Stone Duality for Topological Convexity Spaces

Toby Kenney

Dalhousie University

ATCAT seminar 19-01-2021

Toby Kenney Stone Duality for Topological Convexity Spaces

Topological Convexity Spaces

Stone Duality for Topological Convexity Spaces The Category of Topological Convexity Spaces Future work Definition Examples

Section 1

Topological Convexity Spaces

Toby Kenney Stone Duality for Topological Convexity Spaces

Definition Examples

Abstract Convexity Spaces

Definition

A topological convexity space is $(X, \mathcal{F}, \mathcal{C})$ where $\mathcal{C}, \mathcal{F} \subseteq PX$, where

- C is closed under arbitrary intersections and directed unions
- *F* is closed under arbitrary intersections and finite unions.

Definition

If $(X, \mathcal{F}, \mathcal{C})$ and $(X', \mathcal{F}', \mathcal{C}')$ are topological convexity spaces, a function $f : X \longrightarrow X'$ is a homomorphism of topological convexity spaces if:

• for any $A \in \mathcal{F}'$, $f^{-1}(A) \in \mathcal{F}$ and

• for any
$$\mathcal{C} \in \mathcal{C}'$$
, $f^{-1}(\mathcal{C}) \in \mathcal{C}$.

Definition Examples

Compatibility between Topology and Convexity

Definition

A topological convexity space $(X, \mathcal{F}, \mathcal{C})$ is compatible if the following conditions hold:

- All convex sets are connected.
- 2 All finitely generated convex sets are closed and compact.
- Onvex closure preserves closed sets.

Definition Examples

Examples

Metric Spaces

Let (X, d) be a metric space. We define a topological convexity space structure on X by

•
$$\mathcal{F} = \{ A \subseteq X | (\forall x \in X) (\bigwedge \{ d(x, y) | y \in A \} = 0 \Rightarrow x \in A) \}$$

•
$$C = \{C \subseteq X | (\forall x, z \in C)(d(x, y) + d(y, z) = d(x, z) \Rightarrow y \in C)\}$$

Complete Lattices

Let (L, \bigvee, \bigwedge) be a complete lattice. We can define a topological convexity space on *L* by

• $\mathcal{F} = \{$ Intersections of finitely generated downsets $\}$

•
$$\mathcal{C} = \{ \text{Ideals} \}$$

Definition Examples

Lattices are Compatible

Proposition

For a lattice L, the topological convexity space (L, S, I) is compatible, where F is the set of intersections of finitely-generated downsets (Scott-closed sets) and I is the set of ideals.

- If $p \in I \setminus S$ and $q \in I \setminus T$, then $p \lor q \in I \setminus (S \cup T)$. Thus if $I \subseteq S \cup T$ then $I \subseteq S$ or $I \subseteq T$.
- Pinitely generated ideals principal thus totally compact.
- Ideal generated by Scott-closed subset, closed under arbitrary joins, so principal.

Topological Convexity Spaces

Stone Duality for Topological Convexity Spaces The Category of Topological Convexity Spaces Future work Definition Examples

Sup lattices

Lemma

 $L \xrightarrow{t} M$ is a sup-homomorphism if and only if f is a homomorphism of topological convexity spaces.

Proof (\Rightarrow).

- *f* is order preserving, so f^{-1} preserves downsets.
- If *a*, *b* ∈ *f*⁻¹(*I*) for an ideal *I*, then *f*(*a* ∨ *b*) = *f*(*a*) ∨ *f*(*b*) ∈ *I*, so *f*⁻¹(*I*) is an ideal.
- If *F* is a finitely-generated downset in *M*, generated by elements *x*₁,..., *x_n* ∈ *M*, then *f*⁻¹(*F*) is generated by *f*^{*}(*x*₁),..., *f*^{*}(*x_n*) where *f*^{*} is the adjoint to *f*.

Topological Convexity Spaces

Stone Duality for Topological Convexity Spaces The Category of Topological Convexity Spaces Future work Definition Examples

Sup lattices

Lemma

 $L \xrightarrow{t} M$ is a sup-homomorphism if and only if f is a homomorphism of topological convexity spaces.

Proof (\Leftarrow).

