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I will first walk through an algorithm of Rabin and Shallit [2, 1]
that e;fficiently solves the four-square Diophantine equation
SN=X —|—y2—|—22—|—w2.




Abstract

The efficiency comes from the use of
—TE— "
randomness — there are enough "good seed number”, so by
randomly choosing a number, it is likely that we can hit a
good seed that will grow into a solution.
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Abstract

Then, | will explain
how this algorithm can be adapted to solve the problem of
approximating any 2x2 unitary using matrices of a certain
kind. The resulting algorithm is a “baby” version of Ross and
Selinger's algorithm[4, 3].
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Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds ope solution of

xP~1 =1 (mod p) (besides the trivial solution 1).
— —7



Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds one solution of
xP~1 =1 (mod p) (besides the trivial solution 1).

Notation
Let Z,, be the usual finite field, Zj, = Z,, \ {0} the multiplicative

group of Zp,.



Solving simple equations randomly

Question
Let p be a prime. Design an algorithm that finds one solution of
xP~1 =1 (mod p) (besides the trivial solution 1).

Notation
Let Z,, be the usual finite field, Zj, = Z,, \ {0} the multiplicative
group of Zp,.

Answer
By Fermat's little theorem, every number in Z% is a solution.

Algorithm:

1. randomly pick a number a in Zj,. Y -X% = O
2. return a, finish.
Complexity: O(1).
=



Solving simple equations randomly

Question
Let p be a prime such that p = 1 (mod 4). Design an algorithm

that finds one solution (besides the trivial 1) of x*> =1 !mod p).



Solving simple equations randomly

Question
Let p be a prime such that p = 1 (mod 4). Design an algorithm
that finds one solution (besides the trivial 1) of x> = 1 (mod p).

Answer
Let p =4k + 1. By Fermat’s little theorep, for x € Zj, we have
x* =1 (mod p),i.e., 2 =1 (mod p)



Solving simple equations randomly

Question
Let p be a prime such that p = 1 (mod 4). Design an algorithm

that finds one solution (besides the trivial 1) of x> = 1 (mod p).

Answer
Let p =4k + 1. By Fermat's little theorem, for x € Z%, we have

x* =1 (mod p),ie., (x**)> =1 (mod p).

Algorithm:
1. randomly pick a number a in Zj,.

2. calculate b = a? (mod p), using “repeated squaring” ., s I
a2 epeated squarl
3. return b, finish. 0\./} PO S
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Solving simple equations randomly

e —
Question 0 N“'V\)

Let p be a prime such that p = 1 (mod 4).-Desi
that finds one solution (besides the trivial 17 of x> = 1 (mod p).

Answer
Let p =4k + 1. By Fermat's little theorem, for x € Z%, we have

x* =1 (mod p),i.e., (x*)2 =1 (mod p). 0

Algorithm:
1. randomly pick a number a in Zj,.
2. calculate b Eﬁ (mod p), using “repeated squaring” .
3. return b, finish.
Complexity: O(1) + @




Solving simple equations randomly

Question
Let Bifl_L—i;Lbe a prime. Design an algorithm that finds one
solution of x> = —1 in Zp.



Solving simple equations randomly

Question

Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = —1 in Zp.

Answer

By Fermat's little theorem, for x € Z,,

x* =1 e, (x*)2 =1,ie, x*k =
e —————— —
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Solving simple equations randomly

Question

Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = —1 in Zp.

Answer

By Fermat's little theorem, for x € Zj, we have

x*=1ie, (x¥*)2 =1ie, x*, = (x*)2=10r — 1.

Claim: Half of Zj satisfy _(\XJ"X’:;{ Will show later.



Solving simple equations randomly

Question

Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x2 = —1 in Zp.

Answer

By Fermat's little theorem, for x € Zj, we have

x*=1ie, (x¥*)2 =1ie, x*, = (x*)2=10r — 1.

