BREAKING DOWN HOMOLOGICAL CYCLES OF SIMPLICIAL COMPLEXES AND THE SUBADDITIVITY PROPERTY OF SYZYGIES

Sara Faridi

DALHOUSIE UNIVERSITY

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 .

$$x^2 + y^2 + 2xy = 0 \quad x^2 - y^2 = 0$$

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 .

 $x^{2} + y^{2} + 2xy = 0 \qquad x^{2} - y^{2} = 0$ $(x + y)^{2} = 0 \qquad (x + y)(x - y) = 0$

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 .

$$x^{2} + y^{2} + 2xy = 0 \qquad x^{2} - y^{2} = 0$$
$$(x + y)^{2} = 0 \qquad (x + y)(x - y) = 0$$
$$y = -x \qquad y = \pm x$$

Common roots: all points of the form (x, -x), like $(0, 0), (1, -1), \ldots$

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 :

all points of the form (x, -x), like $(0, 0), (1, -1), \ldots$

Observe the polynomials $f, g, f - 2g, (x + 2)f - y^2g$

have the same common roots: $\{(x, -x) \mid x \in \mathbb{R}\}$

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 :

all points of the form (x, -x), like $(0, 0), (1, -1), \ldots$

Observe the polynomials $f, g, f-2g, (x+2)f - y^2g$

have the same common roots: $\{(x, -x) \mid x \in \mathbb{R}\}$

In fact for any polynomials h and ℓ , the polynomials $f, g, hf + \ell g$

have common roots $\{(x, -x) \mid x \in \mathbb{R}\}$.

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 :

all points of the form (x, -x), like $(0, 0), (1, -1), \ldots$

In fact for any polynomials h and ℓ , the polynomials $f, g, hf + \ell g$

have common roots $\{(x, -x) \mid x \in \mathbb{R}\}$.

We call the set of polynomials $hf + \ell g$ where h and ℓ are any polynomials the **ideal generated by** f and g:

 $(f,g) = \{hf + \ell g \mid h, \ell \text{ polynomials}\}$

Basic idea: the common roots of two or more polynomials is the same as the common roots of all their sums and multiples.

Example. Common roots of $f = x^2 + y^2 + 2xy$ and $g = x^2 - y^2$ in \mathbb{R}^2 :

all points of the form (x, -x), like $(0, 0), (1, -1), \ldots$

In fact for any polynomials h and ℓ , the polynomials $f, g, hf + \ell g$

have common roots $\{(x, -x) \mid x \in \mathbb{R}\}$.

We call the set of polynomials $hf + \ell g$ where h and ℓ are any polynomials the **ideal generated by** f and g:

$$(f,g) = \{hf + \ell g \mid h, \ell \text{ polynomials}\}\$$

Commutative algebra studies ideals generated by polynomials.

Monomial ideals

A special class of ideals are those generated by **monomials**, which are products of variables.

Example. The ideal (x^2, xyz^3, y^{10}) .

For monomial ideals, there are many combinatorial methods for studying their properties.

Monomial ideals

A special class of ideals are those generated by **monomials**, which are products of variables.

Example. The ideal (x^2, xyz^3, y^{10}) .

An ideal, like a vector space, has a generating set, but most often there is no basis (no linear independence!).

Such relations among generators of ideals are called syzygies.

Monomial ideals

A special class of ideals are those generated by **monomials**, which are products of variables.

Example. The ideal (x^2, xyz^3, y^{10}) .

An ideal, like a vector space, has a generating set, but most often there is no basis (no linear independence!).

If $f = x^2$, $g = xyz^3$, $h = y^{10}$ then $yz^3f - xg = 0$.

Such relations among generators of ideals are called syzygies.

Using syzygies, we represent an ideal by a sequence of vector spaces:

$$\cdots \to \mathbb{R}^{a_n} \to \mathbb{R}^{a_{n-1}} \to \cdots \to \mathbb{R}^{a_1} \to \mathbb{R}^{a_0} \stackrel{=}{\to} \stackrel{\leq}{\to}$$

We can do this so that the a_i are the smallest possible integers, and we call this a **minimal free resolution** of the ideal, which is unique (up to isomorphism).

The minimal free resolutiongradedIf a monomial ideal I has minimal free resolution $\cdots \to \mathbb{R}^{\beta_n} \to \mathbb{R}^{\beta_{n-1}} \to \cdots \to \mathbb{R}^{\beta_1} \to \mathbb{R}^{\beta_0}$

The β_i are called the **betti numbers** of *I*.

The minimal free resolution

If a monomial ideal *I* has minimal free resolution

 $\cdots \to \mathbb{R}^{\beta_n} \to \mathbb{R}^{\beta_{n-1}} \to \cdots \to \mathbb{R}^{\beta_1} \to \mathbb{R}^{\beta_0}$

The β_i are called the **betti numbers** of *I*.