- *f* is order preserving if $a \leq b$, then $a \in f^{-1}(\downarrow(f(b)))$.
- Let $A \in DL$ and let $a = \bigvee A$.
- Let $x = \bigvee \{f(b) | b \in A\}$. $f^{-1}(\downarrow(x))$ is a principal ideal $\downarrow(c)$.
- For any $b \in A$, $f(b) \in \downarrow(x)$, so $b \leq c$. It follows that $a \leq c$.
- Conversely, $(\forall b \in A)(f(a) \ge f(b))$, so $f(a) \ge x$ and $f(a) \le f(c) \le x$.

Reflection Extension of Stone Duality Identification of Preconvexity space

Section 2

Stone Duality for Topological Convexity Spaces

Toby Kenney Stone Duality for Topological Convexity Spaces

Reflection Extension of Stone Duality Identification of Preconvexity space

Reflection

Proposition

The inclusion $\mathcal{S}up \longrightarrow \underline{\mathcal{TC}}$ is reflective.

Proof.

The reflection function sends a topological convexity space $(X, \mathcal{F}, \mathcal{C})$ to the lattice $\mathcal{F} \cap \mathcal{C}$ ordered by inclusion.

- It is easy to see that this splits $Sup \longrightarrow \underline{TC}$.
- For a topological convexity space (X, F, C), the unit η_X is given by η_X(x) = {x} = ∩{T ∈ F ∩ C|x ∈ T}.

Reflection Extension of Stone Duality Identification of Preconvexity space

Preconvexity Spaces, Distributive Partial Sup Lattices

Definition

A preconvexity space is (X, \mathcal{P}) , where $\emptyset \in \mathcal{P} \subseteq PX$ is closed under arbitrary intersection.

Definition

A distributive partial sup lattice is an object X of \mathcal{I} **nf** with a partial homomorphism $DX \xrightarrow{\vee} X$ satisfying:

- I For $a \in A \in DX$, $a \leq \bigvee A$ when defined.
- $() (\downarrow(a)) = a \text{ for all } A \in X.$
 - Solution Every $\bigvee_{-1}^{-1}(x)$ is an interval in *DX*.

Propositior

 $\underbrace{\mathcal{TC} \xrightarrow{\top} \mathcal{P}\mathbf{rec}}_{(X,\mathcal{F},\mathcal{C}) \longmapsto} \underbrace{\mathcal{D}\mathbf{ist}\mathcal{P}\mathbf{art}\mathcal{Sup}}_{(X,\mathcal{F},\mathcal{C}) \longmapsto} \underbrace{\mathcal{C}}_{(X,\mathcal{F},\mathcal{C}) \longmapsto} \underbrace{\mathcal{C}}_{(\mathcal{F}\cap\mathcal{C},\bigcap,\bigcup) \longmapsto} \underbrace{\mathcal{C}}_{(\mathcal{F}\cap\mathcal{C},\bigcap)}_{(\mathcal{L},\mathcal{F},\mathcal{I}) \leftrightarrow} \underbrace{\mathcal{C}}_{(\mathcal{L},\mathcal{L}) \mid x \in L} \underbrace{\mathcal{C}}_{(\mathcal{L},\mathcal{L}) \mid x \in L} \underbrace{\mathcal{C}}_{(\mathcal{L},\mathcal{L}) \mapsto} \underbrace{\mathcal{C}}_{(\mathcal{L},\mathcal{$

Reflection Extension of Stone Duality Identification of Preconvexity space

Preconvexity Spaces, Distributive Partial Sup Lattices

Definition

A preconvexity space is (X, \mathcal{P}) , where $\emptyset \in \mathcal{P} \subseteq PX$ is closed under arbitrary intersection.

Definition

A distributive partial sup lattice is an object X of \mathcal{I} **nf** with a partial homomorphism

- $DX \xrightarrow{\vee} X$ satisfying:
 - For $a \in A \in DX$, $a \leq \bigvee A$ when defined.
 - $() (\downarrow(a)) = a \text{ for all } A \in X.$
 - Similar Every $\bigvee^{-1}(x)$ is an interval in *DX*.

