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Abstract

Two infinite lower-triangular matrices related to integer partitions are inverses of each other. One
matrix comes from an analogue of the Mobius mu function, while the other comes from counting
generalized complete partitions; a complete partition of n has all possible subsums 1 to n.

Mathematica Definitions

Integer Partitions

Outf]=

Out[]=

Definition
A multiset is a collection of elements (like a set) where an element can occur a finite number of times
(unlike a set).

An integer partition A of a positive integer n is an multiset of positive integers A; (called its parts) that
sumton. Wewrite A = (A, Ay, ...Ap) Fn.

Mathematically we use (round) parentheses and in Mathematica we use (curly) braces, which denotes
an (ordered) list, not a set.

For example, (3, 1, 1) 5.

Since the elements of a multiset are unordered (like a set), we can take them to be in nonincreasing
order from now on.

Here are the integer partitions of 5:

({51, {4, 13}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1,1, 1}, {1,1,1,1,1}}

Here they are again more compactly:
(5, 41, 32, 311, 221, 2111, 11111}

Other Definitions

An older alternative definition is along these lines:

“A partition is a way of writing an integer n as a sum of positive integers where the order of the addends


http://mathworld.wolfram.com/Partition.html
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is not significant, .... By convention, partitions are normally written from largest to smallest
addends..., forexample, 10=3+2+2+2+ 1.” (mathworld.wolfram.com/Partition.html)

With such a definition,3+2+2+2 + 1 has to be frozen, because as an arithmetic expression it is 10 and
the parts are gone.

Yet another definition: A = (A1, Az, As, ..., Ay) is an partition of n if the finite sequence
A=(A, Ay, .., Ay) issuchthat Ay 2 A2 ... 2 A and At + A+ ...+ Ay =n.

Ferrers Diagram

For each part A; of a partition A, draw a row of A; dots, then stack the rows.

Conjugate Partition

The conjugate partition A' of a partition A is the partition corresponding to the transpose of the Ferrers
diagram of A.

So (3, 1) is the conjugate partition of (2, 1, 1) and vice versa.

Distinct Partition

A distinct partition has no repeated part.
Here are the four distinct partitions of 6.

(6, 51, 42, 321}

The remaining partitions of 6 have repeated parts.
(33, 222, 411, 2211, 3111, 21111, 111111}

This is the sequence counting the number of distinct partitions of n.
{1,1,2,2,3,4,5,6,8,10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64}

Generating Functions

Out[«]=

Number of Partitions

The number of partitionsofnis 1, 2, 3,5, 7, 11, ... but the next number is not 13:
{1,2,3,5,7, 11, 15, 22, 30, 42, 56, 77}

The generating function for this sequence p(n) is:


http://mathworld.wolfram.com/Partition.html
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our = X+2X%X2+3x3+5x* + T x> +11x%+15x7 +22x8+30x2+42x®+56 x4+ 77 x2 + ...

The generating function is equal to the infinite product T2, j

Number of Distinct Partitions

The number of distinct partitions of n:
o= {1,1,2,2,3,4,5,6,8, 10, 12, 15}

The generating function for this sequence g(n) is:

o= X+x2+2x3+2x¥+3x°+4x8+5x"+6x8+8x%+10 x%+ 12 x1t+15x%x2 + ...

It is equal to the infinite product TT2; (1 + x):
Two Mobius Functions

Square-Free Numbers

A square-free integer is one that is not divisible by a square greater than 1.

Here are the square-free numbers up to 100:
ou- {1,2,3,5,6, 7,10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33,
34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66,
67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97}

Here are numbers up to 100 that are not square-free:
our-- {4, 8,9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52,
54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100}

Mobius Function p

In multiplicative number theory the Mobius p function is defined on the positive integers as follows.
1. If nis not square-free, u(n) = 0.

2. If nis square-free, then n can be written as the product of m distinct primes, for some positive integer
m

m. In that case, u(n) = (-1)™.

In other words, u of a square-free integer is —1 or 1 according to whether n has an odd or an even
number of prime factors.