[Gasharov-Peeva-Welker] The betti numbers of *I* can be extracted from the **Icm lattice** of *I*.

Example. I = (ab, bc, cd)

ab bc cd

Example. I = (ab, bc, cd)

Example. I = (ab, bc, cd)

Example. I = (ab, bc, cd)

Gasharov - Peeva - Welker (1999): I monomial ideal with Icm lattice L

$$\beta_{i(\mathbf{m})} = \dim_k \widetilde{H}_{i-2} \left((\mathbf{1}, \mathbf{m})_L; k \right)$$

Note that the monomials in the Icm lattice index the betti numbers

Bi'z' Z'Bi,m MELCM(I)

m=abcd

Example. I = (ab, bc, cd)

Gasharov - Peeva - Welker (1999): I monomial ideal with Icm lattice L

$$\beta_{i,\mathbf{m}} = \dim_k \widetilde{H}_{i-2}\left((1,\mathbf{m})_L;k\right) \stackrel{\frown}{=} \mathbb{O}$$

Example. I = (ab, bc, cd)

Gasharov - Peeva - Welker (1999): I monomial ideal with Icm lattice L

Example. I = (ab, bc, cd)

Gasharov - Peeva - Welker (1999): I monomial ideal with Icm lattice L

$$\beta_{i,\mathbf{m}} = \dim_k \widetilde{H}_{i-2}((1,\mathbf{m})_L;k)$$

For a monomial ideal I

 $\beta_{i,\mathbf{m}} \neq 0$ m some monomial

 \iff there is a non-acyclic lcm lattice L with maximal element m

For a monomial ideal I

 $\beta_{i,\mathbf{m}} \neq \mathbf{0}$

 \iff there is a non-acyclic lcm lattice L with maximal element ${f m}$

 \implies every proper element of L has a *complement* [Baclawski (1977)]

Two monomials \mathbf{m}_1 and \mathbf{m}_2 are *complements* if

 $\mathsf{lcm}(\mathbf{m}_1,\mathbf{m}_2)=\mathbf{m}\qquad\text{and}\qquad\mathsf{gcd}(\mathbf{m}_1,\mathbf{m}_2)\notin I$

Two monomials m_1 and m_2 are *complements* if

 $\operatorname{lcm}(\mathbf{m}_1,\mathbf{m}_2)=\mathbf{m}$ and $\operatorname{gcd}(\mathbf{m}_1,\mathbf{m}_2)\notin I$

- *abc* and *cd* are complements

- bc has no complement

$$-\beta_{i,abcd}=0$$

Subadditivity Conjecture:

I monomial ideal

Fix *i* and let $t_i = \max\{\deg m \mid \beta_{i,m} \neq 0\}.$

Subadditivity Property: $t_{a+b} \leq t_a + t_b$ for all $a, b, \geq \bigcirc$

Subadditivity Conjecture:

I monomial ideal

Fix *i* and let $t_i = \max\{\deg m \mid \beta_{i,m} \neq 0\}$.

Subadditivity Property: $t_{a+b} \leq t_a + t_b$ for all a, b.

- holds for some algebras of dim ≤ 1 [Eisenbud Huneke Ulrich (2006)]
- fails in general [Avramov Conca Iyengar (2015)]

- holds when I monomial ideal and a = 1, in cases where b is the projective dimension of S/I or when I is any monomial ideal [Herzog - Srinivasan (2016)]

- *holds in certain homological degrees for Gorenstein algebras* [El Khoury - Srinivasan (2016)]

- holds when a = 1, 2, 3 and I monomial ideal generated in degree 2 [Fernández-Ramos - Gimenez (2014), Abedelfatah - Nevo (2016)]

Subadditivity Conjecture:

I monomial ideal

Fix *i* and let $t_i = \max\{\deg m \mid \beta_{i,m} \neq 0\}$.

Subadditivity Property: $t_{a+b} \le t_a + t_b$ for all a, b.

The question is open for the class of monomial ideals.

Subadditivity for monomial ideal *I*

Suppose L = Icm lattice of I has top monomial m.

Question. If $\beta_{i,\mathbf{m}} \neq 0$ and i = a + b, are there complements \mathbf{m}_1 and \mathbf{m}_2 in L with nonzero multigraded Betti numbers $\beta_{a,\mathbf{m}_1} \neq 0$ and $\beta_{b,\mathbf{m}_2} \neq 0$?

Back to subadditivity for monomial ideal *I*

Suppose L = I cm lattice of I has top monomial \mathbf{m} .

Question. If $\beta_{i,\mathbf{m}} \neq 0$ and i = a + b, are there complements \mathbf{m}_1 and \mathbf{m}_2 in *L* with nonzero multigraded Betti numbers $\beta_{a,\mathbf{m}_1} \neq 0$ and $\beta_{b,\mathbf{m}_2} \neq 0$?

