The four squares problem and its application in operator approximation

5

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Xiaoning Bian

Dalhousie University

December 1, 2020

Abstract

O(n²) vs O(logn)²loglogn)

>O((logn)2/loglogn)

I will first walk through an algorithm of Rabin and Shallit [2, 1] that efficiently solves the four-square Diophantine equation $n = x^2 + y^2 + z^2 + w^2$. The efficiency comes from the use of randomness — there are enough "good seed number", so by randomly choosing a number, it is likely that we can hit a good seed that will grow into a solution. Then, I will explain how this algorithm can be adapted to solve the problem of approximating any $2x^2$ unitary using matrices of a certain kind. The resulting algorithm is a "baby" version of Ross and Selinger's algorithm[4, 3].

Abstract

I will first walk through an algorithm of Rabin and Shallit [2, 1] that efficiently solves the four-square Diophantine equation $n = x^2 + y^2 + z^2 + w^2$. The efficiency comes from the use of randomness — there are enough "good seed number", so by randomly choosing a number, it is likely that we can hit a good seed that will grow into a solution. Then, I will explain how this algorithm can be adapted to solve the problem of approximating any 2x2 unitary using matrices of a certain kind. The resulting algorithm is a "baby" version of Ross and Selinger's algorithm[4, 3].

x is a solution

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Abstract

I will first walk through an algorithm of Rabin and Shallit [2, 1] that efficiently solves the four-square Diophantine equation $n = x^2 + y^2 + z^2 + w^2$. The efficiency comes from the use of randomness — there are enough "good seed number", so by randomly choosing a number, it is likely that we can hit a good seed that will grow into a solution. Then, I will explain how this algorithm can be adapted to solve the problem of approximating any $2x^2$ unitary using matrices of a certain kind. The resulting algorithm is a "baby" version of Ross and Selinger's algorithm[4, 3].

Outline

Randomized algorithms Solving simple equations randomly Two-square algorithm Four-square algorithm

Operator approximation Dense subsets of \mathbb{C}^n Unit vector approximation Unitary operator approximation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

Let p be a prime. Design an algorithm that finds <u>one</u> solution of $x^{p-1} \equiv 1 \pmod{p}$ (besides the trivial solution 1).

Notation

Let \mathbb{Z}_p be the usual finite field, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ the multiplicative group of \mathbb{Z}_p .

Answer

By Fermat's little theorem, every number in \mathbb{Z}_p^* is a solution. Algorithm:

- 1. randomly pick a number *a* in \mathbb{Z}_p^* .
- 2. return a, finish.

Complexity: O(1).

Question

Let p be a prime. Design an algorithm that finds one solution of $x^{p-1} \equiv 1 \pmod{p}$ (besides the trivial solution 1).

Notation

Let \mathbb{Z}_p be the usual finite field, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ the multiplicative group of \mathbb{Z}_p .

Answer

By Fermat's little theorem, every number in \mathbb{Z}_p^* is a solution. Algorithm:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. randomly pick a number *a* in \mathbb{Z}_p^* .
- 2. return a, finish.

Complexity: O(1).

Question

Let p be a prime. Design an algorithm that finds one solution of $x^{p-1} \equiv 1 \pmod{p}$ (besides the trivial solution 1).

Notation

Let \mathbb{Z}_p be the usual finite field, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ the multiplicative group of \mathbb{Z}_p .

Answer

By Fermat's little theorem, every number in \mathbb{Z}_p^* is a solution. Algorithm:

1. randomly pick a number a in \mathbb{Z}_p^* .

x - x = 0

2. return a, finish.

Complexity: O(1).

Question

Let p be a prime such that $p \equiv 1 \pmod{4}$. Design an algorithm that finds *one* solution (besides the trivial 1) of $x^2 \equiv 1 \pmod{p}$.

Answer

Let p = 4k + 1. By Fermat's little theorem, for $x \in \mathbb{Z}_p^*$, we have

$$x^{4k} \equiv 1 \pmod{p}$$
, i.e., $(x^{2k})^2 \equiv 1 \pmod{p}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Algorithm:

- 1. randomly pick a number *a* in \mathbb{Z}_p^* .
- 2. calculate $b \equiv a^{2k} \pmod{p}$, using "repeated squaring".

3. return *b*, finish.

Complexity: $O(1) + O(\log(2k)) = O(\log p)$.

Question

Let p be a prime such that $p \equiv 1 \pmod{4}$. Design an algorithm that finds *one* solution (besides the trivial 1) of $x^2 \equiv 1 \pmod{p}$.

Answer

Let p = 4k + 1. By Fermat's little theorem, for $x \in \mathbb{Z}_p^*$, we have $x^{4k} \equiv 1 \pmod{p}$, i.e., $(x^{2k})^2 \equiv 1 \pmod{p}$.