Claim: Half of Zj, satisfy (x¥)? = —1. Will show later.
Algorithm:

1. randomly pick a number@in Ly,

2. calculate b = aX, using “repeated squaring”.
— e —1
3. check if b> = —1. If yes return b, finish. If not, gé to step 1.
T ——




Complexity analysis

Expected Complexity:
_

o0

O(log p <Z
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Complexity analysis

Expected Complexity:

O(log p) (i (;)) —(30(108 p) = 0o ).
i=0

Or compute in an easier way]/succeed with probality 0.5, on
average, we need try 0—15 =|(2 kimes to succeed.

—_—



Complexity analysis

Expected Complexity:

Olog p) (Z (;)) — 20(log p) = Oflog p).

i=0
Or compute in an easier way: succeed with probality 0.5, on

average, we need try 0—15 = 2 times to succeed.

Note o=
Step 3 only takes constant time.



Complexity analysis

Expected Complexity:

Olog p) (Z (;)) — 20(log p) = Oflog p).

i=0

Or compute in an easier way: succeed with probality 0.5, on
average, we need try 0—% = 2 times to succeed.

Note

Step 3-anly takes donstant time. In general, randomized algorithms
are suitable for solving NP problems — problems that may or may
not need polynomial time to solve, but only need palynomial time
to check. But randomized algorithms cannot solve NP-hard
T —_————— ——
problems.
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Proof of the claim

Claim
Half of Z* satisfy (x¥)? = —1.
T —————



Proof of the claim

Claim
Half of Z* satisfy (x¥)? = —1.

Proof.

Recall Fermat's little theorem implies

X =1ie., (x?)? = 1,i.e.,@' =1lor —1.
] -

Since Zj, is a field, the equations @ — 1 and x®/ = —1 each has
~————————— .
at most 2k solutions. And there are elements | O

Q



Solving x? + y? = p randomly
\"\"\_"\__

Question

Let p=4k + 1 be a prime. Design an algorithm that finds one

solution of x2 + y> = p in Z.
\hh

Answer



Solving x? + y? = p randomly

Question

Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x% + y? = p in Z.

Answer
Let Z[i] be the set of Gaussian Integers, which is a Euclidean

Domain, and the norm N(a + bi) = a®+ b? is the rank function.



Solving x? + y? = p randomly

Question
Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x% + y? = p in Z.

Answer

Let Z[i] be the set of Gaussian Integers, which is a Euclidean
Domain, and the norm N(a+ bi) = a® + b? is the rank function.
Let u € Z, be a solution of {2 = —1 obtained from the last

algorithm. Then in le/] we have (u+i)(u—1i) = u?> +1 = mp.



Solving x? + y? = p randomly

Question
Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x% + y? = p in Z.

Answer

Let a+ bi = gcd(u + i, p). We claim a? + b = p.
) N ——————
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Solving x? + y? = p randomly

Question
Let p =4k + 1 be a prime. Design an algorithm that finds one
solution of x% + y? = p in Z.

Answer
Algorithm:
. . 2 —
1. run the last algorithm to obtain u s.t. u® = (mod p).

2. calculate a+ bi = ged(u + i, p).
3. return (g,\é) finish.



Solving x? + y? = p randomly

2, "

. - A
Question 8 =
Let p =4k + 1 be a prime. Design an algorithm that finds one 5

[P s iy asmmar S
solution of x* + y“ = pin Z. /( _ 7"”,\—\'”4!’4 !
Answer
Algorithm:
1. run the last algorithm to obtain u s.t. u?> = —1 (mod p).
—

2. calculate a + bi = ged(u + i, p).
3. return (a, b), finish.

C lexity: Step 1 and 2, O(l . Total, O(l .
omplexity: Step 1 and 2 (log p). Total, O(logp)



Proof of the claim

Claim
Let a+ bi = gcd(u + i, p). We claim a 4 b = p.
A —_————
Proof. {o-- ¢13

Recall we have (u+ i)(u— i) = u?+1 = mp. Since u € Zp, we

have mp=u?®+1<p? ie, m<p.-
~ T - =



Proof of the claim

Claim Y
Let a+ bi = gcd(u + i, p). We claim a 4 b = p. 2l L

Proof.

