
The four squares problem and its application in
operator approximation

Xiaoning Bian

Dalhousie University

December 1, 2020

Abstract

I will first walk through an algorithm of Rabin and Shallit [2, 1]
that efficiently solves the four-square Diophantine equation
n = x2 + y2 + z2 + w2. The efficiency comes from the use of
randomness — there are enough “good seed number”, so by
randomly choosing a number, it is likely that we can hit a
good seed that will grow into a solution. Then, I will explain
how this algorithm can be adapted to solve the problem of
approximating any 2x2 unitary using matrices of a certain
kind. The resulting algorithm is a “baby” version of Ross and
Selinger’s algorithm[4, 3].

Abstract

I will first walk through an algorithm of Rabin and Shallit [2, 1]
that efficiently solves the four-square Diophantine equation
n = x2 + y2 + z2 + w2. The efficiency comes from the use of
randomness — there are enough “good seed number”, so by
randomly choosing a number, it is likely that we can hit a
good seed that will grow into a solution. Then, I will explain
how this algorithm can be adapted to solve the problem of
approximating any 2x2 unitary using matrices of a certain
kind. The resulting algorithm is a “baby” version of Ross and
Selinger’s algorithm[4, 3].

Abstract

I will first walk through an algorithm of Rabin and Shallit [2, 1]
that efficiently solves the four-square Diophantine equation
n = x2 + y2 + z2 + w2. The efficiency comes from the use of
randomness — there are enough “good seed number”, so by
randomly choosing a number, it is likely that we can hit a
good seed that will grow into a solution. Then, I will explain
how this algorithm can be adapted to solve the problem of
approximating any 2x2 unitary using matrices of a certain
kind. The resulting algorithm is a “baby” version of Ross and
Selinger’s algorithm[4, 3].

Outline

Randomized algorithms
Solving simple equations randomly
Two-square algorithm
Four-square algorithm

Operator approximation
Dense subsets of Cn

Unit vector approximation
Unitary operator approximation

Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds one solution of
xp−1 ≡ 1 (mod p) (besides the trivial solution 1).

Notation
Let Zp be the usual finite field, Z∗

p = Zp \ {0} the multiplicative
group of Zp.

Answer
By Fermat’s little theorem, every number in Z∗

p is a solution.
Algorithm:

1. randomly pick a number a in Z∗
p.

2. return a, finish.

Complexity: O(1).

Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds one solution of
xp−1 ≡ 1 (mod p) (besides the trivial solution 1).

Notation
Let Zp be the usual finite field, Z∗

p = Zp \ {0} the multiplicative
group of Zp.

Answer
By Fermat’s little theorem, every number in Z∗

p is a solution.
Algorithm:

1. randomly pick a number a in Z∗
p.

2. return a, finish.

Complexity: O(1).

Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds one solution of
xp−1 ≡ 1 (mod p) (besides the trivial solution 1).

Notation
Let Zp be the usual finite field, Z∗

p = Zp \ {0} the multiplicative
group of Zp.

Answer
By Fermat’s little theorem, every number in Z∗

p is a solution.
Algorithm:

1. randomly pick a number a in Z∗
p.

2. return a, finish.

Complexity: O(1).

Solving simple equations randomly

Question
Let p be a prime such that p ≡ 1 (mod 4). Design an algorithm
that finds one solution (besides the trivial 1) of x2 ≡ 1 (mod p).

Answer
Let p = 4k + 1. By Fermat’s little theorem, for x ∈ Z∗

p, we have

x4k ≡ 1 (mod p), i.e., (x2k)2 ≡ 1 (mod p).

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b ≡ a2k (mod p), using “repeated squaring”.

3. return b, finish.

Complexity: O(1) + O(log(2k)) = O(log p).

Solving simple equations randomly

Question
Let p be a prime such that p ≡ 1 (mod 4). Design an algorithm
that finds one solution (besides the trivial 1) of x2 ≡ 1 (mod p).

Answer
Let p = 4k + 1. By Fermat’s little theorem, for x ∈ Z∗

p, we have

x4k ≡ 1 (mod p), i.e., (x2k)2 ≡ 1 (mod p).