Algorithm:

- 1. randomly pick a number *a* in \mathbb{Z}_{p}^{*} .
- 2. calculate $b \equiv a^{2k} \pmod{p}$, using "repeated squaring".

3. return b, finish.

Complexity: $O(1) + O(\log(2k)) = O(\log p)$.

Question

Let p be a prime such that $p \equiv 1 \pmod{4}$. Design an algorithm that finds one solution (besides the trivial 1) of $x^2 \equiv 1 \pmod{p}$.

Answer

Let p = 4k + 1. By Fermat's little theorem, for $x \in \mathbb{Z}_p^*$, we have

$$x^{4k} \equiv 1 \pmod{p}, \text{ i.e., } (x^{2k})^2 \equiv 1 \pmod{p}.$$

Algorithm:

- 1. randomly pick a number a in \mathbb{Z}_{p}^{*} .
- 2. calculate $b \equiv a^{2k} \pmod{p}$, using "repeated squaring", a' a' a' a' b=low
- 3. return b, finish.

Question Let p be a prime such that $p \equiv 1 \pmod{4}$. Design an algorithm that finds one solution (besides the trivial 1) of $x^2 \equiv 1 \pmod{p}$.

Answer

Let p = 4k + 1. By Fermat's little theorem, for $x \in \mathbb{Z}_p^*$, we have

$$x^{4k} \equiv 1 \pmod{p}, \text{ i.e., } (x^{2k})^2 \equiv 1 \pmod{p}.$$

・ コット (雪) マイボット (雪) (日)

Algorithm:

- 1. randomly pick a number a in \mathbb{Z}_{p}^{*} .
- 2. calculate $b \equiv a^{2k} \pmod{p}$, using "repeated squaring".

3. return b, finish. Complexity: $O(1) + \phi(\log(2k))$ = 🖗(log p).

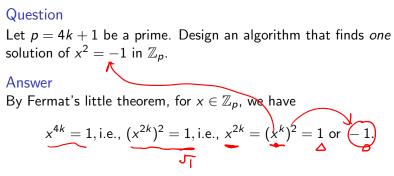
Question Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 = -1$ in \mathbb{Z}_p . Answer

By Fermat's little theorem, for $x \in \mathbb{Z}_p$, we have

$$x^{4k} = 1$$
, i.e., $(x^{2k})^2 = 1$, i.e., $x^{2k} = (x^k)^2 = 1$ or -1 .

Claim: Half of \mathbb{Z}_{ρ}^{*} satisfy $(x^{k})^{2} = -1$. Will show later. Algorithm:

- 1. randomly pick a number *a* in \mathbb{Z}_p^* .
- 2. calculate $b = a^k$, using "repeated squaring".
- 3. check if $b^2 = -1$. If yes return *b*, finish. If not, go to step 1.



Claim: Half of \mathbb{Z}_{ρ}^{*} satisfy $(x^{k})^{2} = -1$. Will show later. Algorithm:

- 1. randomly pick a number *a* in \mathbb{Z}_{p}^{*} .
- 2. calculate $b = a^k$, using "repeated squaring".
- 3. check if $b^2 = -1$. If yes return *b*, finish. If not, go to step 1.

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 = -1$ in \mathbb{Z}_p .

Answer

By Fermat's little theorem, for $x \in \mathbb{Z}_p$, we have

$$x^{4k} = 1$$
, i.e., $(x^{2k})^2 = 1$, i.e., $x^{2k} = (x^k)^2 = 1$ or -1 .

Claim: Half of \mathbb{Z}_p^* satisfy $(x^k)^2 = -1$. Will show later. Algorithm:

1. randomly pick a number *a* in \mathbb{Z}_p^* .

2. calculate $b = a^k$, using "repeated squaring".

3. check if $b^2 = -1$. If yes return *b*, finish. If not, go to step 1

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 = -1$ in \mathbb{Z}_p .

Answer

By Fermat's little theorem, for $x \in \mathbb{Z}_p$, we have

$$x^{4k} = 1$$
, i.e., $(x^{2k})^2 = 1$, i.e., $x^{2k} = (x^k)^2 = 1$ or -1 .

Claim: Half of \mathbb{Z}_p^* satisfy $(x^k)^2 = -1$. Will show later. Algorithm:

randomly pick a number an Z_p^{*}.
 calculate b = a^k, using "repeated squaring".
 check if b² = −1. If yes return b, finish. If not, go to step 1.

Expected Complexity:

$$O(\log p)\left(\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i}\right) = 2O(\log p) = O(\log p).$$

Or compute in an easier way: succeed with probality 0.5, on average, we need try $\frac{1}{0.5} = 2$ times to succeed.

Note

Step 3 only takes constant time. In general, randomized algorithms are suitable for solving NP problems — problems that may or may not need polynomial time to solve, but only need polynomial time to check. But randomized algorithms cannot solve NP-hard problems.