Recall we have (u+ i)(u — i) = u? +1 = mp. Since u € Zp, we
have mp = u? +1 < p?, i.e, m < p. "’
<P
a+bi|ut+i = N(a+bi)|Nu+i)ie, a®+b’dmpinZ ()
[ — — E—

a+bi|p = N(a+bi)| N(p),ie., a®+b*|p? in@
\ N A e e s
which implies a® + b =(} or () or @ We can exclude p? by ().



Proof of the claim

Claim
Let a+ bi = gcd(u + i, p). We claim a 4 b = p.

Proof.
Recall we have (u + /)(u —i)=u’+1= mp. Since u € Zp, we
have mp = u? +1< p?, i.e, m< p.

a+bi|ut+i = N(a+bi)| N(u+i),ie, a®+b>| mpinZ (%)
a+b/|p:Na+b/ | N(p),i.e., a> + b* | p* in Z.
which |mpI|es =1 or or p?. We can exclude p? by (x).
To exclude 1, suppose not, th n at bi |s a unit, so u+ i and p are
relatively prlme Then u +i | m, Which means N(u+ 7 | N(m),
'\r
i.e., mp| m°, a contradlctlon O

m< P




Solving x? + y? + z? + w? = 4k + 2 randomly
o
n

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.



Solving x? + y? + z? + w? = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.

Answer
The idea |s that by randomly choosing x and y, we might have

is a prime of the form 4a —l—f Then usmg the
two-square algorithm, we can find z, w s.t. n—x —y? =22+ w2




Solving x? + y? + z? + w? = 4k + 2 randomly

——

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.

Answer

R L\)
L

First notice that, if p is a prime, then p = 2 or p odd and
p=n—x?>—y?>=2-"x?>—y? (mod 4) = p=1 (mod 4).

—_—

This means we only need p to be a prime.
N

2%



Solving x? + y? + z? + w? = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.

Answer

For the abundance of
such x and y, | need to use a theorem in [2] which says for a
certain constant A > 0, there exists ng such that for n > ng, the

number of x, y's such that n — x> — y2 is prime is greater than

, out of \/i \/E choices for x, y.



Solving x? + y? + z? + w? = 4k + 2 randomly

Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.

Answer /\_},f:i
Algorithm'

. randomly choose 0 < Vn.

. run @algont m but Gnly fini ps, with

|nput n—x<— If a solution z, w is Tound.
(x,y,z, W) and finish, otherwise go to step 1



Solving x? + y? + z? + w? = 4k + 2 randomly
—
Question
Let n = 4k + 2 be a non-negative integer. Design an algorithm
that finds one solution of x*> + y? 4+ z> + w? = nin Z.

Answer

Complexity: First, notice suchw is

A-n 1 _
P i n " Tgm —((egn)logo 0 on average we need to run
\9 i %€ Yimes to get a od pair of x, y such that n — x2 —y?
IS \ For each such try, running finite many steps of the

two-square algorithm costs O(log n). Total O((log n)? log log n).
E—— N




Solving x? 4+ y? + z2 + w? = n randomly
&

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x?> + y? + 22+ w?> = nin Z.



Solving x? 4+ y? + z2 + w? = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x?> + y? + 22+ w?> = nin Z.

Answer

» n=4k. Solve(n/4\= a%® + b? + c2 + d?, then
n=(2a)? + (2b)% + (2¢)? + (2d)>.



Solving x? 4+ y? + z2 + w? = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x?> + y? + 22+ w?> = nin Z.

Answer

> n=4k+1or4k+3. Solve 2n—4!2k!+20r
2n_8k+6—4(2k+1)+2 say 2n = a° + b? + c® + d?, then
2> + b? 4 c? + d?> = 2 (mod 4), so two of a, b, ¢, d are odd,
two are even. WLOG, say a, b odd, c, d even, then we have

= (3@+b)"+ (- 8)"+ (3l +d)" + (3(c - )



Solving x? 4+ y? + z2 + w? = n randomly

Question
Let n be a non-negative integer. Design an algorithm that finds
one solution of x?> + y? + 22+ w?> = nin Z.

