
Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

A categorical framework for
gradient-based learning (part two)

Geoff Cruttwell
Mount Allison University

Joint work with Bruno Gavranović, Neil Ghani,
Paul Wilson, and Fabio Zanasi

March 16th, 2021



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Introduction

General goal: representing some of the structures and ideas in
gradient-based learning categorically.

Note: nothing we do here (yet) solves any problems in machine
learning.

At this point, we’re simply giving a new perspective on the subject
so that one can ask different questions about it, see how it might be
related to other areas, etc.

Today:

Given certain data, see how to build two endofunctors on our
category of “learners”.

Compose these endofunctors with our reverse derivative functor from
last time to build a very general gradient descent algorithm.

See how specific examples of such data give rise to known gradient
descent algorithms.

Discuss future work.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

From last time...

How we’re modelling gradient-based learning categorically:

Start with a Cartesian reverse differential category (CRDC) C
Build the category Para(C): the category of parameterized maps (a
generalization of neural networks). In this category a map from A to
B in this category is a pair (P, f ) where f : P × A −→ B.

Build the category Lens(C), in which a map from A to B consists of
a pair of maps (f , f ∗), with

f : A −→ B, f ∗ : A× B −→ A.

The category Para(Lens(C)) is our category of “learners”; in this
category a map from A to B is a triple (P, f , f ∗) where

f : P × A −→ B

and
f ∗ : P × A× B −→ P × A.

(Which is the type of map that appears in gradient descent
algorithms)



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Functors to learners

The R operation in the CRDC C gives rise to a (2-)functor

Para(R∗) : Para(C) −→ Para(Lens(C)).

Which sends (P, f ) : A −→ B to the lens which has backwards part

We are going to build a more general functor out of data S , u, d ,
which sends (P, f ) : A −→ B to a lens which has backwards part

For example, in basic gradient descent, S(P) is the terminal object,
uP = π2, u∗p (p, q) = p − εq, dB(b, b′) = b − b′.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Functors to learners

The R operation in the CRDC C gives rise to a (2-)functor

Para(R∗) : Para(C) −→ Para(Lens(C)).

Which sends (P, f ) : A −→ B to the lens which has backwards part

We are going to build a more general functor out of data S , u, d ,
which sends (P, f ) : A −→ B to a lens which has backwards part

For example, in basic gradient descent, S(P) is the terminal object,
uP = π2, u∗p (p, q) = p − εq, dB(b, b′) = b − b′.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

The more general functor to learners

It’s not obvious that this construction is functorial (and of course it
depends on what properties S , u and d have).

Our plan is to see it as built up out of smaller pieces, each piece of
which is relatively easy to verify functoriality.

The functoriality of the smaller pieces has its origin in a very simple
endofunctor one can define on any category.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

A silly endofunctor on any category

Lemma

If C is any category, and we have, for each object A, an isomorphism
iA : A −→ A, then there is an endofunctor

I : C −→ C

defined as the identity on objects, and sends f : A −→ B to

A
i−1
A−−−→ A

f−−→ B
iB−−→ B

While not particularly interesting in their own right (such functors are
naturally isomorphic to the identity functor), we can usefully generalize
this idea in two different ways to categories of the form Para(C).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Endofunctors on Para(C) I

Lemma

Suppose C is a Cartesian category, and we have, for each object A, an
isomorphism dA : A −→ A, and this collection is product-preserving
(dA×B ∼= dA × dB), then there is an endo-2-functor

D : Para(C) −→ Para(C)

defined as the identity on objects, sends (P, f ) : A −→ B to P with the
map

P × A
1× d−1

A−−−−−−→ P × A
f−−→ B

dB−−→ B,

and sends a 2-cell r : (P, f ) −→ (P ′, f ′) to itself.

(Note this is not just Para applied to the functor from the previous slide
- that would also use the isomorphisms on the parameter part, which this
does not.)



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

For example...