Expected Complexity:

$$O(\log p)\left(\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i\right) = 2O(\log p) = O(\log p).$$

Or compute in an easier way succeed with probality 0.5, on average, we need try $\frac{1}{0.5} = 2$ times to succeed.

Note

Step 3 only takes constant time. In general, randomized algorithms are suitable for solving NP problems — problems that may or may not need polynomial time to solve, but only need polynomial time to check. But randomized algorithms cannot solve NP-hard problems.

Expected Complexity:

$$O(\log p)\left(\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}\right) = 2O(\log p) = O(\log p).$$

Or compute in an easier way: succeed with probality 0.5, on average, we need try $\frac{1}{0.5} = 2$ times to succeed.

Note $b^2 = -1$

Step 3 only takes constant time. In general, randomized algorithms are suitable for solving NP problems — problems that may or may not need polynomial time to solve, but only need polynomial time to check. But randomized algorithms cannot solve NP-hard problems.

Expected Complexity:

$$O(\log p)\left(\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}\right) = 2O(\log p) = O(\log p).$$

Or compute in an easier way: succeed with probality 0.5, on average, we need try $\frac{1}{0.5} = 2$ times to succeed.

Note

Step 3 only takes constant time. In general, randomized algorithms are suitable for solving NP problems — problems that may or may not need polynomial time to solve, but only need polynomial time to check. But randomized algorithms cannot solve NP-hard problems.

Claim
Half of
$$\mathbb{Z}_p^*$$
 satisfy $(x^k)^2 = -1$.
Proof.
Recall Fermat's little theorem implie

$$x^{4k} = 1$$
, i.e., $(x^{2k})^2 = 1$, i.e., $x^{2k} = 1$ or -1 .

Since \mathbb{Z}_p is a field, the equations $x^{2k} = 1$ and $x^{2k} = -1$ each has at most 2k solutions. And there are 4k elements in \mathbb{Z}_p^* .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Claim Half of \mathbb{Z}_p^* satisfy $(x^k)^2 = -1$.

Proof. Recall Fermat's little theorem implies

$$x^{4k} = 1$$
, i.e., $(x^{2k})^2 = 1$, i.e., $x^{2k} = 1$ or -1 .
Since \mathbb{Z}_p is a field, the equations $x^{2k} = 1$ and $x^{2k} = -1$ each has at most $2k$ solutions. And there are $4k$ elements in \mathbb{Z}_p^* .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 + y^2 = p$ in \mathbb{Z} .

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $x^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$. Algorithm:

1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.

- 2. calculate $a + bi = \gcd(u + i, p)$.
- 3. return (a, b), finish.

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 + y^2 = p$ in \mathbb{Z} .

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $x^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$. Algorithm:

1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.

- 2. calculate $a + bi = \gcd(u + i, p)$.
- 3. return (a, b), finish.

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 + y^2 = p$ in \mathbb{Z} .

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $\chi^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$. Algorithm:

1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.

- 2. calculate $a + bi = \gcd(u + i, p)$.
- 3. return (a, b), finish.

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 + y^2 = p$ in \mathbb{Z} .

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $x^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$. Algorithm:

- 1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.
- 2. calculate $a + bi = \gcd(u + i, p)$.
- 3. return (a, b), finish.

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds *one* solution of $x^2 + y^2 = p$ in \mathbb{Z} .

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $x^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$.

Algorithm:

1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.

- 2. calculate $a + bi = \gcd(u + i, p)$.
- 3. return (a, b), finish.

$\sim \sim$

 $8 = 2^{2} + 1^{7}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Solving $x^2 + y^2 = p$ randomly

Question

Let p = 4k + 1 be a prime. Design an algorithm that finds one solution of $x^2 + y^2 = p$ in \mathbb{Z} . $1 = 2^n + 1^n + 1^n$

Answer

Let $\mathbb{Z}[i]$ be the set of Gaussian Integers, which is a Euclidean Domain, and the norm $N(a + bi) = a^2 + b^2$ is the rank function. Let $u \in \mathbb{Z}_p$ be a solution of $x^2 = -1$ obtained from the last algorithm. Then in $\mathbb{Z}[i]$, we have $(u + i)(u - i) = u^2 + 1 = mp$. Let $a + bi = \gcd(u + i, p)$. We claim $a^2 + b^2 = p$. Algorithm:

- - 1. run the last algorithm to obtain u s.t. $u^2 \equiv -1 \pmod{p}$.
 - 2. calculate $a + bi = \gcd(u + i, p)$.
 - 3. return (a, b), finish.