Answer

» n =4k + 2. Solved using last algorithm.
R



Solving x? 4+ y? + z2 + w? = n randomly

Answer
Complexity: At most O(log n) arithmetic operations are needed

before reaching the form n = 4k + 2. Then ong run of the last
algorithm costs O((log n)? log log n). Total O((log n)?log log n).
W

—_— T ———— >
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Randomized algorithms
Solving simple equations randomly
Two-square algorithm
Four-square algorithm

Operator approximation
Dense subsets of C”
Unit vector approximation
Unitary operator approximation
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Dense subsets of C”

Notation
> D:= Z[ | ={5r | @a€Z, k € N}, the ring of dyadic fractions.
—_——
> ID>[ | = {a+ bi | a, b € D}, a ring with no name yet. i—h(ﬂ“\ﬂ)
> 571 = = {(x1,x2, ..., xn) € C"| 3" |x;|? = 1}, unit sphere in C".

———

Note that [D[i]") = Uken(1/2)Z]i]". (Tt Tol®

: R A
Claim 25 cady 0

1. D[i] is dense in C. Q,.?'-T* q>
2. D[] N S%is not dense in C N S°.
3. D[i]> N.S! is dense in ((C & 0) UD[i]*) N S*, under unproven
hypothesis.
ypothes
4. D[i)%N S? is dense in ((C @ 0@ 0) UDI[i]?) N S2.
IX N

"\




Proof of claim 1, 2, and 4

1. D[i] is dense in C. Since any x € R can be approximated by
|2/x|/2/, D is dense in R. Then D" is dense in R”, hence ]D)[ ]
is dense in C. /(R |D



Proof of claim 1, 2, and 4

{ .
"Z'\q_ (o) k=o
2. Unit vecoes not approximate unit vectors in C.
Because for u = a/2k + b/2!i € D[i] (in reduced form, wlog,
k > 1) to be of unit length, a® + b24%=/ = 4% If k > 0, the
right is congruent to 0 modulo 4, but the_left 1 or 2. For
. i e

k =0, we only have finite many such™u; but S_is infinite.




Proof of claim 1, 2, and 4
o \,\h’g*\” al @ U )

4. Unit vectors in D[i]> approximates unit vectors in (C & 0

@
|2k cosf| + [2Ksinf]i e’ L
(1/2K) a+bi approximates | 0 |,
c+di

where a, b, ¢, d satisfy
2>+ b? 4 ? + d? = (2F)% — (| 2K cos 6])? — (|2ksin6])2.

/



Unit vector approximation — Proof of claim 3

Question
ef? . . .
Let u= 0 € C? be a unit vector. Design an algorithm that

a-+ bi

finds unit (1/2%) [C+ di

] € D[i]?> N S! that approximates v.



Unit vector approximation — Proof of claim 3

Question

Let u = [eo

finds unit (1/2) [

i0
] € C? be a unit vector. Design an algorithm that

a-+ bi

. 2 1 .
. di] € D[/]* N S* that approximates u.

Answer

Recall in four-square problem “The idea is that by randomly
choosing x and y, we might have p := n — x?> — y? is a prime of
the form 4k +1 ...."



Unit vector approximation — Proof of claim 3

Question

= @ <.C? be a unit vector. Design an algorithm that

Let u = 0
finds unit (1/2%) € D[i]? N S! that approximates u
Answer

y randomly
is a prime of

Recall in four-square problem “The idea’i
choosing x and y, we might have p :=n
the form 4k +1 ...."

But here: we randomly choose x_and y in smaller region
determined by@ And we need a strong hypothesis about the
abundance of such x and y.




Smaller region

Four-sqnore problew
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Smaller region
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Bigger hypothesis

Note
2R, contaiPrE_’many points for sufficient large k.

