
Diophantine Equations Involving the Euler Totient
Function

Number Theory Seminar, Dalhousie University

J.C. Saunders

Ben-Gurion University of the Negev

December 20, 2019



The Euler Totient Function

For a natural number n, the Euler totient function counts the number of
positive integers up to n that are coprime to n and is denoted by ϕ(n).
For example, ϕ(6) = 2 because 1 and 5 are coprime to 6, but 2, 3, 4 aren’t.

For instance, if p is prime, then ϕ(p) = p − 1 and for a prime power pe ,
then ϕ(pe) = pe − pe−1 = pe−1(p − 1).

As well, the Euler totient function is multiplicative, that is, if n,m ∈ N are
coprime, then ϕ(nm) = ϕ(n)ϕ(m).

J.C. Saunders Diophantine Equations December 20, 2019 2 / 25



Properties of the Euler Totient Function

As a result, the Euler totient function of a number n can be expressed very
nicely in terms of the prime factorisation of n. If

n = pe11 pe22 · · · p
et
t

is the prime factorisation of n, then we have

ϕ(n) = pe1−11 (p1 − 1)pe2−12 (p2 − 1) · · · pet−1t (pt − 1).

If p2 | n, then p | ϕ(n). Conversely, if p | ϕ(n), then either p | n or there
exists a prime q such that either q | p − 1.
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Powers and the Euler totient function

Definition 1

A number n ∈ N is a powerful number if n does not have a prime factor to
the power 1 in its prime factorisation. In other words, if

n = pe11 pe22 · · · p
et
t

is the prime factorisation of n, then ei ≥ 2 for all 1 ≤ i ≤ t.

Theorem 1 (Pollack (2014))

As x →∞, the number of n ≤ x for which ϕ(n) is powerful is at most
x/L(x)1+o(1) where

L(x) = exp

(
log x · log log log x

log log x

)
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Theorem 2 (Pollack and Pomerance (2019))

Let V (x) := #{n ≤ x : there exists m ∈ N such that ϕ(m) = n2}. We
have

V (x) ≤ x/(log x)0.0063

and
V (x)� x/(log x log log x)2.
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Factorials and Powers

In 2010, Ford, Florian, and Pomerance proved that there exists c > 0 such
that for all k ∈ N the Diophantine equation ϕ(x) = k! has at least (k!)c

solutions. In this way, the equation ϕ(x) = k! has “many” solutions.

What about the equation ϕ(axm) = r · n! where m ≥ 2 and a ∈ N, r ∈ Q+

are fixed? We can also ask the same for ϕ(r · n!) = axm.
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The equation ϕ(axm) = r · n!

Theorem 3 (S.)

Fix a, b, c ∈ N with gcd(b, c) = 1. Then there are only finitely many
solutions to ϕ(axm) = b·n!

c with m ≥ 2 and these solutions satisfy
n ≤ max{61, 3a, 3b, 3c}.

In particular, all of the integer solutions to ϕ(xm) = n! where m ≥ 2 are
ϕ(1m) = 1!, ϕ(22) = 2!, ϕ(32) = 3!, ϕ((3 · 5)2) = 5!, ϕ((3 · 5 · 7)2) = 7!,
ϕ((22 · 3 · 5 · 7)2) = 8!, ϕ((22 · 32 · 5 · 7)2) = 9!,
ϕ((22 · 32 · 5 · 7 · 11)2) = 11!, and ϕ((22 · 32 · 5 · 7 · 11 · 13)2) = 13!.
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The equation ϕ(r · n!) = axm

Theorem 4 (S.)

Fix a, b, c ∈ N with gcd(a, b) = 1. Then there are only finitely many
solutions to ϕ

(
a·n!
b

)
= cxm with m ≥ 2 and these solutions satisfy

n ≤ max{61, 3a, 3b, 3c}.

In particular, all of the integer solutions to ϕ(n!) = xm, where m ≥ 2 and
n ≥ 1, are ϕ(1!) = 1m, ϕ(2!) = 1m, ϕ(4!) = 23, ϕ(5!) = 25,
ϕ(8!) = (25 · 3)2, ϕ(9!) = (25 · 32)2, ϕ(11!) = (26 · 32 · 5)2, and
ϕ(13!) = (28 · 33 · 5)2.
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Proposition 1 (S.)

