
Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

A categorical framework for
gradient-based learning

Geoff Cruttwell
Mount Allison University

Joint work with Bruno Gavranović, Neil Ghani,
Paul Wilson, and Fabio Zanasi

March 9th, 2021



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Overall plan

Today:

Describe some of the basic ideas behind gradient-based machine
learning

Start to think about how we can represent these ideas categorically
through three structures:

A construction of a category of parameterized maps
A construction of a category of “bidirectional” maps, also known as
lenses
Cartesian reverse differential categories (and how they relate to the
more well-known structure of Cartesian differential categories)

Next time:

Putting these these three ideas together and looking at how specific
examples of gradient-based machine learning algorithms fit into this
framework



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Basic gradient-based learning

In general, we want a machine to “learn” the values of some objective
function

O : X −→ Y

For example, X might consist of the set of all images of a certain
size (represented as some Rn for large n), Y might be the set [0, 1],
and we want O(x) to be “how likely the image a contains a cat”.

Of course, searching over the entire space of all functions from X to
Y is hard!

So, instead one often fixes a particular “parameter space” P = Rk

(usually, again, k is large), fix a particular function

f : P × X −→ Y

and try to find a good value of p ∈ P so that for all x , f (p, x) is
sufficiently close to O(x).



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Neural networks

A standard choice of f : P × X −→ Y is given by a neural network, eg.1,

The values wij , δk , al , etc., are determined by the parameter p ∈ P.

Sometimes they are combined in linear ways, sometimes in
non-linear ways.

While the choice of f : P × A −→ B is often of this form, it’s been
increasingly realized that looking more generally any function of type
P × X −→ Y is useful.

1Image from https://cs231n.github.io/neural-networks-1/



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Learning

How does one find the right choice of parameter p ∈ P?

We start with some set of “training data”: pairs

(x0, y0), (x1, y1), . . . (xn, yn)

where yi = O(xi ) is a known value of the function. (These are often
found by some poor student “volunteer”).

We want to minimize how far f (p, xi ) is from yi .

That is, some error function e : Y × Y −→ R is chosen, and then we
define a new function

J : P −→ R

J(p) = e(f (p, a0), b0)

which we want to minimize.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Learning continued

To do this, we follow the idea of gradient descent:

Calculate a new parameter

p′ = p − ε∇J(p)

(where ∇ is the gradient and ε is some constant).

Repeat this process until we get f (p, a) sufficiently close to O(a).

This is the basic version, but there are many variants of it:

Different error functions are used

The update p − ε∇J(p) is often more complicated, sometimes
involving previous update values and/or trying to “look ahead” to
see what updates might be coming

Recently, people have been trying this idea other than in the
category of smooth maps, eg., the category of “boolean circuits”.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Learning at a higher level

Let’s think about this a bit more generally:

We want to build a map
X −→ Y .

To do this, we instead look at maps of type

P × X −→ Y

(where P isn’t fixed).

The key step of the update process involves building a map of type

P × X × Y −→ P

where P on the left is the current parameter, X is the current input,
Y is the desired output, and P on the right is the updated
parameter.

(Note that this map has switched the role of input and output in
some of its terms!)

The update process itself always involves the gradient in some way.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Plan to set this up

We handle this via three categorical ideas:

1 The Para construction, which from a category with maps X −→ Y ,
builds a category whose maps are of type P × X −→ Y

2 The Lens construction, which builds a category of maps with both a
“forwards” and a “backwards” part, as happens in the parameter
update

3 Reverse derivative categories, in which every map has an associated
“reverse derivative” (which in the standard case is essentially the
gradient)

And we’ll see the process of taking a parameterized map

P × X −→ Y

and producing a map of type

P × X × Y −→ P

as a (2-)functor.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Para construction

We want to consider maps of type P × A −→ B for varying P. This is
handled by the following construction:

Definition (Gavranović 2019)

Given any Cartesian category C, define Para(C) with the following data:

An object is an object of C
A map from A to B is a pair (P, f ) where P is an object of C and

f : P × A −→ B.