For example, u(4) =0, u(5)=-1, u(6) =1.

Mobius Partition Function up

The function pp is the partition analogue of the ordinary Mébius function L.
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Definition of up:
1. Let up(A) = 0 if the partition A has a repeated part.
2. If the partition A has distinct parts and m partsin all, yp(A) = (-1)".

Here are the partitions of 6 and the corresponding values of the Mobius partition function pp:

6 -1

51 1

42

411

33
Out]= 321
3111
222
2211
21111
111111

=

[cNoNoNoNoN T NoNO]

Infinite Triangular Matrices

Pascal’s Triangle

The prime example of an infinite lower-triangular matrix is Pascal’s triangle T. Imagine that the rows
keep going down and the columns keep going to the right.

For readability, replace zeros with dots.

Out[« J//MatrixForm=

1 .

i1 -

12 1 -

13 3 1

14 6 4 1

15 10 10 5 1

1 6 15 20 15 6 1
1721 35 35 21 7 1

1 8 28 56 70 56 28 81
1 9 36 84 126 126 84 36 9 1

Here is the matrix product T-T.



Out[« J//MatrixForm=

1 .
2 1 .
4 4 1 .
8 12 6 1 .
16 32 24 8 1 .
32 80 80 40 10 1 .
64 192 240 160 60 12 1 .
128 448 672 560 280 84 14 1 .
256 1024 1792 1792 1120 448 112 16 1
512 2304 4608 5376 4032 2016 672 144 18 1
Here is the matrix inverse of T.
Out[ = J//MatrixForm=
1 .
-1 1 .
1 -2 1 .
-1 3 -3 1 .
1 -4 6 -4 1 .
-1 5 -10 10 -5 1 .
1 -6 15 -20 15 -6 1 .
-1 7 -21 35 -35 21 -7 1
1 -8 28 -56 70 -56 28 -8 1
-1 9 -36 84 -126 126 -84 36 -9 1
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Stirling Numbers of the First and Second Kind

The Stirling numbers of the first and second kind are another example of a pair of inverse lower-triangu-
lar matrices.

A Stirling number of the first kind counts how many permutations of {1, 2, ..., n} have k cycles.

Out{ = J//MatrixForm=

1 .

-1 1 .

2 -3 1 .

-6 11 -6 1 .

24 -50 35 -10 1 .

-120 274 -225 85 -15 1

720 -1764 1624 -735 175 -21 1
-5040 13068 -13132 6769 -1960 322 -28 1

A set partition of a finite set, say T={1, 2, 3, ..., n}, is a set of disjoint nonempty subsets of T.

A Stirling number of the second kind counts how many set partitions of {1, 2, ..., n} have k subsets.

Out[ = J//MatrixForm=

1 .

1 1 .

1 3 1

1 7 6 1 .

1 15 25 10 1 .

1 31 90 65 15 1

1 63 301 350 1406 21 1

1 127 966 1701 1050 266 28 1

The two matrices are inverses of each other.
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As the Demonstration The Derivative and the Integral as Infinite Matrices shows, there are (very famil-
iar) infinite matrices D and I such that D I is the identity matrix, but D-I'* I -D.

Even though infinite lower-triangular matrices with 1’s on the main diagonal behave well, we only deal

1
-21
322

1
-28 1

1 .
-1 1 .
2 -3 1 .

. -6 11 -6 1 .
24 -50 35 -10 1
-120 274 -225 85 -15
720 -1764 1624 -735 175
-5040 13068 -13132 6769 -1960
1 .

1 1 .

1 3 1

1 7 6 1 .

1 15 25 10 1 .

1 31 90 65 15 1

1 63 301 350 140 21 1

1 127 966 1701 1050 266 28 1
Infinite Matrices Can Be Weird
For square matricesAand B, ifA-B=1,thenB-A=]1.
with rxr matrices, wherere Z*.

Matrix v

Define the rxr matrix v, by v/(n, p) = =Y tp(A), where the sumis over A-nand max(A)=p,1<n,p<r.
An equivalent definition is that the n, p entry is:

(the number of distinct partitions of n with an odd number of parts)

(the number of distinct partitions of n with an even number of parts),

all with maximum part p.