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b ≡ a2k (mod p), using “repeated squaring”.

3. return b, finish.

Complexity: O(1) + O(log(2k)) = O(log p).

Solving simple equations randomly

Question
Let p be a prime such that p ≡ 1 (mod 4). Design an algorithm
that finds one solution (besides the trivial 1) of x2 ≡ 1 (mod p).

Answer
Let p = 4k + 1. By Fermat’s little theorem, for x ∈ Z∗

p, we have

x4k ≡ 1 (mod p), i.e., (x2k)2 ≡ 1 (mod p).

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b ≡ a2k (mod p), using “repeated squaring”.

3. return b, finish.

Complexity: O(1) + O(log(2k)) = O(log p).

Solving simple equations randomly

Question
Let p be a prime such that p ≡ 1 (mod 4). Design an algorithm
that finds one solution (besides the trivial 1) of x2 ≡ 1 (mod p).

Answer
Let p = 4k + 1. By Fermat’s little theorem, for x ∈ Z∗

p, we have

x4k ≡ 1 (mod p), i.e., (x2k)2 ≡ 1 (mod p).

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b ≡ a2k (mod p), using “repeated squaring”.

3. return b, finish.

Complexity: O(1) + O(log(2k)) = O(log p).

Solving simple equations randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = −1 in Zp.

Answer
By Fermat’s little theorem, for x ∈ Zp, we have

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = (xk)2 = 1 or − 1.

Claim: Half of Z∗
p satisfy (xk)2 = −1. Will show later.

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b = ak , using “repeated squaring”.

3. check if b2 = −1. If yes return b, finish. If not, go to step 1.

Solving simple equations randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = −1 in Zp.

Answer
By Fermat’s little theorem, for x ∈ Zp, we have

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = (xk)2 = 1 or − 1.

Claim: Half of Z∗
p satisfy (xk)2 = −1. Will show later.

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b = ak , using “repeated squaring”.

3. check if b2 = −1. If yes return b, finish. If not, go to step 1.

Solving simple equations randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = −1 in Zp.

Answer
By Fermat’s little theorem, for x ∈ Zp, we have

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = (xk)2 = 1 or − 1.

Claim: Half of Z∗
p satisfy (xk)2 = −1. Will show later.

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b = ak , using “repeated squaring”.

3. check if b2 = −1. If yes return b, finish. If not, go to step 1.

Solving simple equations randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = −1 in Zp.

Answer
By Fermat’s little theorem, for x ∈ Zp, we have

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = (xk)2 = 1 or − 1.

Claim: Half of Z∗
p satisfy (xk)2 = −1. Will show later.

Algorithm:

1. randomly pick a number a in Z∗
p.

2. calculate b = ak , using “repeated squaring”.

3. check if b2 = −1. If yes return b, finish. If not, go to step 1.

Complexity analysis

Expected Complexity:

O(log p)

� ∞�

i=0

�
1

2

�i
�

= 2O(log p) = O(log p).

Or compute in an easier way: succeed with probality 0.5, on
average, we need try 1

0.5 = 2 times to succeed.

Note
Step 3 only takes constant time. In general, randomized algorithms
are suitable for solving NP problems — problems that may or may
not need polynomial time to solve, but only need polynomial time
to check. But randomized algorithms cannot solve NP-hard
problems.

Complexity analysis

Expected Complexity:

O(log p)

� ∞�

i=0

�
1

2

�i
�

= 2O(log p) = O(log p).

Or compute in an easier way: succeed with probality 0.5, on
average, we need try 1

0.5 = 2 times to succeed.

Note
Step 3 only takes constant time. In general, randomized algorithms
are suitable for solving NP problems — problems that may or may
not need polynomial time to solve, but only need polynomial time
to check. But randomized algorithms cannot solve NP-hard
problems.

Complexity analysis

Expected Complexity:

O(log p)

� ∞�

i=0

�
1

2

�i
�

= 2O(log p) = O(log p).