Claim
Let
$$a + bi = gcd(u + i, p)$$
. We claim $a^2 + b^2 = p$.
Proof.
Recall we have $(u + i)(u - i) = u^2 + 1 = mp$. Since $u \in \mathbb{Z}_p$, we
have $mp = u^2 + 1 < p^2$, i.e., $m < p$.
 $a + bi \mid u + i \implies N(a + bi) \mid N(u + i)$, i.e., $a^2 + b^2 \mid mp$ in \mathbb{Z} (*)
 $a + bi \mid p \implies N(a + bi) \mid N(p)$, i.e., $a^2 + b^2 \mid p^2$ in \mathbb{Z} .
which implies $a^2 + b^2 = 1$ or p or p^2 . We can exclude p^2 by (*).
To exclude 1, suppose not, then $a + bi$ is a unit, so $u + i$ and p are
relatively prime. Then $u + i \mid m$, which means $N(u + i) \mid N(m)$,
i.e., $mp \mid m^2$, a contradiction.

Claim Zti] -)2 Let $a + bi = \operatorname{gcd}(u + i, p)$. We claim $a^2 + b^2 = p$. Proof. Recall we have $(u + i)(u - i) = u^2 + 1 = mp$. Since $u \in \mathbb{Z}_p$, we have $mp = u^2 + 1 < p^2$, i.e., m < p. $a+bi \mid u+i \implies N(a+bi) \mid N(u+i), \text{ i.e., } a^2+b^2 4 mp \text{ in } \mathbb{Z} \quad (*)$ $a + bi \mid p \implies N(a + bi) \mid N(p), \text{ i.e., } a^2 + b^2 \mid p^2 \text{ in}(\mathbb{Z})$ which implies $a^2 + b^2 = 1$ or p^2 or p^2 . We can exclude p^2 by (*).

Claim Let a + bi = gcd(u + i, p). We claim $a^2 + b^2 = p$.

Proof. Recall we have $(u + i)(u - i) = u^2 + 1 = mp$. Since $u \in \mathbb{Z}_p$, we have $mp = u^2 + 1 < p^2$, i.e., m < p.

$$a+bi \mid u+i \implies N(a+bi) \mid N(u+i), \text{ i.e., } a^2+b^2 \mid mp \text{ in } \mathbb{Z} \quad (*)$$

 $a + bi \mid p \implies N(a + bi) \mid N(p), \text{ i.e., } a^2 + b^2 \mid p^2 \text{ in } \mathbb{Z}.$

which implies $a^2 + b^2 = 1$ or p or p^2 . We can exclude p^2 by (*). To exclude 1, suppose not, then a + bi is a unit, so u + i and p are relatively prime. Then $u + i \mid m$, which means $N(u + i) \mid N(m)$, i.e., $mp \mid m^2$, a contradiction.

m<P

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

The idea is that by randomly choosing x and y, we might have $p = n - x^2 - y^2$ is a prime of the form 4a + 1. Then using the two-square algorithm, we can find z, w s.t. $n - x^2 - y^2 = z_-^2 + w^2$.

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

 $p := n^{4} + 1$. Then using the form 4a + 1. Then using the square algorithm, we can find z, w s.t. $n - x^2 - y^2 = z^2 + w^2$. First notice that, if p is a prime, then p = 2 or p odd and $p = n - x^2 - y^2 \equiv 2 - x^2 - y^2 \pmod{4} \implies p \equiv 1 \pmod{4}.$ This means we only need p to be a prime. For the abundance of such x and y, I need to use a theorem in [2] which says for a

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

This means we only need p to be a prime. For the abundance of such x and y, I need to use a theorem in [2] which says for a certain constant A > 0, there exists n_0 such that for $n > n_0$, the number of x, y's such that $n - x^2 - y^2$ is prime is greater than $\frac{A \cdot n}{(\log n) \log \log n}$, out of $\sqrt{n} \cdot \sqrt{n}$ choices for x, y. ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer Algorithm: 1. randomly choose $0 \leq (x, y) \leq \sqrt{n}$. 2. run two-square algorithm but only finite many steps, with input $n - x^2 - y^2$. If a solution z, w is found. return (x, y, z, w) and finish, otherwise go to step 1

うしん 同 ふぼやんぼやん しゃ

Solving $x^{2} + y^{2} + z^{2} + w^{2} = 4k + 2$ randomly

Question

Let n = 4k + 2 be a non-negative integer. Design an algorithm that finds *one* solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

Algorithm:

- 1. randomly choose $0 \le x, y \le \sqrt{n}$.
- run two-square algorithm but only finite many steps, with input n − x² − y². If a solution z, w is found. return (x, y, z, w) and finish, otherwise y to step 1.

Complexity: First, notice the "density" of such x, y is $\frac{A \cdot n}{(\log n) \log \log n} \cdot \frac{1}{\sqrt{n}\sqrt{n}} = (\log n) \log \log n$ so on average we need to run $(\log n) \log \log n$ times to get a good pair of x, y such that $n - x^2 - y^2$ is a prime. For each such try, running finite many steps of the two-square algorithm costs $O(\log n)$. Total $O((\log n)^2 \log \log n)$.

