exists)?

Better lower bound of the lower density of unitary untouchable
numbers?

Expansion of the table/more efficient algorithm?
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FOR MORE INFORMATION

If you are interested, you can read the preprint in my website. Preprint
is available at:
https:
//www.heesungyang.com/papers/varianterdos.pdf.
The paper was accepted for publication by Math. Comp.
C. Pomerance and H. Yang, Variant of a theorem of Erdős on the
sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903–1913.

https://www.heesungyang.com/papers/varianterdos.pdf
https://www.heesungyang.com/papers/varianterdos.pdf
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