Or compute in an easier way: succeed with probality 0.5, on
average, we need try 1

0.5 = 2 times to succeed.

Note
Step 3 only takes constant time. In general, randomized algorithms
are suitable for solving NP problems — problems that may or may
not need polynomial time to solve, but only need polynomial time
to check. But randomized algorithms cannot solve NP-hard
problems.

Complexity analysis

Expected Complexity:

O(log p)

� ∞�

i=0

�
1

2

�i
�

= 2O(log p) = O(log p).

Or compute in an easier way: succeed with probality 0.5, on
average, we need try 1

0.5 = 2 times to succeed.

Note
Step 3 only takes constant time. In general, randomized algorithms
are suitable for solving NP problems — problems that may or may
not need polynomial time to solve, but only need polynomial time
to check. But randomized algorithms cannot solve NP-hard
problems.

Proof of the claim

Claim
Half of Z∗

p satisfy (xk)2 = −1.

Proof.
Recall Fermat’s little theorem implies

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = 1 or − 1.

Since Zp is a field, the equations x2k = 1 and x2k = −1 each has
at most 2k solutions. And there are 4k elements in Z∗

p.

Proof of the claim

Claim
Half of Z∗

p satisfy (xk)2 = −1.

Proof.
Recall Fermat’s little theorem implies

x4k = 1, i.e., (x2k)2 = 1, i.e., x2k = 1 or − 1.

Since Zp is a field, the equations x2k = 1 and x2k = −1 each has
at most 2k solutions. And there are 4k elements in Z∗

p.

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Solving x2 + y 2 = p randomly

Question
Let p = 4k + 1 be a prime. Design an algorithm that finds one
solution of x2 + y2 = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a + bi) = a2 + b2 is the rank function.
Let u ∈ Zp be a solution of x2 = −1 obtained from the last
algorithm. Then in Z[i], we have (u + i)(u − i) = u2 + 1 = mp.
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.
Algorithm:

1. run the last algorithm to obtain u s.t. u2 ≡ −1 (mod p).

2. calculate a+ bi = gcd(u + i , p).

3. return (a, b), finish.

Complexity: Step 1 and 2, O(log p). Total, O(log p).

Proof of the claim

Claim
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.

Proof.
Recall we have (u + i)(u − i) = u2 + 1 = mp. Since u ∈ Zp, we
have mp = u2 + 1 < p2, i.e., m < p.

a+bi | u+ i =⇒ N(a+bi) | N(u+ i), i.e., a2+b2 | mp in Z (∗)

a+ bi | p =⇒ N(a+ bi) | N(p), i.e., a2 + b2 | p2 in Z.

which implies a2 + b2 = 1 or p or p2. We can exclude p2 by (∗).
To exclude 1, suppose not, then a+ bi is a unit, so u + i and p are
relatively prime. Then u + i | m, which means N(u + i) | N(m),
i.e., mp | m2, a contradiction.

Proof of the claim

Claim
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.

Proof.
Recall we have (u + i)(u − i) = u2 + 1 = mp. Since u ∈ Zp, we
have mp = u2 + 1 < p2, i.e., m < p.

a+bi | u+ i =⇒ N(a+bi) | N(u+ i), i.e., a2+b2 | mp in Z (∗)

a+ bi | p =⇒ N(a+ bi) | N(p), i.e., a2 + b2 | p2 in Z.

which implies a2 + b2 = 1 or p or p2. We can exclude p2 by (∗).
To exclude 1, suppose not, then a+ bi is a unit, so u + i and p are
relatively prime. Then u + i | m, which means N(u + i) | N(m),
i.e., mp | m2, a contradiction.

Proof of the claim

Claim
Let a+ bi = gcd(u + i , p). We claim a2 + b2 = p.

Proof.
Recall we have (u + i)(u − i) = u2 + 1 = mp. Since u ∈ Zp, we
have mp = u2 + 1 < p2, i.e., m < p.

a+bi | u+ i =⇒ N(a+bi) | N(u+ i), i.e., a2+b2 | mp in Z (∗)

a+ bi | p =⇒ N(a+ bi) | N(p), i.e., a2 + b2 | p2 in Z.

which implies a2 + b2 = 1 or p or p2. We can exclude p2 by (∗).
To exclude 1, suppose not, then a+ bi is a unit, so u + i and p are
relatively prime. Then u + i | m, which means N(u + i) | N(m),
i.e., mp | m2, a contradiction.