If yes, then

1) $\text{lcm}(m_1, m_2) = m \Longrightarrow \text{deg}(m_1) + \text{deg}(m_2) \ge \text{deg}(m)$

Back to subadditivity for monomial ideal *I*

Suppose L = lcm lattice of I has top monomial m.

Question. If $\beta_{i,\mathbf{m}} \neq 0$ and i = a + b, are there complements \mathbf{m}_1 and \mathbf{m}_2 in *L* with nonzero multigraded Betti numbers $\beta_{a,\mathbf{m}_1} \neq 0$ and $\beta_{b,\mathbf{m}_2} \neq 0$?

If yes, then

1) $\mathsf{lcm}(m_1, m_2) = m \Longrightarrow \mathsf{deg}(m_1) + \mathsf{deg}(m_2) \ge \mathsf{deg}(m)$

2) Recall: $t_a = \max\{\deg \mathbf{m} \mid \beta_{a,\mathbf{m}} \neq 0\}.$

Back to subadditivity for monomial ideal *I*

Suppose L = lcm lattice of I has top monomial \mathbf{m} .

Question. If $\beta_{i,\mathbf{m}} \neq 0$ and i = a + b, are there complements \mathbf{m}_1 and \mathbf{m}_2 in L with nonzero multigraded Betti numbers $\beta_{a,\mathbf{m}_1} \neq 0$ and $\beta_{b,\mathbf{m}_2} \neq 0$?

If yes, then

1) $\text{lcm}(m_1, m_2) = m \Longrightarrow \text{deg}(m_1) + \text{deg}(m_2) \ge \text{deg}(m)$

2) Recall: $t_a = \max\{\deg \mathbf{m} \mid \beta_{a,\mathbf{m}} \neq 0\}$.

3) $t_i = \deg(\mathbf{m})$ and $t_a \ge \deg(\mathbf{m}_1)$ and $t_a \ge \deg(\mathbf{m}_2)$

Therefore we have subadditivity

$$t_i \le t_a + t_b$$

Subadditivity for lattices

Suppose L = Icm lattice of I has top monomial m.

Question.
$$L$$
 = lattice with
 $\widetilde{H}_{a+b-2}((1,m)_L;k) \neq 0$

are there complements $\mathbf{m_1}$ and $\mathbf{m_2}$ in L with

$$\widetilde{H}_{a-2}\left((1,\mathrm{m}_1)_L;k
ight)
eq0$$
 and $\widetilde{H}_{b-2}\left((1,\mathrm{m}_2)_L;k
ight)
eq0$?

Theorem. (Faridi 2019) If *I* is the facet ideal of a simplicial forest, then the answer is positive, and therefore subadditivity holds.

Subadditivity in general

Question. If *L* is a lattice with

$$\widetilde{H}_{a+b-2}(L;k) \neq 0$$

are there induced sublattices L_1 and L_2 with

$$\widetilde{H}_{a-2}(L_1;k) \neq 0 \text{ and } \widetilde{H}_{b-2}(L_2;k) \neq 0? \quad f Complemently$$

(

(imple:

Question. If Γ is a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with

$$\widetilde{H}_{n-a-b-1}(\Gamma) \neq 0$$

are there $C, D \subseteq \{x_1, \ldots, x_n\}$ such that

 $C \cup D = \{x_1, \ldots, x_n\}$ and $C \cap D \in \Gamma$;

$$\widetilde{H}_{|C|-a-1}(\Gamma_C) \neq 0 \text{ and } \widetilde{H}_{|D|-b-1}(\Gamma_D) \neq 0?$$

Hochsters fronda: Bi, m = dimz Hdegm - i-1 m)

Subadditivity for Simplicial complexes

Question. If Γ is a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with

$$\widetilde{H}_{n-a-b-1}(\Gamma) \neq 0$$

are there $C, D \subseteq \{x_1, \ldots, x_n\}$ such that

 $C \cup D = \{x_1, \ldots, x_n\}$ and $C \cap D \in \Gamma$,

with

$$\widetilde{H}_{|C|-a-1}(\Gamma_C) \neq 0 \text{ and } \widetilde{H}_{|D|-b-1}(\Gamma_D) \neq 0?$$

Subadditivity for Simplicial complexes

Question. If Γ is a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with

$$\widetilde{H}_{n-a-b-1}(\Gamma) \neq 0$$

are there $C, D \subseteq \{x_1, \ldots, x_n\}$ such that

 $C \cup D = \{x_1, \ldots, x_n\}$ and $C \cap D \in \Gamma$,

with

$$\widetilde{H}_{|C|-a-1}(\Gamma_C) \neq 0$$
 and $\widetilde{H}_{|D|-b-1}(\Gamma_D) \neq 0$?

Theorem. (Faridi-Shahada 2020) Yes, when n - a - b - 1 is the smallest size of a nonface of Γ .

More cases: work in progress (almost there....?)