Proposition

 $\underbrace{\mathcal{TC} \xrightarrow{\top} \mathcal{P} \mathbf{rec}}_{(X, \mathcal{F}, \mathcal{C})} \xrightarrow{\top} \underbrace{\mathcal{D} \mathbf{ist} \mathcal{P} \mathbf{art} \mathcal{Sup}}_{(X, \mathcal{F}, \mathcal{C})} \xrightarrow{\top} \underbrace{\mathcal{Sup}}_{(X, \mathcal{F}, \mathcal{C})} \xrightarrow{(X, \mathcal{F} \cap \mathcal{C})} \xrightarrow{(\mathcal{F} \cap \mathcal{C}, \bigcap, \bigcup)} \xrightarrow{(\mathcal{F} \cap \mathcal{C}, \bigcap)} \underbrace{(L, \mathcal{F}, \mathcal{I})}_{(L, \mathcal{F}, \mathcal{I})} \xrightarrow{(\mathcal{L}, \mathcal{L})} \underbrace{(L, \mathcal{L})}_{(\mathcal{L}, \mathcal{L})} \xrightarrow{(\mathcal{L}, \mathcal{L})} \xrightarrow{(\mathcal{L}, \mathcal{L})}_{(\mathcal{L}, \mathcal{L})} \xrightarrow{(\mathcal{L}, \mathcal{L})} \xrightarrow{(\mathcal{L}, \mathcal{L})}_{(\mathcal{L}, \mathcal{L})}$

Reflection Extension of Stone Duality Identification of Preconvexity space

Preconvexity Spaces, Distributive Partial Sup Lattices

Definition

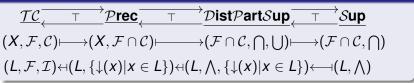
A preconvexity space is (X, \mathcal{P}) , where $\emptyset \in \mathcal{P} \subseteq PX$ is closed under arbitrary intersection.

Definition

A distributive partial sup lattice is an object X of \mathcal{I} **nf** with a partial homomorphism

- $DX \xrightarrow{V} X$ satisfying:
 - For $a \in A \in DX$, $a \leq \bigvee A$ when defined.
 - $() (\downarrow(a)) = a \text{ for all } A \in X.$
 - Solution Every $\bigvee^{-1}(x)$ is an interval in *DX*.

Proposition



Reflection Extension of Stone Duality Identification of Preconvexity space

Extension of Stone Duality

Stone Duality $\underline{\mathcal{T}op}_{T_0} \longrightarrow \underline{\mathcal{C}oframe}^{op}$

- Restriction to spatial coframes is a faithful fibration.
- Fibres are partial orders.
- Adjoint is top element of each spatial fibre.

Extended Stone Duality $\underline{\mathcal{TC}}_{\mathcal{T}_0} \longrightarrow \mathcal{S}\mathbf{up}$

- Faithful fibration.
- Fibres are partial orders.
- Adjoint is top element of each fibre.

Not an Extension

However, the Stone duality between $\mathcal{T}op$ and $\mathcal{C}oframe^{op}$ is not a restriction of the duality between \mathcal{TC} and \mathcal{Sup} . If *L* is a coframe, the corresponding topological space consists of finitely indecomposable points, not all points.

Reflection Extension of Stone Duality Identification of Preconvexity space

Fibres are Partially Ordered

Proposition

If $(X, \mathcal{F}, \mathcal{C})$ and $(X', \mathcal{F}', \mathcal{C}')$ are T_0 topological convexity spaces in the same fibre then any parallel pair of vertical

homomorphisms
$$X \xrightarrow[g]{} X'$$
 has $f = g$.

- f, g vertical means $f^{-1} = g^{-1}$.
- For $x \in X$, let a = f(x), b = g(x).
- For any $a \in A \in \mathcal{F}' \cap \mathcal{C}'$, $f^{-1}(A) = g^{-1}(A)$.
- Since $x \in g^{-1}(A)$, $b \in A$. Conversely $b \in A \Rightarrow a \in A$.
- Since X is T_0 , $(\forall A \in \mathcal{F}' \cap \mathcal{C}')(a \in A \Leftrightarrow b \in A)$ means a = b.

Reflection Extension of Stone Duality Identification of Preconvexity space

T_D Spaces

Definition

A topological space X is T_D if for every $x \in X$, $\{x\}$ is an open subset of $\overline{\{x\}}$.

Proposition

 T_D spaces are bottom elements in fibres over their coframe of closed sets.

Definition

A preconvexity space X is T_D if for every $x \in X \{x\} \setminus \{x\}$ is closed convex.