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
The idea is that by randomly choosing x and y , we might have
p := n − x2 − y2 is a prime of the form 4a+ 1. Then using the
two-square algorithm, we can find z ,w s.t. n− x2 − y2 = z2 +w2.
First notice that, if p is a prime, then p = 2 or p odd and

p = n − x2 − y2 ≡ 2− x2 − y2 (mod 4) =⇒ p ≡ 1 (mod 4).
This means we only need p to be a prime. For the abundance of
such x and y , I need to use a theorem in [2] which says for a
certain constant A > 0, there exists n0 such that for n > n0, the
number of x , y ’s such that n − x2 − y2 is prime is greater than

A·n
(log n) log log n , out of

√
n ·√n choices for x , y .

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
The idea is that by randomly choosing x and y , we might have
p := n − x2 − y2 is a prime of the form 4a+ 1. Then using the
two-square algorithm, we can find z ,w s.t. n− x2 − y2 = z2 +w2.
First notice that, if p is a prime, then p = 2 or p odd and

p = n − x2 − y2 ≡ 2− x2 − y2 (mod 4) =⇒ p ≡ 1 (mod 4).
This means we only need p to be a prime. For the abundance of
such x and y , I need to use a theorem in [2] which says for a
certain constant A > 0, there exists n0 such that for n > n0, the
number of x , y ’s such that n − x2 − y2 is prime is greater than

A·n
(log n) log log n , out of

√
n ·√n choices for x , y .

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
The idea is that by randomly choosing x and y , we might have
p := n − x2 − y2 is a prime of the form 4a+ 1. Then using the
two-square algorithm, we can find z ,w s.t. n− x2 − y2 = z2 +w2.
First notice that, if p is a prime, then p = 2 or p odd and

p = n − x2 − y2 ≡ 2− x2 − y2 (mod 4) =⇒ p ≡ 1 (mod 4).
This means we only need p to be a prime. For the abundance of
such x and y , I need to use a theorem in [2] which says for a
certain constant A > 0, there exists n0 such that for n > n0, the
number of x , y ’s such that n − x2 − y2 is prime is greater than

A·n
(log n) log log n , out of

√
n ·√n choices for x , y .

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
The idea is that by randomly choosing x and y , we might have
p := n − x2 − y2 is a prime of the form 4a+ 1. Then using the
two-square algorithm, we can find z ,w s.t. n− x2 − y2 = z2 +w2.
First notice that, if p is a prime, then p = 2 or p odd and

p = n − x2 − y2 ≡ 2− x2 − y2 (mod 4) =⇒ p ≡ 1 (mod 4).
This means we only need p to be a prime. For the abundance of
such x and y , I need to use a theorem in [2] which says for a
certain constant A > 0, there exists n0 such that for n > n0, the
number of x , y ’s such that n − x2 − y2 is prime is greater than

A·n
(log n) log log n , out of

√
n ·√n choices for x , y .

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
Algorithm:

1. randomly choose 0 ≤ x , y ≤ √
n.

2. run two-square algorithm but only finite many steps, with
input n − x2 − y2. If a solution z ,w is found. return
(x , y , z ,w) and finish, otherwise go to step 1.

Complexity: First, notice the “density” of such x , y is
A·n

(log n) log log n · 1√
n
√
n
= A

(log n) log log n , so on average we need to run
(log n) log log n

A times to get a good pair of x , y such that n− x2 − y2

is a prime. For each such try, running finite many steps of the
two-square algorithm costs O(log n). Total O((log n)2 log log n).

Solving x2 + y 2 + z2 + w 2 = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
Algorithm:

1. randomly choose 0 ≤ x , y ≤ √
n.

2. run two-square algorithm but only finite many steps, with
input n − x2 − y2. If a solution z ,w is found. return
(x , y , z ,w) and finish, otherwise go to step 1.