The composite of (P, f ) : A −→ B with (Q, g) : B −→ C has object
Q × P and map

Q × P × A
1Q × f−−−−−→ Q × B

g−−→ C

Note that in general this composition won’t be strictly associative...we
either need an equivalence on maps or, more generally, a 2-structure:



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

The Para construction continued

Definition

A 2-cell from (P, f ), (P ′, f ′) : A −→ B is a map α : P ′ −→ P such
that

P ′ × A
α×1 //

f ′
%%JJ

JJ
JJ

JJ
JJ

P × A

f

��
B

Most examples we will consider (such as the category of smooth
maps between Rn’s) are skeletal, and in those cases this construction
will give a (2-)category.

One could also build a category directly by having arrows be up to
equivalence of 2-cells.

But the 2-struture can also be useful in its own right.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Lenses

We also want to describe categories containing maps with both
“forwards” and “backwards” components:

Definition (de Paiva, Rosebrugh, Johnson, Hedges...)

Given any Cartesian category C, the category of lenses in C is a category
Lens(C) with:

An object is an object of C
A map from A to B is a pair of maps (f , f ∗), where

f : A −→ B and f ∗ : A× B −→ A

Given f : A −→ B, f ∗ : A× B −→ A and g : B −→ C , g∗ : B × C −→ B,
what is their composite?



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Composition and identities of lenses

Definition

The composite of (f , f ∗) : A −→ B with (g , g∗) : B −→ C is the map

A
f−−→ B

g−−→ C

together with the map

A× C
〈π1, π1f , π2〉−−−−−−−−→ A× B × C

1× g∗−−−−−→ A× B
f ∗−−→ A

The identity on A is the map (1A, π2).

This project convinced me of the usefulness of string diagrams...in
strings, the second component of the composite is



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Lens variants

This is just one category which goes by the name of lenses. There are a
variety of others (but all feature pairs of maps, one going forward, the
other backwards):

They have been used in abstract database theory, in which case one
often imposes additional axioms on the maps (f , f ∗).

There is a more general version with objects pairs (A,A′), in which a
map (f ,∗ ) : (A,A′) −→ (B,B ′) has f : A −→ B and

f ∗ : A× B ′ −→ A′

More general versions include categories of “optics”.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Lens as a dual fibration

For those familiar with fibrations, there’s a way to view categories of
lenses in a less ad-hoc manner:

For any fibration F : E −→ B, one can constructs its dual fibration
F ∗ : E∗ −→ B, in which the fibre over B of F ∗ is the opposite
category of the fibre of F over B.

For any Cartesian category C, one can construct the simple fibration
whose objects are pairs (C ,C ′), with maps (f , f ′) : (C ,C ′)
−→ (D,D ′) consisting of an f : C −→ D and a f ′ : C × C ′ −→ D ′.

The second category of lenses on the previous slide is the dual
fibration to the simple fibration.

More generally, the dual fibration of the codomain fibration is interesting
and may provide insight on how to work with learning on manifolds.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Combining Para and Lens

If we do both of these constructions, that is, consider Para(Lens(C)), we
get a category with:

Objects are those of C
A map from A to B is a pair (P, (f , f ∗)) where P is an object of C,
and (f , f ∗) is a lens from P × A −→ B

For such a pair f : P × A −→ B and

f ∗ : P × A× B −→ P × A

This is actually more than we need to handle the maps that appear in
gradient descent (for those, we just needed maps of type P × A× B
−→ P), but keeping the A around is important to make everything
compositional, and may well be useful for machine learning in its own
right.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Neural networks and learners

So, given a Cartesian category C, we have the categories Para(C)
(“neural networks”) which has a map from A to B a map of type

P × A −→ B

and Para(Lens(C)), (“learners”) which has a map from A to B containing
a map of type

P × A× B −→ P × A

We want to see gradient-based learning algorithms as functors

Para(C) −→ Para(Lens(C))

and a key component of these functors should be a gradient operation.
Thus, we need C to have some kind of differential structure.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Derivatives, categorically

Let’s think about the type of the derivative of a smooth map

f : Rn −→ Rm.