Question

Let *n* be a non-negative integer. Design an algorithm that finds one solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

- ▶ n = 4k. Solve $n/4 = a^2 + b^2 + c^2 + d^2$, then $n = (2a)^2 + (2b)^2 + (2c)^2 + (2d)^2$.
- ▶ n = 4k + 1 or 4k + 3. Solve 2n = 4(2k) + 2 or 2n = 8k + 6 = 4(2k + 1) + 2, say $2n = a^2 + b^2 + c^2 + d^2$, then $a^2 + b^2 + c^2 + d^2 \equiv 2 \pmod{4}$, so two of a, b, c, d are odd, two are even. WLOG, say a, b odd, c, d even, then we have $n = (\frac{1}{2}(a+b))^2 + (\frac{1}{2}(a-b))^2 + (\frac{1}{2}(c+d))^2 + (\frac{1}{2}(c-d))^2$ ▶ n = 4k + 2. Solved using last algorithm

Question

Let *n* be a non-negative integer. Design an algorithm that finds one solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

▶
$$n = 4k$$
. Solve $n/4 = a^2 + b^2 + c^2 + d^2$, then $n = (2a)^2 + (2b)^2 + (2c)^2 + (2d)^2$.

▶
$$n = 4k + 1$$
 or $4k + 3$. Solve $2n = 4(2k) + 2$ or
 $2n = 8k + 6 = 4(2k + 1) + 2$, say $2n = a^2 + b^2 + c^2 + d^2$, then
 $a^2 + b^2 + c^2 + d^2 \equiv 2 \pmod{4}$, so two of a, b, c, d are odd,
two are even. WLOG, say a, b odd, c, d even, then we have
 $n = (\frac{1}{2}(a+b))^2 + (\frac{1}{2}(a-b))^2 + (\frac{1}{2}(c+d))^2 + (\frac{1}{2}(c-d))^2$

▶ n = 4k + 2. Solved using last algorithm.

Question

Let *n* be a non-negative integer. Design an algorithm that finds one solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

▶
$$n = 4k$$
. Solve $n/4 = a^2 + b^2 + c^2 + d^2$, then $n = (2a)^2 + (2b)^2 + (2c)^2 + (2d)^2$.

▶
$$n = 4k + 1$$
 or $4k + 3$. Solve $2n = 4(2k) + 2$ or
 $2n = 8k + 6 = 4(2k + 1) + 2$, say $2n = a^2 + b^2 + c^2 + d^2$, then
 $a^2 + b^2 + c^2 + d^2 \equiv 2 \pmod{4}$, so two of a, b, c, d are odd,
two are even. WLOG, say a, b odd, c, d even, then we have
 $n = (\frac{1}{2}(a+b))^2 + (\frac{1}{2}(a-b))^2 + (\frac{1}{2}(c+d))^2 + (\frac{1}{2}(c-d))^2$

▶ n = 4k + 2. Solved using last algorithm.

Question

Let *n* be a non-negative integer. Design an algorithm that finds one solution of $x^2 + y^2 + z^2 + w^2 = n$ in \mathbb{Z} .

Answer

▶
$$n = 4k$$
. Solve $n/4 = a^2 + b^2 + c^2 + d^2$, then $n = (2a)^2 + (2b)^2 + (2c)^2 + (2d)^2$.

▶
$$n = 4k + 1$$
 or $4k + 3$. Solve $2n = 4(2k) + 2$ or
 $2n = 8k + 6 = 4(2k + 1) + 2$, say $2n = a^2 + b^2 + c^2 + d^2$, then
 $a^2 + b^2 + c^2 + d^2 \equiv 2 \pmod{4}$, so two of a, b, c, d are odd,
two are even. WLOG, say a, b odd, c, d even, then we have
 $n = (\frac{1}{2}(a+b))^2 + (\frac{1}{2}(a-b))^2 + (\frac{1}{2}(c+d))^2 + (\frac{1}{2}(c-d))^2$

▶ n = 4k + 2. Solved using last algorithm.

Answer

Complexity: At most $O(\log n)$ arithmetic operations are needed before reaching the form n = 4k + 2. Then one run of the last algorithm costs $O((\log n)^2 \log \log n)$. Total $O((\log n)^2 \log \log n)$.

Outline

Randomized algorithms Solving simple equations randomly Two-square algorithm Four-square algorithm

Operator approximation Dense subsets of \mathbb{C}^n Unit vector approximation Unitary operator approximation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dense subsets of \mathbb{C}^n

Notation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

hypothesis.

4. $\mathbb{D}[i]^3 \cap S^2$ is dense in $((\mathbb{C} \oplus 0 \oplus 0) \cup \mathbb{D}[i]^3) \cap S^2$.