Complexity: First, notice the “density” of such x , y is
A·n

(log n) log log n · 1√
n
√
n
= A

(log n) log log n , so on average we need to run
(log n) log log n

A times to get a good pair of x , y such that n− x2 − y2

is a prime. For each such try, running finite many steps of the
two-square algorithm costs O(log n). Total O((log n)2 log log n).

Solving x2 + y 2 + z2 + w 2 = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
� n = 4k . Solve n/4 = a2 + b2 + c2 + d2, then

n = (2a)2 + (2b)2 + (2c)2 + (2d)2.

� n = 4k + 1 or 4k + 3. Solve 2n = 4(2k) + 2 or
2n = 8k +6 = 4(2k +1)+2, say 2n = a2+ b2+ c2+ d2, then
a2 + b2 + c2 + d2 ≡ 2 (mod 4), so two of a, b, c , d are odd,
two are even. WLOG, say a, b odd, c , d even, then we have

n =
�
1
2(a+ b)

�2
+

�
1
2(a− b)

�2
+
�
1
2(c + d)

�2
+

�
1
2(c − d)

�2

� n = 4k + 2. Solved using last algorithm.

Solving x2 + y 2 + z2 + w 2 = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
� n = 4k . Solve n/4 = a2 + b2 + c2 + d2, then

n = (2a)2 + (2b)2 + (2c)2 + (2d)2.

� n = 4k + 1 or 4k + 3. Solve 2n = 4(2k) + 2 or
2n = 8k +6 = 4(2k +1)+2, say 2n = a2+ b2+ c2+ d2, then
a2 + b2 + c2 + d2 ≡ 2 (mod 4), so two of a, b, c , d are odd,
two are even. WLOG, say a, b odd, c , d even, then we have

n =
�
1
2(a+ b)

�2
+

�
1
2(a− b)

�2
+
�
1
2(c + d)

�2
+

�
1
2(c − d)

�2

� n = 4k + 2. Solved using last algorithm.

Solving x2 + y 2 + z2 + w 2 = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
� n = 4k . Solve n/4 = a2 + b2 + c2 + d2, then

n = (2a)2 + (2b)2 + (2c)2 + (2d)2.

� n = 4k + 1 or 4k + 3. Solve 2n = 4(2k) + 2 or
2n = 8k +6 = 4(2k +1)+2, say 2n = a2+ b2+ c2+ d2, then
a2 + b2 + c2 + d2 ≡ 2 (mod 4), so two of a, b, c , d are odd,
two are even. WLOG, say a, b odd, c , d even, then we have

n =
�
1
2(a+ b)

�2
+

�
1
2(a− b)

�2
+
�
1
2(c + d)

�2
+

�
1
2(c − d)

�2

� n = 4k + 2. Solved using last algorithm.

Solving x2 + y 2 + z2 + w 2 = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x2 + y2 + z2 + w2 = n in Z.

Answer
� n = 4k . Solve n/4 = a2 + b2 + c2 + d2, then

n = (2a)2 + (2b)2 + (2c)2 + (2d)2.

� n = 4k + 1 or 4k + 3. Solve 2n = 4(2k) + 2 or
2n = 8k +6 = 4(2k +1)+2, say 2n = a2+ b2+ c2+ d2, then
a2 + b2 + c2 + d2 ≡ 2 (mod 4), so two of a, b, c , d are odd,
two are even. WLOG, say a, b odd, c , d even, then we have

n =
�
1
2(a+ b)

�2
+

�
1
2(a− b)

�2
+
�
1
2(c + d)

�2
+

�
1
2(c − d)

�2

� n = 4k + 2. Solved using last algorithm.

Solving x2 + y 2 + z2 + w 2 = n randomly

Answer
Complexity: At most O(log n) arithmetic operations are needed
before reaching the form n = 4k + 2. Then one run of the last
algorithm costs O((log n)2 log log n). Total O((log n)2 log log n).