Let x , n,m, a, b, c ∈ N with m ≥ 2 and ϕ(axm) = b·n!
c and let p be a

prime such that p > a, b, c. If p | x, then p ≤ n. Conversely, if p ≤ n,
p - x, then p = 2 and n = 3, 5, or 7.

Suppose p | x . Then p2 | axm. Thus p | ϕ(axm), so that p | b·n!c . Thus
p | n! so that p ≤ n.

Suppose that p ≤ n, p - x . Let q be the greatest prime at most n. Then
b < p ≤ q so that q | b·n!c . Then q | ϕ(axm). Either q | axm or there
exists a prime q′ | axm such that q | q′ − 1. Consider the latter case. Then
we have q < q′ | x But then q′ ≤ n, contradicting our choice of q. Thus
q | x . Using the same reasoning, we can deduce that the highest prime
dividing x is q.
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We have p | b·n!c = ϕ(axm). If p | axm, then p | x , so we must have that
there exists a prime, say p′, such that p | p′ − 1 and p′ | axm so that
p′ | x . Observe that a, b, c < p < p′ ≤ q ≤ n. We can therefore deduce
that for all e ∈ N pe | b·n!c if and only if pe | (q1 − 1)(q2 − 1) · · · (qr − 1)
where q1 < q2 < . . . < qr = q are all the primes dividing x that are
greater than a, b,, and c . Thus for all e ∈ N pe | n! if and only if
pe | (q1 − 1)(q2 − 1) · · · (qr − 1). Observe that
q1 − 1 < q2 − 1 < . . . < qr − 1 < n and that p - n!

(q1−1)···(qr−1) . Thus
q1 − 1, . . . , qr − 1 must contain all of the positive multiples of p up to n.
We must therefore have that p = qi − 1 for some 1 ≤ i ≤ r , which can
only hold if p = 2. So q1 − 1, . . . , qr − 1 contains all of the positive even
numbers less than n and n = qr = pk . Thus n = 3, 5, or 7.
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Powerful Numbers

Proposition 2 (S.)

Let x , y ,∈ N satisfy ϕ(x) = ϕ(y) and suppose that x and y are both
powerful numbers. Then x = y.

Let P(n) denote the largest prime factor dividing n. For x , y ∈ N both
powerful with ϕ(x) = ϕ(y) implies that P(x) = P(y) with their exponents
in the factorisation of x and y being equal. The result then follows by
induction on the number of prime factors of x .
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Lemma 1 (S.)

If x , n, a, b, c ∈ N with n ≥ 9, a, b, c ≤ n/3, and ϕ(ax2) = b·n!
c , then all of

the primes in the interval (n/3, n/2] are congruent to 2 (mod 3).

Notation 1

For a prime p and a natural number n, we write pe ‖ n if pe is the highest
power of p dividing n. In other words, if

n = pe11 pe22 · · · p
et
t

is the prime factorisation of n, then peii ‖ n for all 1 ≤ i ≤ t.

Let p ∈ (n/3, n/2] be prime. By Proposition 1, we have p | x . Thus
p2e ‖ ax2 for some e ∈ N. Thus p2e−1 | ϕ(ax2). Notice that p2 ‖ c·n!

d . We
can therefore deduce that there exists a prime q | ax2 such that p | q − 1.
Notice that q | x , and so, by Proposition 1, q ≤ n. But since n/3 < p we
must therefore have that 2p = q − 1. Since n ≥ 9, we have 3 - p, q. Thus
p ≡ 2 (mod 3).
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Proof of Theorem 3
Suppose that ϕ(axm) = b·n!

c where m ≥ 2 and gcd(b, c) = 1. Suppose
that n > max{61, 3a, 3b, 3c}.

Suppose that m ≥ 3. Let p be the largest prime at most n. By Bertrand’s
Postulate, n/2 < p and so p2 - n!. Also p > a, b, c , d . By Proposition 1,
we have p | x , and so p3 | axm. But then p2 | ϕ(axm) = b·n!

c so that
p2 | n!, a contradiction.