Proof of claim 1, 2, and 4

- D[i] is dense in C. Since any x ∈ R can be approximated by [2ⁱx]/2ⁱ, D is dense in R. Then Dⁿ is dense in Rⁿ, hence D[i] is dense in C. x (R^e
- 2. Unit vectors in $\mathbb{D}[i]$ does *not* approximate unit vectors in \mathbb{C} . Because for $u = a/2^k + b/2^l i \in \mathbb{D}[i]$ (in reduced form, wlog, $k \ge l$) to be of unit length, $a^2 + b^2 4^{k-l} = 4^k$. If k > 0, the right is congruent to 0 modulo 4, but the left 1 or 2. For k = 0, we only have finite many such u, but S is infinite.
- 4. Unit vectors in $\mathbb{D}[i]^3$ approximates unit vectors in $(\mathbb{C} \oplus 0 \oplus 0)$. $(1/2^k) \begin{bmatrix} \lfloor 2^k \cos \theta \rfloor + \lfloor 2^k \sin \theta \rfloor i \\ a + bi \\ c + di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \\ 0 \end{bmatrix}$, where a, b, c, d satisfy $a^2 + b^2 + c^2 + d^2 = (2^k)^2 - (\lfloor 2^k \cos \theta \rfloor)^2 - (\lfloor 2^k \sin \theta \rfloor)^2$.

Proof of claim 1, 2, and 4

- 1. $\mathbb{D}[i]$ is dense in \mathbb{C} . Since any $x \in \mathbb{R}$ can be approximated by $\lfloor 2^i x \rfloor / 2^i$, \mathbb{D} is dense in \mathbb{R} . Then \mathbb{D}^n is dense in \mathbb{R}^n , hence $\mathbb{D}[i]$ is dense in \mathbb{C} .
- 2. Unit vectors in $\mathbb{D}[i]$ does not approximate unit vectors in \mathbb{C} . Because for $u = a/2^k + b/2^l i \in \mathbb{D}[i]$ (in reduced form, wlog, $k \ge l$) to be of unit length, $a^2 + b^2 4^{k-l} = 4^k$. If k > 0, the right is congruent to 0 modulo 4, but the left 1 or 2. For k = 0, we only have finite many such u; but S is infinite.
- 4. Unit vectors in $\mathbb{D}[i]^3$ approximates unit vectors in $(\mathbb{C} \oplus 0 \oplus 0)$. $(1/2^k) \begin{bmatrix} \lfloor 2^k \cos \theta \rfloor + \lfloor 2^k \sin \theta \rfloor i \\ a + bi \\ c + di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \\ 0 \end{bmatrix}$, where a, b, c, d satisfy $a^2 + b^2 + c^2 + d^2 = (2^k)^2 - (\lfloor 2^k \cos \theta \rfloor)^2 - (\lfloor 2^k \sin \theta \rfloor)^2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of claim 1, 2, and 4

1. $\mathbb{D}[i]$ is dense in \mathbb{C} . Since any $x \in \mathbb{R}$ can be approximated by $\lfloor 2^i x \rfloor / 2^i$, \mathbb{D} is dense in \mathbb{R} . Then \mathbb{D}^n is dense in \mathbb{R}^n , hence $\mathbb{D}[i]$ is dense in \mathbb{C} .

x2+y2+2+W=N

2. Unit vectors in $\mathbb{D}[i]$ does *not* approximate unit vectors in \mathbb{C} . Because for $u = a/2^k + b/2^l i \in \mathbb{D}[i]$ (in reduced form, why, $k \ge l$) to be of unit length, $a^2 + b^2 4^{k-l} = 4^k$. If k > 0, the right is congruent to 0 modulo 4, but the left 1 or 2 k = 0, we only have finite many such u, but S is infinite.

4. Unit vectors in $\mathbb{D}[i]^3$ approximates unit vectors in $(\mathbb{C} \oplus 0 \oplus 0)$. $(1/2^k) \begin{bmatrix} \lfloor 2^k \cos \theta \rfloor + \lfloor 2^k \sin \theta \rfloor i \\ a + bi \\ c + di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \\ 0 \end{bmatrix}$, where a, b, c, d satisfy $a^2 + b^2 + c^2 + d^2 = (2^k)^2 - (\lfloor 2^k \cos \theta \rfloor)^2 - (\lfloor 2^k \sin \theta \rfloor)^2$.

Unit vector approximation — Proof of claim 3

Question
Let
$$u = \begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix} \in \mathbb{C}^2$$
 be a unit vector. Design an algorithm that
finds unit $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix} \in \mathbb{D}[i]^2 \cap S^1$ that approximates u .

Answer

Recall in four-square problem "The idea is that by randomly choosing x and y, we might have $p := n - x^2 - y^2$ is a prime of the form 4k + 1"

But here: we randomly choose x and y in smaller region determined by $e^{i\theta}$. And we need a strong hypothesis about the abundance of such x and y.