Outline

Randomized algorithms
Solving simple equations randomly
Two-square algorithm
Four-square algorithm

Operator approximation
Dense subsets of Cn

Unit vector approximation
Unitary operator approximation

Dense subsets of Cn

Notation
� D := Z[12] = { a

2k
| a ∈ Z, k ∈ N}, the ring of dyadic fractions.

� D[i] = {a+ bi | a, b ∈ D}, a ring with no name yet.

� Sn−1 = {(x1, x2, ..., xn) ∈ Cn | � |xi |2 = 1}, unit sphere in Cn.

Note that D[i]n = ∪k∈N(1/2k)Z[i]n.

Claim

1. D[i] is dense in C.
2. D[i] ∩ S0 is not dense in C ∩ S0.

3. D[i]2 ∩ S1 is dense in ((C⊕ 0) ∪ D[i]2) ∩ S1, under unproven
hypothesis.

4. D[i]3 ∩ S2 is dense in ((C⊕ 0⊕ 0) ∪ D[i]3) ∩ S2.

Proof of claim 1, 2, and 4

1. D[i] is dense in C. Since any x ∈ R can be approximated by
�2ix�/2i , D is dense in R. Then Dn is dense in Rn, hence D[i]
is dense in C.

2. Unit vectors in D[i] does not approximate unit vectors in C.
Because for u = a/2k + b/2l i ∈ D[i] (in reduced form, wlog,
k ≥ l) to be of unit length, a2 + b24k−l = 4k . If k > 0, the
right is congruent to 0 modulo 4, but the left 1 or 2. For
k = 0, we only have finite many such u, but S is infinite.

4. Unit vectors in D[i]3 approximates unit vectors in (C⊕ 0⊕ 0).

(1/2k)

�2k cos θ�+ �2k sin θ�i

a+ bi
c + di

 approximates

e iθ

0
0

,

where a, b, c , d satisfy
a2 + b2 + c2 + d2 = (2k)2 − (�2k cos θ�)2 − (�2k sin θ�)2.

Proof of claim 1, 2, and 4

1. D[i] is dense in C. Since any x ∈ R can be approximated by
�2ix�/2i , D is dense in R. Then Dn is dense in Rn, hence D[i]
is dense in C.

2. Unit vectors in D[i] does not approximate unit vectors in C.
Because for u = a/2k + b/2l i ∈ D[i] (in reduced form, wlog,
k ≥ l) to be of unit length, a2 + b24k−l = 4k . If k > 0, the
right is congruent to 0 modulo 4, but the left 1 or 2. For
k = 0, we only have finite many such u, but S is infinite.

4. Unit vectors in D[i]3 approximates unit vectors in (C⊕ 0⊕ 0).

(1/2k)

�2k cos θ�+ �2k sin θ�i

a+ bi
c + di

 approximates

e iθ

0
0

,

where a, b, c , d satisfy
a2 + b2 + c2 + d2 = (2k)2 − (�2k cos θ�)2 − (�2k sin θ�)2.

Proof of claim 1, 2, and 4

1. D[i] is dense in C. Since any x ∈ R can be approximated by
�2ix�/2i , D is dense in R. Then Dn is dense in Rn, hence D[i]
is dense in C.

2. Unit vectors in D[i] does not approximate unit vectors in C.
Because for u = a/2k + b/2l i ∈ D[i] (in reduced form, wlog,
k ≥ l) to be of unit length, a2 + b24k−l = 4k . If k > 0, the
right is congruent to 0 modulo 4, but the left 1 or 2. For
k = 0, we only have finite many such u, but S is infinite.

4. Unit vectors in D[i]3 approximates unit vectors in (C⊕ 0⊕ 0).

(1/2k)

�2k cos θ�+ �2k sin θ�i

a+ bi
c + di

 approximates

e iθ

0
0

,

where a, b, c , d satisfy
a2 + b2 + c2 + d2 = (2k)2 − (�2k cos θ�)2 − (�2k sin θ�)2.

Unit vector approximation — Proof of claim 3

Question

Let u =

�
e iθ

0

�
∈ C2 be a unit vector. Design an algorithm that

finds unit (1/2k)

�
a+ bi
c + di

�
∈ D[i]2 ∩ S1 that approximates u.