Proposition

Indecomposable elements of L form a preconvexity space where preconvex sets are prinicipal downsets of L.

Reflection Extension of Stone Duality Identification of Preconvexity space

Extension of T_D Spaces

Proposition

If *L* is a coframe join-generated by join-indecomposable elements, then the collection *I* of indecomposable elements of *L* with the collection $\{\downarrow(x) \cap I | x \in L\}$ is a *T*_D topological space.

• Clearly,
$$\bigcap_{i \in I} (\downarrow(x_i) \cap I) = \downarrow (\bigwedge_{i \in I} x_i) \cap I.$$

- Let $x, y \in I$ and $z \in I$ with $z \leq x \lor y$.
- Since *L* is a coframe, $(z \land x) \lor (z \land y) = z \land (x \lor y) = z$.
- Since z is indecomposable, it follows that $z \leq x$ or $z \leq y$.
- Hence $(x \cap I) \cup (y \cap I) = (x \lor y) \cap I$, \Rightarrow topological space.

Reflection Extension of Stone Duality Identification of Preconvexity space

Equivalent ways to Specify a Preconvexity Space

Completely Distributive Partial Sup Lattices

Complete lattice X with a partial inf-homomorphism $DX \longrightarrow X$ which is a restriction of the supremum function.

Lattices with Totally Below relation

Complete lattice X with preorder \ll on X such that every $x \in X$ is the join of $\Downarrow(x)$.

Dense embeddings of coframes into completely distributive lattices

Dense inf-homomorphism $X \xrightarrow{i} Y$ where X is a coframe and Y is completely distributive.

Darboux functions Parallel Quotients Kakutani Spaces

Section 3

The Category of Topological Convexity Spaces

Toby Kenney Stone Duality for Topological Convexity Spaces

Darboux functions Parallel Quotients Kakutani Spaces

Darboux functions

Definition

A homomorphism $X \xrightarrow{f} Y$ of topological convexity spaces, is Darboux if the forward image of a convex set is convex.

Proposition

A sup-homomorphism $L \xrightarrow{t} M$ is a Darboux homomorphism between topological convexity spaces iff $(\exists t \in M)(ff^* = t \land _)$.

- Darboux says that the forward image of an ideal is an ideal.
- Let $t = f(\top)$. Since f(L) is an ideal, and $t \in f(L)$, for any $a \in M$, $a \wedge t \leq t$, so $a \wedge t \in f(L)$. Let $a \wedge t = f(x)$.
- Since $f(x) \leq a, x \leq f^*(a)$, so $ff^*(a) \geq f(x) = a \wedge t$.

Darboux functions Parallel Quotients Kakutani Spaces

Internal Characterisation of Darboux Homomorphisms

Proposition

A $X \xrightarrow{f} Y$ in $\underline{\mathcal{TC}}$ is Darboux iff we can always find a diagonal factorisation in the commutative square

- Must define $\hat{b}(i) = a(i)$ for i = 1, ..., n
- Since *f* is Darboux, b(0) is in image of $\overline{a(D_n)}$.

Darboux functions Parallel Quotients Kakutani Spaces

Internal Characterisation of Darboux Homomorphisms

Proposition

A $X \xrightarrow{f} Y$ in $\underline{\mathcal{TC}}$ is Darboux iff we can always find a diagonal factorisation in the commutative square

- If $y \in \overline{f(A)}$, finite subset $D_n \xrightarrow{s} X$ has $y \in \overline{f(S)}$.
- This gives a commutative square fs = ti where t(0) = y.
- Extension means that y = f(v) for some $v \in \overline{S}$.

Darboux functions Parallel Quotients Kakutani Spaces

Internal Characterisation of Darboux Homomorphisms

Proposition

A $X \xrightarrow{f} Y$ in $\underline{\mathcal{TC}}$ is Darboux iff we can always find a diagonal factorisation in the commutative square

Corollary

Darboux homomorphisms are closed under pullback in \underline{TC} .

Proof.

Pullback property induces diagonal factorisation.

Toby Kenney Stone Duality for Topological Convexity Spaces

Darboux functions Parallel Quotients Kakutani Spaces

Examples of Darboux Quotients

Proposition

If $\mathbb{R}^n \xrightarrow{f} Q$ is Darboux and strong epi, then $Q \cong \mathbb{R}^k$ for some k. If k > 1 then f is linear, and if k = 1 then f factors through a linear function with codomain \mathbb{R} .