The Jacobian of f can be viewed as a map

J(f ) : Rn −→ Lin(Rn,Rm)

But in general we don’t want to assume our categories are closed. So
instead we view the Jacobian as a map of type

D(f ) : Rn × Rn −→ Rm

satisfying certain properties. For example, the chain rule can be
expressed as

D(fg) = 〈π0f ,D(f )〉D(g)



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Cartesian differential categories

Definition (Blute/Cockett/Sealy 2009)

A Cartesian differential category (CDC) is a Cartesian left additive
category which has, for each map

f : A −→ B

a map
D[f ] : A× A −→ B

satisfying seven axioms, including the “chain rule”:

D[fg ] = 〈π0f ,D[f ]〉D[g ]

The canonical example is the category of smooth maps between Rn’s,
but there are many others, including categories in algebraic geometry,
synthetic differential geometry, computer science, homotopy theory, etc.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Reverse derivatives, categorically

But actually, we don’t exactly want the Jacobian. For example, given a
map f : Rn −→ R, the map

D[f ] : Rn × Rn −→ R

takes ((xi ), (vi )) and gives you the point(
df

dx1
(x1) +

df

dx2
(x2) + . . .

df

dxn
(xn)

)
· (v1, v2 . . . vn)

But what we want is the transpose of the Jacobian which gives a map

R[f ] : Rn × R −→ Rn

which takes ((xi ), t)) and gives you the vector(
df

dx1
(x1),

df

dx2
(x2), . . .

df

dxn
(xn)

)
· t

So we want some structure which generalizes the transpose of the
Jacobian.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Cartesian reverse differential categories

Definition
(Cockett/Cruttwell/Gallagher/Lemay/MacAdam/Plotkin/Pronk 2020)

A Cartesian reverse differential category (CRDC) is a Cartesian left
additive category which has, for each map f : A −→ B, a map

R[f ] : A× B −→ A

satisfying seven axioms, including the “reverse chain rule”:

R[fg ] = 〈π1, π1f , π2〉(1× R[g ])R[f ]

In strings, the reverse chain rule is

which should look familiar - it’s how composition in Lens(C) was defined!



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

More on CRDCs

The category of smooth maps between Rn’s is a Cartesian reverse
differential category, with R[f ] the transpose of the Jacobian.

The category of Boolean circuits (see the paper “Reverse derivative
ascent”) is a CRDC.

Any Cartesian differential category with a “contextual linear dagger”
(dagger category structure in each linear slice) is a Cartesian reverse
differential category.

In fact, this is an equivalence: CRDC’s are exactly CDC’s with a
contextual linear dagger. See “Reverse derivative categories” for
more details.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

R as a functor

The important point for our setup, however, is that if C is a CRDC, then
there is a functor

R∗ : C −→ Lens(C)

which is the identity on objects, and maps f : A −→ B in C to the pair

(f ,R[f ]) : A −→ B in Lens(C).

And, moreover, Para is itself a 2-functor, so we get an induced 2-functor

Para(R∗) : Para(C) −→ Para(Lens(C))

This is the first component of gradient descent algorithms!



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

Conclusions

Thus, our setup initially consists of:

A CRDC C
From this, we can build Para(C), the (bi-)category of parameterized
functions, which include neural networks.

From this, we can build Para(Lens(C)), the (bi-)category of
“learners”.

And we already have a 2-functor

Para(R∗) : Para(C) −→ Para(Lens(C))

which provides the gradient operation used in machine learning
algorithms.

Next time, we’ll see how to enhance the functor Para(R∗) with “error”
and “update” maps; varying these error and update maps will then give
many of the gradient descent algorithms used in practice.



Introduction Gradient-based learning Para and Lens constructions Reverse derivative categories Conclusions

References

The paper the talk is based on is
Cruttwell, G., Gavranović, B., Ghani, N., Wilson, P., and Zanasi, F.
Categorical foundations of gradient-based learning,
arXiv:2103.01931, 2021.

The most closely related categorical work is
Fong, B., Spivak, D.., and Tuyeras, R. Backprop as functor, LICS
2019.

Other references include
Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J-S., MacAdam, B.,
Plotkin, G., and Pronk, D. Reverse derivative categories. CSL
2020.
Gavranović, B. Composition deep learning, arXiv:1907.08292,
2019.
Hedges, J. Lenses for philosophers (blog post at
https://julesh.com/2018/08/16/lenses-for-philosophers/, contains
many other references and history about lenses)
Wilson, P. and Zanasi, F. Reverse derivative ascent: a
categorical approach to learning boolean circuits. Proceedings
of ACT 2020.


	Introduction
	

	Gradient-based learning
	

	Para and Lens constructions
	

	Reverse derivative categories
	

	Conclusions
	