Answer
Recall in four-square problem “The idea is that by randomly
choosing x and y , we might have p := n − x2 − y2 is a prime of
the form 4k + 1”
But here: we randomly choose x and y in smaller region
determined by e iθ. And we need a strong hypothesis about the
abundance of such x and y .

Unit vector approximation — Proof of claim 3

Question

Let u =

�
e iθ

0

�
∈ C2 be a unit vector. Design an algorithm that

finds unit (1/2k)

�
a+ bi
c + di

�
∈ D[i]2 ∩ S1 that approximates u.

Answer
Recall in four-square problem “The idea is that by randomly
choosing x and y , we might have p := n − x2 − y2 is a prime of
the form 4k + 1”
But here: we randomly choose x and y in smaller region
determined by e iθ. And we need a strong hypothesis about the
abundance of such x and y .

Unit vector approximation — Proof of claim 3

Question

Let u =

�
e iθ

0

�
∈ C2 be a unit vector. Design an algorithm that

finds unit (1/2k)

�
a+ bi
c + di

�
∈ D[i]2 ∩ S1 that approximates u.

Answer
Recall in four-square problem “The idea is that by randomly
choosing x and y , we might have p := n − x2 − y2 is a prime of
the form 4k + 1”
But here: we randomly choose x and y in smaller region
determined by e iθ. And we need a strong hypothesis about the
abundance of such x and y .

Smaller region

Smaller region

Bigger hypothesis

Note
2kR� contains many points for sufficient large k .

Recall the proven density of good x , y ’s in the square
A

(log n) log log n

Bigger hypothesis

Good points x , y are even distributed, i.e. the density of good
x , y ’s in the crescent is same as the density in the square.

Consequences

For large k , we can find x , y such that 4k − x2 − y2 is a prime of
the form 4j + 1. That is the four-square problem with extra
constraint can be efficiently solved.

Bigger hypothesis

Note
2kR� contains many points for sufficient large k .

Recall the proven density of good x , y ’s in the square
A

(log n) log log n

Bigger hypothesis

Good points x , y are even distributed, i.e. the density of good
x , y ’s in the crescent is same as the density in the square.

Consequences

For large k , we can find x , y such that 4k − x2 − y2 is a prime of
the form 4j + 1. That is the four-square problem with extra
constraint can be efficiently solved.

Bigger hypothesis

Note
2kR� contains many points for sufficient large k .

Recall the proven density of good x , y ’s in the square
A

(log n) log log n

Bigger hypothesis

Good points x , y are even distributed, i.e. the density of good
x , y ’s in the crescent is same as the density in the square.

Consequences

For large k , we can find x , y such that 4k − x2 − y2 is a prime of
the form 4j + 1. That is the four-square problem with extra
constraint can be efficiently solved.

Bigger hypothesis

Note
2kR� contains many points for sufficient large k .

Recall the proven density of good x , y ’s in the square
A

(log n) log log n

Bigger hypothesis

Good points x , y are even distributed, i.e. the density of good
x , y ’s in the crescent is same as the density in the square.

Consequences

For large k , we can find x , y such that 4k − x2 − y2 is a prime of
the form 4j + 1. That is the four-square problem with extra
constraint can be efficiently solved.

Unit vector approximation

Question

Find a unit vector (1/2k)

�
a+ bi
c + di

�
that approximates

�
e iθ

0

�
.

Answer
Algorithm:

1. For given �, calculate k . (not hard, not expensive, omitted)

2. Solve restricted four-square problem 4k = x2 + y2 + y2 + z2

with (x , y) ∈ 2kR� get solution a, b, c , d .

3. return (1/2k)

�
a+ bi
c + di

�
, finish.

Complexity: depends on the area of R�. We omit the calculation
and only state the result. Polynomial in log (1/�).

Note
c , d are relatively small compared to 2k , it does’t affect much.

Unit vector approximation

Question

Find a unit vector (1/2k)

�
a+ bi
c + di

�
that approximates

�
e iθ

0

�
.