Unit vector approximation — Proof of claim 3

Question
Let
$$u = \begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix} \in \mathbb{C}^2$$
 be a unit vector. Design an algorithm that
finds unit $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix} \in \mathbb{D}[i]^2 \cap S^1$ that approximates u .

Answer

Recall in four-square problem "The idea is that by randomly choosing x and y, we might have $p := n - x^2 - y^2$ is a prime of the form $4k + 1 \dots$ "

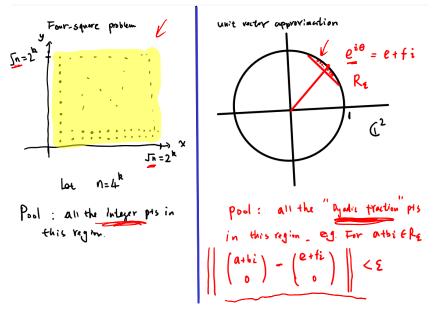
But here: we randomly choose x and y in smaller region determined by $e^{i\theta}$. And we need a strong hypothesis about the abundance of such x and y.

Unit vector approximation — Proof of claim 3

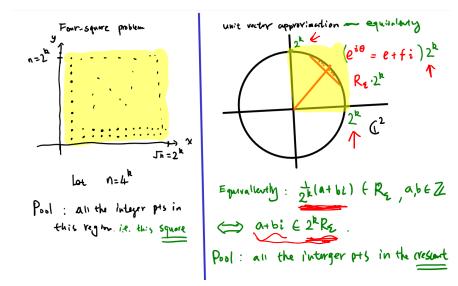
Question Let $u = \begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix} \in \mathbb{C}^2$ be a unit vector. Design an algorithm that finds unit $(1/2^k)$ $a + b^2 \in \mathbb{D}[i]^2 \cap S^1$ that approximates u. Answer Recall in four-square problem "The idea is that by randomly choosing x and y, we might have $p := n - (x^2) - y^2$ is a prime of the form $4k + 1 \dots$ " But here: we randomly choose x and y in smaller region determined by $(e^{i\theta})$ And we need a strong hypothesis about the abundance of such x and y.

・ロト・4回ト・4回ト・4回ト・回・99(や)

Smaller region



Smaller region



▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Note $2^k R_\epsilon$ contains many points for sufficient large k.

Recall the proven density of good x, y's in the square $\frac{A}{(\log n) \log \log n}$

Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good x, y's in the crescent is same as the density in the square.

Consequences

For large k, we can find x, y such that $4^k - x^2 - y^2$ is a prime of the form 4j + 1. That is the four-square problem with extra constraint can be efficiently solved.

Note $2^k R_\epsilon$ contains many points for sufficient large k.

Recall the proven density of good x, y's in the square $\frac{A}{(\log n) \log \log n}$

Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good x, y's in the crescent is same as the density in the square.

Consequences

For large k, we can find x, y such that $4^k - x^2 - y^2$ is a prime of the form 4j + 1. That is the four-square problem with extra constraint can be efficiently solved.

Note $2^k R_\epsilon$ contains many points for sufficient large k.

Recall the proven density of good x, y's in the square $\frac{A}{(\log n) \log \log n}$

Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good x, y's in the crescent is same as the density in the square.

Consequences

For large k, we can find x, y such that $4^k - x^2 - y^2$ is a prime of the form 4j + 1. That is the four-square problem with extra constraint can be efficiently solved.

Note $2^k R_\epsilon$ contains many points for sufficient large k.

Recall the proven density of good x, y's in the square $\begin{bmatrix} y & i \end{bmatrix}$ $\frac{A}{(\log n) \log \log n}$

Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good x, y's in the crescent is same as the density in the square.

Consequences

For large k, we can find x, y such that $4^k - x^2 - y^2$ is a prime of the form 4j + 1. That is the four-square problem with extra constraint can be efficiently solved.

 $\begin{pmatrix} l & 0 \\ 0 & 1 \end{pmatrix}$

2[-1 -1

Unit vector approximation

Question

Find a unit vector
$$(1/2^k) \begin{bmatrix} a+bi\\c+di \end{bmatrix}$$
 that approximates $\begin{bmatrix} e^{i\theta}\\0 \end{bmatrix}$.

Answer

Algorithm:

- 1. For given ϵ , calculate k. (not hard, not expensive, omitted)
- Solve restricted four-square problem 4^k = x² + y² + y² + z² with (x, y) ∈ 2^kR_ε get solution a, b, c, d.

3. return
$$(1/2^k) \begin{bmatrix} a+bi\\c+di \end{bmatrix}$$
, finish.

Complexity: depends on the area of R_{ϵ} . We omit the calculation and only state the result. Polynomial in log $(1/\epsilon)$.

Note

c, d are relatively small compared to 2^k , it does't affect much.

