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Example. Common roots of f = x2 + y2 + 2xy and g = x2 − y2 in R
2.

x2 + y2 + 2xy = 0 x2 − y2 = 0

(x+ y)2 = 0 (x+ y)(x− y) = 0

y = −x y = ±x

Common roots: all points of the form (x,−x), like (0,0), (1,−1), . . .
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Basic idea: the common roots of two or more polynomials is the same as the

common roots of all their sums and multiples.

Example. Common roots of f = x2 + y2 + 2xy and g = x2 − y2 in R
2:

all points of the form (x,−x), like (0,0), (1,−1), . . .

In fact for any polynomials h and ℓ, the polynomials f, g, hf + ℓg

have common roots {(x,−x) | x ∈ R}.

We call the set of polynomials hf + ℓg where h and ℓ are any polynomials the

ideal generated by f and g:

(f, g) = {hf + ℓg | h, ℓ polynomials}

Commutative algebra studies ideals generated by polynomials.
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For monomial ideals, there are many combinatorial methods for studying their

properties.
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Monomial ideals

A special class of ideals are those generated by monomials, which are

products of variables.

Example. The ideal (x2, xyz3, y10).

An ideal, like a vector space, has a generating set, but most often there is no

basis (no linear independence!).

If f = x2, g = xyz3, h = y10 then yz3f − xg = 0.

Such relations among generators of ideals are called syzygies.

Using syzygies, we represent an ideal by a sequence of vector spaces:

· · · → R
an → R

an−1 → · · · → R
a1 → R

a0

We can do this so that the ai are the smallest possible integers, and we call

this a minimal free resolution of the ideal, which is unique (up to

isomorphism).



The minimal free resolution

If a monomial ideal I has minimal free resolution

· · · → R
βn → R

βn−1 → · · · → R
β1 → R

β0

The βi are called the betti numbers of I.



The minimal free resolution

If a monomial ideal I has minimal free resolution

· · · → R
βn → R

βn−1 → · · · → R
β1 → R

β0

The βi are called the betti numbers of I.

[Gasharov-Peeva-Welker] The betti numbers of I can be extracted from the

lcm lattice of I.
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Gasharov - Peeva - Welker (1999): I monomial ideal with lcm lattice L

βi,m = dimk
�Hi−2 ((1,m)L; k)

Note that the monomials in the lcm lattice index the betti numbers
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β2,bcd = 1

(1, bcd) = • •

Gasharov - Peeva - Welker (1999): I monomial ideal with lcm lattice L

βi,m = dimk
�Hi−2 ((1,m)L; k)
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Gasharov - Peeva - Welker (1999): I monomial ideal with lcm lattice L

βi,m = dimk
�Hi−2 ((1,m)L; k)
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βi,m 6= 0

⇐⇒ there is a non-acyclic lcm lattice L with maximal element m

=⇒ every proper element of L has a complement [Baclawski (1977)]
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- abc and cd are complements

- bc has no complement

- βi,abcd = 0
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Subadditivity Conjecture:

I monomial ideal

Fix i and let ti = max{degm | βi,m 6= 0}.

Subadditivity Property: ta+b ≤ ta + tb for all a, b.

- holds for some algebras of dim ≤ 1 [Eisenbud - Huneke - Ulrich (2006)]

- fails in general [Avramov - Conca - Iyengar (2015)]

- holds when I monomial ideal and a = 1, in cases where b is the projective

dimension of S/I or when I is any monomial ideal [Herzog - Srinivasan (2016)]

- holds in certain homological degrees for Gorenstein algebras [El Khoury -

Srinivasan (2016)]

- holds when a = 1,2,3 and I monomial ideal generated in degree 2

[Fernández-Ramos - Gimenez (2014), Abedelfatah - Nevo (2016)]



Subadditivity Conjecture:

I monomial ideal

Fix i and let ti = max{degm | βi,m 6= 0}.

Subadditivity Property: ta+b ≤ ta + tb for all a, b.

The question is open for the class of monomial ideals.
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Back to subadditivity for monomial ideal I

Suppose L = lcm lattice of I has top monomial m.

Question. If βi,m 6= 0 and i = a+ b, are there complements m1 and m2 in

L with nonzero multigraded Betti numbers βa,m1 6= 0 and βb,m2
6= 0?

If yes, then

1) lcm(m1,m2) = m =⇒ deg(m1) + deg(m2) ≥ deg(m)

2) Recall: ta = max{degm | βa,m 6= 0}.

3) ti = deg(m) and ta ≥ deg(m1) and ta ≥ deg(m2)

Therefore we have subadditivity

ti ≤ ta + tb



Subadditivity for lattices

Suppose L = lcm lattice of I has top monomial m.

Question. L = lattice with

�Ha+b−2 ((1,m)L; k) 6= 0

are there complements m1 and m2 in L with

�Ha−2 ((1,m1)L; k) 6= 0 and �Hb−2 ((1,m2)L; k) 6= 0?

Theorem. (Faridi 2019) If I is the facet ideal of a simplicial forest, then the

answer is positive, and therefore subadditivity holds.



Subadditivity in general

Question. If L is a lattice with

�Ha+b−2 (L; k) 6= 0

are there induced sublattices L1 and L2 with

�Ha−2 (L1; k) 6= 0 and �Hb−2 (L2; k) 6= 0?

Question. If Γ is a simplicial complex on the vertex set {x1, . . . , xn} with

�Hn−a−b−1(Γ) 6= 0

are there C,D ⊆ {x1, . . . , xn} such that

C ∪D = {x1, . . . , xn} and C ∩D ∈ Γ;

�H|C|−a−1(ΓC) 6= 0 and �H|D|−b−1(ΓD) 6= 0?
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Subadditivity for Simplicial complexes

Question. If Γ is a simplicial complex on the vertex set {x1, . . . , xn} with

�Hn−a−b−1(Γ) 6= 0

are there C,D ⊆ {x1, . . . , xn} such that

C ∪D = {x1, . . . , xn} and C ∩D ∈ Γ,

with

�H|C|−a−1(ΓC) 6= 0 and �H|D|−b−1(ΓD) 6= 0?

Theorem. (Faridi-Shahada 2020) Yes, when n− a− b− 1 is the smallest

size of a nonface of Γ.

More cases: work in progress (almost there....?)



Subadditivity for Simplicial complexes

Question. �Hn−a−b−1(Γ) 6= 0 are there C,D ⊆ {x1, . . . , xn} such that

C ∪D = {x1, . . . , xn} and C ∩D ∈ Γ, and

�H|C|−a−1(ΓC) 6= 0 and �H|D|−b−1(ΓD) 6= 0?

Bjorner "Topological methods", Handbook of combinatorics (vol. 2)March 1996 Pages 1819–1872



 