Hereis vip:
Out[ = J//MatrixForm=
1 .
. 1 .
-1 1
. -1 1 .
-1 -1 1 .
1 -1 -1 1 .
-0 -1 -1 1 .
1 - -1 -1 1
1 . -1 -1 1
-1 2 -1 -1 1

To verify that v19(10, 5) = 2, look at the partitions of 10:



https://demonstrations.wolfram.com/TheDerivativeAndTheIntegralAsInfiniteMatrices/
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our- {10, 91, 82, 811, 73, 721, 7111, 64, 631, 622, 6211, 61111, 55, 541,
532, 5311, 5221, 52111, 511111, 442, 4411, 433, 4321, 43111, 4222, 42211,
421111, 4111111, 3331, 3322, 33211, 331111, 32221, 322111, 3211111,
31111111, 22222, 222211, 2221111, 22111111, 211111111, 1111111111}

The ones with maximum part 5 are:

ouf-}= {{5, 5}, {5, 4, 1}, {5, 3, 2}, {5, 3,1, 1},
{5,2,2,1}, {5,2,1,1, 1}, {5,1,1, 1,1, 1}}

Applying up to each of those gives:
our- {6, -1, -1, 0, 0, 0, O}

Minus the sum is 2, so v10(10, 5) = 2, as claimed.

Inverse of v

Jacobi wrote, “Always invert!” (referring to elliptic integrals).

This is V15_l.
Out[ = J//MatrixForm=

1 .

-1
1 1 .
1 1 1 .
2 2 1 1 .
2 2 2 1 1 .
4 4 3 2 1 1 .
5 5 4 3 2 1 1 .
8§ 8 6 5 3 2 1 1 .
16 106 9 6 5 3 2 1 1 -
16 16 13 16 7 5 3 2 11 .
20 20 17 13 16 7 5 3 211 -
31 31 25 20 14 11 7 5 3 211 -
39 39 33 26 20 14 11 7 5 3 2 11 .
55 55 46 37 28 21 15 11 7 5 3 2 11

What is the sequence in the second column, 1, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, ...?
Look it up at the OEIS to find A126796 Number of complete partitions of n.

Matrix y

Subpartitions and Subsums of a Partition

A subpartition of a partition A is a submultiset of A. Forinstance, (3, 1) is a subpartition of (3, 1, 1).

A subsum is the sum of a subpartition. So there are eight (8 = 23) subsums of (3, 1, 1) corresponding to
the eight subpartitions of (3, 1, 1}:


https://oeis.org/
https://oeis.org/A126796
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subpartition subsum
{}
{3}
{1}
{1}
{3, 1}
{3, 1}
{1, 1}
{3, 1, 1}

NP2 2WO

Complete Partition

Define a partition A+ n to be complete if it has all possible subsums 1, 2, 3, ..., n.
Here are the five complete partitions of 6.

{321, 3111, 2211, 21111, 111111}

Here are the partitions of 6 that are not complete.
{6, 51, 42, 411, 33, 222}

This is the sequence counting the number c(n) of complete partitions of n.
{(1,1,1,2,2,4,5,8, 10, 16, 20}

Park’s Condition

Clearly, a complete partition needs to have 1 as a part.

To get the subsum 2, either 2 is a part or {1, 1} is a subpartition.

To get the subsum 3, 3 is a part or either of the subpartitions {1, 1, 1} or {2, 1}.
If a part is too large relative to the others, intermediate subsums fail to appear.

Theorem (Park): A partition A= (A1, A, ..., Ap) with A; 2 A, 2 ... 2 A, is complete iff A, = 1 and for each
s 1Sj<m,/\jS1+/\j+1+Aj+2+ et A,

For example, 411 is not complete (no subsum is 3) because 4 ¢ 1 + (1 +1).

Exercise: The conjugate of a distinct partition is a complete partition.

k-Step Partition

Given a nonnegative integer k, define a partition A= (A1, Ay, ..., Ap) to be k-step iff A, < k and for each
LHOSJSMASk+ A+ Ao+ ...+ An.