Suppose that m = 2. By Lemma 1, all of the primes in the interval
(n/3, n/2] are congruent to 2 (mod 3). Bennett, Martin, O’Bryant,
Rechnitzer showed in 2018 that for x ≥ 450, we have

x

2 log x
< π(x ; 3, 1) <

x

2 log x

(
1 +

5

2 log x

)
.

where (x ; 3, 1) is the number of primes up to x congruent to 1 (mod 3),
which we used to derive a contradiction.

Thus we must have n ≤ max{61, 3a, 3b, 3c}.
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Special Case ϕ(xm) = n!

For m ≥ 3 we only have ϕ(1m) = 1! as a solution. For n ≥ 62 there are no
solutions.

For 26 ≤ n ≤ 56, and 14 ≤ n ≤ 20 there exists a prime in the interval
(n/3, n/2] that is congruent to 1 (mod 3) so we obtain no solutions here.

Assume 57 ≤ n ≤ 61. By Proposition 1, 11 | x . Suppose that 11e ‖ x .
Then 112e ‖ x2. Also, 23 | x and 23 is the only prime up to n that is
congruent to 1 (mod 11). Thus, 112e−1+1 ‖ ϕ(x2) or 112e ‖ ϕ(x2). But
115 ‖ n!, a contradiction since 5 is odd.

The rest of the cases are exhausted similarly.

J.C. Saunders Diophantine Equations December 20, 2019 14 / 25



Proof of Theorem 4

Suppose that ϕ
(
a·n!
b

)
= cxm where m ≥ 2 and gcd(a, b) = 1 with

n > max{61, 3a, 3b, 3c}. We know there eixsts a prime p ∈ (n/3, n/2]
that is congruent to 1 (mod 3). Then p2 ‖ n!, and so p2 ‖ a·n!

b . Thus
p | cxm, and so p | xm. But then p2 | xm, and so p2 | cxm.

Therefore, there exists a prime q | a·n!b such that p | q − 1. Since
q > p > a, we have that q | n!, and so q ≤ n. Since p ∈ (n/3, n/2], we
therefore have that 2p = q − 1. But since p ≡ 1 (mod 3), we have
3 | 2p + 1, a contradiction.
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Luca’s and Stanica’s Results
Let Fn be the nth term of the Fibonacci sequence with F0 = 0 and F1 = 1,
and let Ln be the nth term of the Fibonacci sequence with L0 = 2 and
L1 = 1

Theorem 5 (Luca, Stanica (2013))

Let N := {n : there exists m such that ϕ(Fn) = m!} and
N (x) := N ∩ [1, x ]. Then

#N (x)� x log log x

log x
,

and the only primes in N are 2 and 3.

Theorem 6 (Luca, Stanica (2013))

The only solutions in nonnegative integers of the equation ϕ(Ln) = 2a3b

are

(n, a, b) = (0, 0, 0), (1, 0, 0), (2, 1, 0), (3, 1, 0), (4, 1, 1), (6, 1, 1), (9, 2, 2).
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Lucas sequences

Definition 2

Let a, b, c ∈ N. A Lucas sequence of the first kind (un)n is defined by
u0 = 0, u1 = 1, and un = bun−1 + cun−2 for all n ≥ 2. A Lucas sequence
of the second kind (vn)n is defined by v0 = 2, v1 = b, and
vn = bvn−1 + cvn−2 for all n ≥ 2.
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The equation ϕ(gp) = m!

Theorem 7 (S.)

Let b2 + 4c be prime with b2 + 4c > a. Then there are at most finitely
many primes p for which ϕ(aup) is a factorial. Moreover, such primes p
are bounded above by

max

ea1/2

(
b +
√
b2 + 4c

2

)
,
10
9 log(8 · (b2 + 4c − 1)!)− log a + log(b2+4c)

2

log
(
b+
√
b2+4c
2

)
 .
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Powers of 2 and 3

Theorem 8 (S.)

The only solutions to ϕ(vn) = 2x3y are:

1) For b = 3, c = 1:

(n, x , y) = (0, 0, 0), (1, 1, 0), (3, 2, 1), (4, 5, 1), (9, 6, 5).

2) For b = 5, c = 1:

(n, x , y) = (0, 0, 0), (1, 2, 0), (2, 0, 2), (3, 4, 3).

3) For b = 7, c = 1:

(n, x , y) = (0, 0, 0), (1, 1, 1), (2, 5, 0), (3, 5, 2), (6, 9, 4).