We’ll be applying this ideas to the category Lens(C), in which case each
dA would be an invertible map in Lens(C), ie., a pair of maps

dA : A −→ A, d∗A : A× A −→ A

forming an invertible lens. The basic example of this in C the smooth
category has

dA = 1A, d
∗
A(p, p′) = p − p′

(calculating how far the current output is from the desired output).
One can check that this is indeed an invertible map in Lens(C).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Endofunctors on Para(C) II

We can also make an endofunctor which changes the parameters:

Lemma

Suppose C is a Cartesian category, and we have, for each object P, an
isomorphism uA : A −→ A, and this collection is product-preserving
(uA×B ∼= uA × uB), then there is an endo-2-functor

U : Para(C) −→ Para(C)

defined as the identity on objects, sends (P, f ) : A −→ B to P with the
map

P × A
uP × 1−−−−−→ P × A

f−−→ B,

and sends a 2-cell r : (P, f ) −→ (P ′, f ′) to

P ′
uP′−−−→ P ′

r−→ P
u−1
P−−−→ P



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

For example...

Applying these ideas in Lens(C), uP would have to be an invertible map
in Lens(C), ie., a pair of maps

uP : P −→ P, u∗P : P × P −→ P

In basic gradient descent, with C the smooth category, we will take

uP = 1P , u
∗
P(p, p′) = p − εp′

(for any ε 6= 0).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

More general update data

However, we’ll also want to consider updates which hold on to some
“state” and use that in future updates. For this, we need a more general
version of the second endofunctor.

Definition

Suppose C is a Cartesian category. Update data on C consists of:

a product-preserving endofunctor S : C −→ C;

for each object P of C, a map

uP : S(P)× P −→ P

which is invertible in its second variable

such that the uP ’s respect products in an appropriate way.

(We’ll see examples of this soon.)



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Endofunctors on Para(C) III

Lemma

Suppose C is a Cartesian category, and we have update data (S , {uP}) on
C. Then there is an endo-2-functor

U : Para(C) −→ Para(C)

defined as the identity on objects, sends (P, f ) : A −→ B to S(P)× P
(note the change in parameter object!) with the map

S(P)× P × A
uP × 1−−−−−→ P × A

f−−→ B

and sends a 2-cell r : (P, f ) −→ (P, f ′) to the composite

S(P ′)×P ′
〈π1, uP′ 〉−−−−−−→ S(P ′)×P ′

S(r)× r−−−−−−→ S(P)×P
〈π1, u

−1
P 〉−−−−−−→ S(P)×P.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Putting it all together

Lemma

If C is a CRDC, and we have both a family of isomorphisms {dA} and
update data (S , {uP}) in Lens(C), then we get a 2-functor

U ◦ D ◦ Para(R∗) : Para(C) −→ Para(Lens(C))

which sends a parametrized map (P, f ) : A −→ B to the map with object
S(P)× P, forward part of the lens f , and backward part

(Actually, this is the case when the forward part of each dA is the
identity...all our examples will have this.)



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Example: basic gradient descent

With dA as before, basic gradient is the case when

S(P) = 1

for all P,
uP : 1× P −→ P

is the second projection, and

u∗P : 1× P × P −→ 1× P

maps (∗, p, p′) to
(∗, p − εp′)

(for some non-zero constant ε).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Example: gradient descent with momentum

An important variant of gradient descent is gradient descent with
momentum: it stores the previous change and uses a fraction of that to
also update the next change. In our setup we get this by taking

S(P) = P

for all P,
uP : P × P −→ P

is the second projection, and

u∗P : S(P)× P × P −→ S(P)× P

maps (v , p, p′) to
(v ′, p − v ′)

where v ′ = γv + εp′ (for some non-zero constants γ, ε).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Example: gradient descent with Nesterov momentum

A further important variation of this is Nesterov momentum, which
“looks ahead” from the current point by applying the previous update to
the current point and calculating the required change at that point
instead. This is achieved in our setup by using a lens with non-trivial
forward part: we take

S(P) = P

for all P,
uP : P × P −→ P

sends (v , p) 7→ p − γv (note the difference from the previous example!)
and

u∗P : S(P)× P × P −→ S(P)× P

is as before: it maps (v , p, p′) to

(v ′, p − v ′)

where v ′ = γv + εp′ (for some non-zero constants γ, ε).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

More examples

I think it’s really neat how lens and their composition exactly give us
what we need to implement some of these variants of gradient descent!