Define the empty partition to be the only 0-step partition.

Clearly, a 1-step partition is a complete partition.

{311, 221, 2111, 11111}

Here are the k-step partitions of 5, fork=1, 2, 3, 4, 5.
{311, 221, 2111, 11111}



our-- {32, 311, 221, 2111, 11111}

our-- {41, 32, 311, 221, 2111, 11111}

our-- {41, 32, 311, 221, 2111, 11111}

This is the same as the partitions of 5 with no restrictions.

our - {5, 41, 32, 311, 221, 2111, 11111}

Matrix of Number of k-step Partitions

Define [(n, k) to be the number of k-step partitions of n.

Out[« J//MatrixForm=

1

(-
N @®UBRNNRERR

00U hANNRER

10 13
16 17
20 25

OCoOPWNRERH

O WN R

10
13
20
26

~NOaOWwWNRE R

11
14
21
28
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The second column is the number of complete partitions of niis c(n) = {(n, 2).

Definition of y

Define the matrix y. by y(i, ) =Il(i-j, j=1),i<i, j<r.

That is, the columns of y are the number of k-step partitions shifted down to form a lower-triangular

matrix.

Here is the matrix y1o:

Out[ = J//MatrixForm=

1

It matches the inverse of vip:

BOURNNRRR -

e ¢ I NI NI

OO WNRERF -

O WNEPRFE -

G WNRERE -

WN KRR -

N R

1
1
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Out[ = J//MatrixForm=

V-

Outf+]=

1 .
.1
11 .
1 1 1.
2 2 11 .
2 2 211 .
4 4 3211 .
5 5 43211 .
8 8 653211 .
10 160 9 6 53 2 11
IZV
Theorem. Foreachr 21, v, y, = I, the identity matrix.
Uptor=6,
1. 1. 1.
1 -1 1.
-1 1 11 . _ -1 .
.o-1 1 111 - B 1.
-1 -1 1 2211 . -1
1 -1 -11 22211 . -1

Hanna’s Generating Function

Hanna conjectured that

1=37,c(n)q"(1-q)(1-q%)...(1- ™), (1)

where c(n) is the sequence that counts the number of complete partitions of n.
Proof

Rewrite the desired identity as

1 — c(n)g”
ng°=l(l_q”) - ZTO;;O (l_qn+1) (l_qn+2) (l_qn+3) (2)

or

2rap(n) " =3 (l_qnu)(l_;ﬂ) (1-™) .’ (3)
where the last sum is over all complete partitions 7t of n.

Claim: Every partition contains a maximal complete subpartition. For example, (9, 7, 3, 1, 1) has
maximal complete subpartition (3, 1, 1). If the maximal subpartition 7' of 7T partitions n, thenn + 1
cannot be a part of the original partition 7t. If it were, we could insert it into 7', contradicting its maxi-
mality.

Furthermore, there is no constraint on the parts in 5T larger than n + 1 because the fact thatn + 1 is

missing in 7T means that no larger complete subpartition can be produced.

gt _ _cng
ﬂ/’inﬁ(l_qj) ﬂ/"’;nﬁ(l_qj)

Hence generates all partitions whose maximal complete subpartition is a partition

of n.

Summing over all n 2 0 gives (3) and consequently (1). ®
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Identifying coefficients for like powers of g proves that v-c=(1, 0, 0, 0, ...), the second column of y.

The straightforward bookkeeping generalization 1 =5,1(n, k) ¢"(1 - q) (1 - g¢?) (1 - q”*k) then
proves the theorem for the other columns.

Combinatorial Proof

Here is a proof by example.