J.C. Saunders Diophantine Equations December 20, 2019 19 / 25



Lucas proved that for any prime p not dividing c we have that there exists
k ∈ N such that p | ul if and only if k | l . Such a k is called the index of
appearance of p. Denote the index of appearance of a prime p by z(p).

Lucas also proved the following.

Lemma 2 (Lucas)

If p | b2 + 4c, then z(p) | p. Let p be a prime other than b2 + 4c with
p - c. If b2 + 4c is a quadratic residue (mod p), then z(p) | p − 1. If
b2 + 4c is not a quadratic residue (mod p), then z(p) | p + 1. Let

α = b+
√
b2+4c
2a and β =

√
b2+4c−b

2a . Then

un =
(αn − βn)√
b2 + 4c

.

J.C. Saunders Diophantine Equations December 20, 2019 20 / 25



Lemma 3 (Rosser, Schoenfield)

Let c be the Euler-Mascheroni constant

c = lim
n→∞

(
− log n +

n∑
k=1

1

k

)
= 0.57721 . . .

Then for all n ≥ 3, we have

n/ϕ(n) < ec log log n + 5/(2 log log n)

except when n = 223092870 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23, in which case

n/ϕ(n) < ec log log n + 2.50637/(log log n)
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Let ϕ(aup) = m!. Suppose that m ≥ b2 + 4c . Then b2 + 4c | ϕ(aup) so
either b2 + 4c | aup or there exists a prime q | gp such that q ≡ 1
(mod b2 + 4c). In the former case, we thus have b2 + 4c | p and so
p = b2 + 4c . Thus assume the latter case. Since b2 + 4c ≡ 1 (mod 4)
and b2 + 4c is prime, we have by quadratic reciprocity that b2 + 4c is a
quadratic residue (mod q). By Lemma 2, we thus have that
z(q) | gcd(p, q − 1). Since g1 = a < b2 + 4c , we must have that z(q) = p
and so p | q − 1. Thus p | m! so that p ≤ m. By Lemma 2, we have

aαp > aup > ϕ(aup) ≥ p! > (p/e)p.

Since p ≥ 2, we have p < ea1/2α.

Now assume that m < b2 + 4c and p ≥ ea1/2α. Thus, p ≥ 5. We can
work out that au5 = a(b4 + 3b2c + c2) and so up ≥ u5 ≥ 5. Thus,

aup
(b2 + 4c − 1)!

≤ aup
m!

=
aup

ϕ(aup)
.

The right-hand side of the above inequality can be bounded with Lemma 3
and the result can be deduced.
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Let a = c = 1.

Proposition 3

Let c = 1 and b2 + 4 be prime and let d = ν3(b) if 3 | b or d = ν3(b2 + 2)
if 3 - b. Suppose that ϕ(vn) = 2x3y for some x , y , n ≥ 0 and n = 2em
where e ≥ 0 and m is odd. Then e ≤ 2 and at least one of the following
conditions hold:
1) n = 0, 1, 2, 3, 4, 6, 12
2) n is a power of 3
3) there exists a prime p > 3 dividing n and for all such primes p, there
eixst primes q1, . . . , ql such that qi = 2 · 3bqi + 1 for some bqi ∈ N for all
1 ≤ i ≤ l with v2ep = v2eq1 · · · ql , but qi - v2e for all 1 ≤ i ≤ t. Moreover,
let q1 be the smallest qi . Then bq1 ≤ 4d.
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Example: b = 3

If we substitute b = 3 into Proposition 3 and assume that n > 12, then we
obtain that either n is a power of 3, or there exists a prime p > 3 such
that 2ep | n, q | v2ep, but q - v2e , where e = 1, 2, and q = 7, 19, or 163
since here d = 1.

We can deduce that 17 | ϕ(v27), eliminating the power of 3 possibility
since vn1 | vn2 if n1 | n2.

Suppose that q = 163. We can deduce that 13 is not a quadratic residue
(mod 163), and so we have p | 164 and so p = 41. We can verify that
e = 1. But 41 | ϕ(v82). Thus ϕ(v82) does not have the form 2x3y and so
neither does ϕ(vn). The cases of q = 7 and 19 are similar.
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Thanks for listening!

Any questions?
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