S —



Bigger hypothesis

Note
2kR. contains many points for sufficient large k.
Recall the proven density of good x, y's in the square

A
(log n) log log n



Bigger hypothesis

Note
2kR. contains many points for sufficient large k.

Recall the proven density of good x, y's in the square

A
(log n) log log n

Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good
X, y's in the crescent is same as the density in the square.
F— b —
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. N
- (-1 ‘- ]
Note -~ L A
k . . .. l i A
2% R, contains many points for sufficient large k.

Bigger hypothesis (, ,,)

Y.
Recall the proven density of good x, y's in the square L 1'_3
A

(log n) log log n
Bigger hypothesis

Good points x, y are even distributed, i.e. the density of good
X, y's in the crescent is same as the density in the square.

Consequences

For large k, we can find x, y such that 4 — x?> — y? is a prime of
the form 4j + 1. That is the four-square problem with extra

. . = d
co%tra_i_nt can be efficiently solved.



Unit vector approximation

Question

; i0
Find a unit vector (1/2K) [ii Zﬂ that approximates [eo ]



Unit vector approximation

Question .
. . Ky | @ + bi . e'
Find a unit vector (1/2%) [c+ di} that approximates [ 0 ]

e

Answer
Algorithm:

1. For giver@calculat@ (not hard, not exgénsi\aé, omitted)

2. Solve restri four-square problem 4% = x? 4+ y? + y? + 22
with[{x, y) € 2XR) get solution a,b,c, d. er
F -7 ‘/ ns (\ ';
3. return (1/2%) a -+ bi , finish. ¢

P
_C+di @hw"ﬁi

Complexity: depends on the area ﬁ) We omit the calculation—
and only state the result. Polynomial in log (1/¢).

0 (&103(\)" loalo)n)




Unit vector approximation

Question .

. . 2@} a-+ bi : e'
Find a unit vector (1/ [c . di} that approximates [@j
-

Answer
Algorithm:

1. For given ¢, calculate k. (not hard, not expensive, omitted)

2. Solve restricted four-square problem 4% = x? + y? 4+ y? + 22

with (x,y) € 2¥R, get solution a, b, ¢, d.
a+ bi
c+di
Complexity: depends on the area of R.. We omit the calculation
and only state the result. Polynomial in log (1/€).

3. return (1/2%) [ ] finish.

Note
c, d are relatively small compared to_z;, it does't affect much.



z-rotation approximation

Question
Find unitary (1/2k) [3 +bi e+ fi

ctdi g+ hi] that is close to [

eit

where a,b,c,d, e, f, g, h, k are integers. —_—



z-rotation approximation

Question .

. . K |at+bi e+ Ti . e' 0
Find unitary (1/2%) [c—l— di g+ hi t close to [0 I
where a,b,c,d, e, f, g, h, k are integers.

Answer )
e/@

0
manipulation, we get a solution. We claim, if

K |a+ bi , el
(1/2%) L_'_di}\iproxmates 0 , then

Basically, we first approximate , then through some algebraic

W latbi “c4dl . T e 0
(1/2%) ctdi a—bi|® unitary and close to 0 eif|°

—_—— — N e



Unitary approximation

Question
. . K |at+bi e+ fi
Find unitary (1/2%) [c+ di g+ hi

an arbitary unitary, where a, b, c,d, e, f, g, h, k are integefs.

] that approximates [F: Z]



Unitary approximation

Question
. . K |at+bi e+ fi
Find unitary (1/2%) [c+ di g+ hi

an arbitary unitary, whéfe*a, b, c,d, e, f, g, h, k are integers.

] that approximates [F: Z]

Answer J

i ¢
An wtion is of the form K [eO 694 KT, where

1—7 1—
K=3 1o —1+il and@means taking conjugate transpose.
Any 2x2 unitary can written as a product ABC, where A, C are

z-rotations and B is an x-rotation. et Yh R
ot PR
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