Consider the dot product of row 10 of v with c.

ou;= (06 6 0 -1 206 06 -1 -1 1)

BEouhANNRRRO

An entry from v is the difference between the number of distinct partitions of odd and even length.
Here are these partitions.
ouf-)= {{}, {}, {}, {4321}, {541, 532}, {64, 631}, {73, 721}, {82}, {91}, {10}}

Here are the complete partitions counted in the third column of y.
Out[ = J//MatrixForm=
{}
{}
{1}
{11}
{21, 111}
{211, 1111}
{311, 221, 2111, 11111}
{321, 3111, 2211, 21111, 111111}

(Recall the number of complete partitions sequence starts like this:)

our= {1,1,2,2,4,5)}
Consider the fifth term in the dot product: 2x2. It comes from all possible pairs {541, 532} x {{21, 111}}.
That is,

{541, 21},
{541, 111},
{532, 21},
{532, 111}.

We will find four other terms in the dot product of opposite sign to get cancellation.

Involution B

Let D be the set of distinct partitions and C be the set of complete partitions.
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Define 8:D - C as follows.

Letd=(dy1, da, O3, ..., dm) €D and c = (c1, ¢z, C3,...) € C.

1.If miseven,then B(d, c)=(d1 + da, ds, ..., dm), (d2, c1, C2, C3, ...)).

2. If mis odd, then B(d, ¢) = ((d1 - c1, 1, da, d3, ..., dm), (c2, C3, ...)).

In words:

1. Add the second-largest part d, of d to the first part d; and adjoin d to c.

2. Drop the largest part c; of c from c and in d, subtract c; from the largest part d; and adjoin ¢; to d.
In the example,

B(541, 21) = (91, 421),
B(541, 111) = (91, 4111),
B(532, 21) = (82, 321),
B(532, 111) = (82, 3111).

The resulting pairs are still (distinct, complete).

The function B changes the parity of the length of the distinct partition and is an involution on the set
of pairs. Therefore the dot product is zero. “®”

Compositions
A composition of n is a finite sequence of nonnegative integers with sum n. So unlike an integer parti-
tion, order matters. For example the two compositions (1, 0, 2) and (1, 2, 0) are different.

Allowing 0 as a part only make sense if the number of parts is specified.

Strict Compositions

A strict composition of n is a finite sequence of positive integers with sum n.
Here are the strict compositions of 4.

our - {4, 31,13, 22, 211, 121, 112, 1111}

Let L(s) be the number of parts of the composition s. Here are the lengths of the compositions just
shown:

ou-]- {1, 2, 2,2, 3,3, 3, 4}

Matrix o

Like v is for partitions, so is o for strict compositions.
Define the rxr matrix g, by a(n, m) = -3 (-1)*©), where 1<n<r,1<m<r. The sum s over all strict
compositions ¢ of n with maximum part m and H (s) is the number of parts of s.
For example, for n =4, m = 2, these are the strict compositions:
ouf-}- {22,211, 121, 112}
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Three have odd length and one has even length, so 0(4, 2) =3 — 1 = 2. (Every math talk has some

arithmetic.)

Define the rxr matrix g, by g(n, m),1<n, m<r.

1

-1 1

1 -2 1

-1 2 -2 1

1 -1 1 -2 1

-1 1 1 -2 1

1 -1 . 1 -2 1

-1 1 -1 1 . 1 -2 1 .
1 -2 2 -1 . . 1 -2 1 -
-1 2 -1 -1 1 . . 1 -2 1
Inverse of o

Take the inverse of g;p. What are these numbers?

1 -

11.

121 .

1221 .-
13321.
123321 .
1344321
13444321
134554321 .-
1245554321

To answer, define two lower-triangular matrices a and .

Matrix a

Let a be the lower-triangular matrix of all 1’s:

RFRRRERRRHRRRRR
RFRREBERERERRB R
PR RBERRERRR -
PR RRRRR -
PR RRREE
Y

PR R

e

[

Matrix x

Define the lower-triangular matrix x by x(n, k) = {

wherel<k<n.

H(5) itk
0 otherwise
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1
-1 1
-1 . 1
- -1 1
outf+}= -1 1
1 -1 -1 1
-1 . 1
. --1 1
-1 - 1
i -1 - - -1 1
Conjecture
ocl=zaxa

The relevant OEIS triangles are A134542, A134541, A000012, A054525.
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