Answer
Algorithm:

1. For given �, calculate k . (not hard, not expensive, omitted)

2. Solve restricted four-square problem 4k = x2 + y2 + y2 + z2

with (x , y) ∈ 2kR� get solution a, b, c , d .

3. return (1/2k)

�
a+ bi
c + di

�
, finish.

Complexity: depends on the area of R�. We omit the calculation
and only state the result. Polynomial in log (1/�).

Note
c , d are relatively small compared to 2k , it does’t affect much.

Unit vector approximation

Question

Find a unit vector (1/2k)

�
a+ bi
c + di

�
that approximates

�
e iθ

0

�
.

Answer
Algorithm:

1. For given �, calculate k . (not hard, not expensive, omitted)

2. Solve restricted four-square problem 4k = x2 + y2 + y2 + z2

with (x , y) ∈ 2kR� get solution a, b, c , d .

3. return (1/2k)

�
a+ bi
c + di

�
, finish.

Complexity: depends on the area of R�. We omit the calculation
and only state the result. Polynomial in log (1/�).

Note
c , d are relatively small compared to 2k , it does’t affect much.

z-rotation approximation

Question

Find unitary (1/2k)

�
a+ bi e + fi
c + di g + hi

�
that is close to

�
e iθ 0
0 e−iθ

�
,

where a, b, c , d , e, f , g , h, k are integers.

Answer

Basically, we first approximate

�
e iθ

0

�
, then through some algebraic

manipulation, we get a solution. We claim, if

(1/2k)

�
a+ bi
c + di

�
approximates

�
e iθ

0

�
, then

(1/2k)

�
a+ bi −c + di
c + di a− bi

�
is unitary and close to

�
e iθ 0
0 e−iθ

�
.

z-rotation approximation

Question

Find unitary (1/2k)

�
a+ bi e + fi
c + di g + hi

�
that is close to

�
e iθ 0
0 e−iθ

�
,

where a, b, c , d , e, f , g , h, k are integers.

Answer

Basically, we first approximate

�
e iθ

0

�
, then through some algebraic

manipulation, we get a solution. We claim, if

(1/2k)

�
a+ bi
c + di

�
approximates

�
e iθ

0

�
, then

(1/2k)

�
a+ bi −c + di
c + di a− bi

�
is unitary and close to

�
e iθ 0
0 e−iθ

�
.

Unitary approximation

Question

Find unitary (1/2k)

�
a+ bi e + fi
c + di g + hi

�
that approximates

�
p q
r s

�

an arbitary unitary, where a, b, c, d , e, f , g , h, k are integers.

Answer

An x-rotation is of the form K

�
e iθ 0
0 e−iθ

�
K †, where

K = 1
2

�
1− i 1− i
1− i −1 + i

�
, and •† means taking conjugate transpose.

Any 2x2 unitary can written as a product ABC , where A,C are
z-rotations and B is an x-rotation.

Unitary approximation

Question

Find unitary (1/2k)

�
a+ bi e + fi
c + di g + hi

�
that approximates

�
p q
r s

�

an arbitary unitary, where a, b, c, d , e, f , g , h, k are integers.

Answer

An x-rotation is of the form K

�
e iθ 0
0 e−iθ

�
K †, where

K = 1
2

�
1− i 1− i
1− i −1 + i

�
, and •† means taking conjugate transpose.

Any 2x2 unitary can written as a product ABC , where A,C are
z-rotations and B is an x-rotation.

References

Paul Pollack and Enrique Trevino.
Finding the four squares in lagrange’s theorem.
Integers, 18:A15, 2018.

Michael O. Rabin and Jeffery O. Shallit.
Randomized algorithms in number theory.
Communications on Pure and Applied Mathematics,
39(S1):S239–S256, 1986.

Neil J. Ross and Peter Selinger.
Optimal ancilla-free Clifford+T approximation of z-rotations.
Quantum Information and Computation, 16(11–12):901–953,
2016.

Peter Selinger.
Efficient Clifford+T approximation of single-qubit operators.
Quantum Information and Computation, 15(1–2):159–180,
2015.