- For any q⁻¹(a), a ∈ Q, and any tangent line *I*, for any d ∈ q(I), q⁻¹(d) must lie on the same side of *I* as q⁻¹(a).
- If x, y ∈ q⁻¹(b), if tangents from x, y to q⁻¹(a) exist, they
 must be parallel.
- Only possible if either q factors through linear ℝⁿ → ℝ, or for any line l and a ∈ Q, (l ∩ q⁻¹(a)) ∈ {∅, {z}, l}.

Darboux functions Parallel Quotients Kakutani Spaces

Parallel Quotients

Definition

is also a pushout.

Darboux functions Parallel Quotients Kakutani Spaces

Examples of Parallel Quotients

Proposition

A parallel quotient $\mathbb{R}^n \xrightarrow{q} Q$ is a linear function $\mathbb{R}^n \xrightarrow{q} \mathbb{R}^m$.

- If *q* is not linear, it factors as $\mathbb{R}^n \xrightarrow{r} \mathbb{R} \xrightarrow{s} \mathbb{R}$ where *r* is linear and *s* is monotone continuous.
- For this factorisation, s is also a parallel quotient.
 Therefore, it is sufficient to prove the result for n = 1.
- For $[a, b] \subseteq \mathbb{R}$, the pushout in \mathcal{D} arboux is

$$[a,b] \longrightarrow \mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow^{f} \quad \text{where } f(x) = \begin{cases} x & \text{if } x < a \\ a & \text{if } a \leqslant x \leqslant b \\ x + a - b & \text{if } x > b \end{cases}$$

Darboux functions Parallel Quotients Kakutani Spaces

Half-Spaces

Definition

A half-space is a convex set with convex complement.

 $H \longrightarrow 1$

Lemma

Closed half-spaces $H \rightarrow X$ correspond exactly to pullbacks

where
$$S=(2,\{\emptyset,\{1\},2\},P(2))$$
 is the "Sierpinski" space.

Proof.

{0} and {1} convex \Rightarrow $H = (\chi_H)^{-1}(1)$, $H^c = (\chi_H)^{-1}(0)$ both convex. {1} closed \Rightarrow H closed.

Darboux functions Parallel Quotients Kakutani Spaces

Kakutani Spaces

Definition

 $X \in ob(\underline{\mathcal{TC}})$ is Kakutani if for every $A, B \in \mathcal{F} \cap \mathcal{C}$ with $A \cap B = \emptyset$, there is a closed half-space H with $A \subseteq H$ and $B \cap H = \emptyset$.

Remarks

- The traditional definition does not mention the topology.
- From the previous lemma, we can consider χ_H so $\chi_H(A) = \{0\}$ and $\chi_H(B) = \{1\}$.
- We can define this as a lifting property

$$\begin{array}{c} 4 \longrightarrow S \\ \downarrow \\ X \xrightarrow{\chi_{A,B}} 3 \end{array}$$

Euclidean Spaces Convexity Manifolds Metrics and Measures

Section 4

Future work

Toby Kenney Stone Duality for Topological Convexity Spaces

Euclidean Spaces Convexity Manifolds Metrics and Measures

Euclidean Spaces (Next time)

Axiomatising Euclidean Spaces in \underline{TC}

- Most Darboux quotients are parallel.
- Strong Kakutani-type properties.
- Standard topological properties Connected, T₁, etc.

Euclidean Spaces Convexity Manifolds Metrics and Measures

Convexity Manifolds

Example (Projective Spaces)

- The projective space \mathbb{P}^n is not a convexity space, because there is not a global convexity structure.
- However, if we choose which hyperplane is at infinity, there is a unique convexity structure.
- Thus, projective spaces should be some kind of convexity manifold.

Euclidean Spaces Convexity Manifolds Metrics and Measures

Metrics and Measures

Example (Σ -algebras)

- Let (X, \mathcal{B}) be a Σ -algebra.
- Define a topological convexity space (B, F, I) where I is the set of intervals in the lattice B and F is the set of collections of measureable sets closed under limits of characteristic functions.
- Metrics *d* inducing this topological convexity space on B are of the form *d*(*A*, *B*) = μ(*A*△*B*), where μ is a measure on (*X*, B).