One can show that other variants of gradient descent also fit into this
setup:

Adagrad

Adam

Nadam

etc.

Some store several different pieces of information from previous updates,
and so use, for example, S(P) = P × P.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

A different error map

A variant of the basic mean-squared error is cross-entropy loss, which
results in a lens dA whose forward part is the identity, and whose
backwards part is the map

d∗A : A× A −→ A

given by

(a, a′) 7→ exp(ai )∑
j exp(aj)

− a′

This can be combined with any of the previous update maps (instead of
mean-squared error).



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Polynomial and boolean circuit example

A different example comes from considering the CRDC

C = polynomials over Z2.

In “Reverse derivative ascent”, the authors define a learning
algorithm in this category which they draw graphically as

This is also an example of our framework, with
S(P) = 1, d∗A = uA∗ = +.

In the paper, the authors show how to extend this idea to boolean
circuits.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Python code

One advantage of our approach is that it makes building a learning
algorithm very “plug and play”: you specify an update map and an
error map, and the framework gives you an explicit recipe for how to
build a learning algorithm from that data.

We’ve built some Python code to do this: see
https://bit.ly/3rNkyNX.

We’ve used this code to try some standard machine learning
problems (such as MNIST), and achieved good accuracy and speed.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Future work I

We have lots of avenues we’d like to explore as follow-ups to these ideas.
These include:

Partiality: generalizing to categories of partial maps (represented
axiomatically by restriction categories). This should allow us to
handle some of the other neural networks and error maps which
occur in practice but aren’t differentiable everywhere.

Meta-learning: Some advanced machine-learning techniques involve
changing the learning algorithm itself as time passes. We believe we
can model this by using the category Para(Para(Lens(C))).

Dreaming: Understanding how the A output that our model builds
relates to “dreaming” in machine learning.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

Future work II

Learning on manifolds: by generalizing the lens construction to
dependent lenses (= dual fibration of the codomain fibration) and
CRDCS to “cotangent categories” (the reverse analogue of tangent
categories), we should be able to model learning in categories of
smooth manifolds.

Non gradient-based learning: Everything we’ve said above applies
to any section of the dual of the simple fibration (that is, instead of
considering the functor R∗ : C −→ Lens(C) coming from a CRDC,
instead start with an arbitrary functor L : C −→ Lens(C)), and this
should help model non gradient-based learning.

Use of 2-categorical structure: Everything we’ve done comes with
2-categorical structure; we need to investigate further how this can
be used to compare and contrast different learning algorithms.



Introduction Endofunctors on Para(C) Generalized gradient descent functor Future work and references

References

The paper the talk is based on is
Cruttwell, G., Gavranović, B., Ghani, N., Wilson, P., and Zanasi, F.
Categorical foundations of gradient-based learning,
arXiv:2103.01931, 2021.

The most closely related categorical work is
Fong, B., Spivak, D., and Tuyeras, R. Backprop as functor, LICS
2019.

Other references include
Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J-S., MacAdam, B.,
Plotkin, G., and Pronk, D. Reverse derivative categories. CSL
2020.
Gavranović, B. Compositional deep learning, arXiv:1907.08292,
2019.
Hedges, J. Lenses for philosophers (blog post at
https://julesh.com/2018/08/16/lenses-for-philosophers/, contains
many other references and history about lenses)
Wilson, P. and Zanasi, F. Reverse derivative ascent: a
categorical approach to learning boolean circuits. Proceedings
of ACT 2020.


	Introduction
	

	Endofunctors on Para(`3́9`42`"̇613A``45`47`"603AC)
	

	Generalized gradient descent functor
	

	Future work and references
	