Unit vector approximation

Question Find a unit vector $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix}$ that approximates $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$. Answer Algorithm: 1. For given ϵ , calculate k (not hard, not expensive, omitted) 2. Solve restricted four-square problem $4^k = x^2 + y^2 + y^2 + z^2$ with $(x, y) \in 2^k R$ get solution a, b, c, d. 1/2~n=4" ⇒ k~ 10g ± 3. return $(1/2^k)\begin{bmatrix} a+bi\\c+di \end{bmatrix}$, finish. Complexity: depends on the area of R_{e} . We omit the calculation and only state the result. Polynomial in log $(1/\epsilon)$. $O((\log n)^2 \log \log n)$ ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Unit vector approximation

Question

Find a unit vector $(1/2^k)\begin{bmatrix}a+bi\\c+di\end{bmatrix}$ that approximates $\begin{bmatrix}e^{i\theta}\\0\end{bmatrix}$.

Answer

Algorithm:

- 1. For given ϵ , calculate k. (not hard, not expensive, omitted)
- 2. Solve restricted four-square problem $4^k = x^2 + y^2 + z^2$ with $(x, y) \in 2^k R_\epsilon$ get solution a, b, c, d.

3. return
$$(1/2^k) \begin{bmatrix} a+bi\\c+di \end{bmatrix}$$
, finish.

Complexity: depends on the area of R_{ϵ} . We omit the calculation and only state the result. Polynomial in log $(1/\epsilon)$.

Note

c, *d* are relatively small compared to 2^k , it does't affect much.

z-rotation approximation

Question
Find unitary
$$(1/2^k) \begin{bmatrix} a+bi & e+fi \\ c+di & g+hi \end{bmatrix}$$
 that is close to $\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$,
where $a, b, c, d, e, f, g, h, k$ are integers.
Answer
Basically, we first approximate $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$, then through some algebraic
manipulation, we get a solution. We claim, if
 $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$, then
 $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$, then
 $(1/2^k) \begin{bmatrix} a+bi \\ c+di \end{bmatrix}$ is unitary and close to $\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

z-rotation approximation

Question

Find unitary
$$(1/2^k) \begin{bmatrix} a+bi & e+fi \\ c+di & g+hi \end{bmatrix}$$
 that is close to $\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$, where $a, b, c, d, e, f, g, h, k$ are integers.

Answer

Basically, we first approximate $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$, then through some algebraic manipulation, we get a solution. We claim, if $(1/2^k)\begin{bmatrix} a+bi \\ c+di \end{bmatrix}$ approximates $\begin{bmatrix} e^{i\theta} \\ 0 \end{bmatrix}$, then $(1/2^k)\begin{bmatrix} a+bi & -c+di \\ c+di & a-bi \end{bmatrix}$ is unitary and close to $\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$.

Unitary approximation

Question

Find unitary $(1/2^k) \begin{bmatrix} a+bi & e+fi \\ c+di & g+hi \end{bmatrix}$ that approximates $\begin{bmatrix} p & q \\ r & s \end{bmatrix}$ an arbitary unitary, where a, b, c, d, e, f, g, h, k are integers.

Answer

An x-rotation is of the form $K \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix} K^{\dagger}$, where $K = \frac{1}{2} \begin{bmatrix} 1-i & 1-i \\ 1-i & -1+i \end{bmatrix}$, and \bullet^{\dagger} means taking conjugate transpose. Any 2x2 unitary can written as a product *ABC*, where *A*, *C* are *z*-rotations and *B* is an x-rotation.

Unitary approximation

Question Find unitary $(1/2^k) \begin{vmatrix} a+bi & e+fi \\ c+di & g+hi \end{vmatrix}$ that approximates $\begin{bmatrix} p & q \\ r & s \end{bmatrix}$ an arbitary unitary, $wh \notin a, b, c, d, e, f, g, h, k$ are integers. Answer An x-rotation is of the form $K \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix} K^{\dagger}$, where Answer $K = \underbrace{\frac{1}{2} \begin{bmatrix} 1-i & 1-i \\ 1-i & -1+i \end{bmatrix}}_{i}, \text{ and } \underbrace{\bullet}^{\uparrow} \text{ means taking conjugate transpose.}$ Any 2×2 unitary can written as a product *ABC*, where *A*, *C* are *z*-rotations and *B* is an *x*-rotation.

・ロト・西ト・山田・山田・山下・

References

- Paul Pollack and Enrique Trevino.
 Finding the four squares in lagrange's theorem. Integers, 18:A15, 2018.
- Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Communications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986.
- Neil J. Ross and Peter Selinger.
 Optimal ancilla-free Clifford+T approximation of z-rotations.
 Quantum Information and Computation, 16(11-12):901-953,
 2016.
 - Peter Selinger. Efficient Clifford+T approximation of single-qubit operators. *Quantum Information and Computation*, 15(1–2):159–180, 2015.