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Abstract Convexity Spaces
Definition
A topological convexity space is (X ,F , C) where C,F ⊆ PX ,
where

C is closed under arbitrary intersections and directed
unions
F is closed under arbitrary intersections and finite unions.

Definition
If (X ,F , C) and (X ′,F ′, C′) are topological convexity spaces, a
function f : X //X ′ is a homomorphism of topological
convexity spaces if:

for any A ∈ F ′, f−1(A) ∈ F and
for any C ∈ C′, f−1(C) ∈ C.
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Compatibility between Topology and Convexity

Definition
A topological convexity space (X ,F , C) is compatible if the
following conditions hold:

1 All convex sets are connected.
2 All finitely generated convex sets are closed and compact.
3 Convex closure preserves closed sets.
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Metric Spaces

Let (X ,d) be a metric space. We define a topological convexity
space structure on X by

F = {A ⊆ X |(∀x ∈ X ) (
∧
{d(x , y)|y ∈ A} = 0⇒ x ∈ A)}

C =
{C ⊆ X |(∀x , z ∈ C)(d(x , y) + d(y , z) = d(x , z)⇒ y ∈ C)}

Complete Lattices

Let (L,
∨
,
∧

) be a complete lattice. We can define a topological
convexity space on L by

F = {Intersections of finitely generated downsets}
C = {Ideals}
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Lattices are Compatible

Proposition

For a lattice L, the topological convexity space (L,S, I) is
compatible, where F is the set of intersections of
finitely-generated downsets (Scott-closed sets) and I is the set
of ideals.

Proof.
1 If p ∈ I \ S and q ∈ I \ T , then p ∨ q ∈ I \ (S ∪ T ). Thus if

I ⊆ S ∪ T then I ⊆ S or I ⊆ T .
2 Finitely generated ideals principal — thus totally compact.
3 Ideal generated by Scott-closed subset, closed under

arbitrary joins, so principal.
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Sup lattices

Lemma

L f //M is a sup-homomorphism if and only if f is a
homomorphism of topological convexity spaces.

Proof (⇒).

f is order preserving, so f−1 preserves downsets.
If a,b ∈ f−1(I) for an ideal I, then f (a ∨ b) = f (a) ∨ f (b) ∈ I,
so f−1(I) is an ideal.
If F is a finitely-generated downset in M, generated by
elements x1, . . . , xn ∈ M, then f−1(F ) is generated by
f ∗(x1), . . . , f ∗(xn) where f ∗ is the adjoint to f .
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Sup lattices

Lemma

L f //M is a sup-homomorphism if and only if f is a
homomorphism of topological convexity spaces.

Proof (⇐).

f is order preserving — if a 6 b, then a ∈ f−1(↓(f (b))).
Let A ∈ DL and let a =

∨
A.

Let x =
∨
{f (b)|b ∈ A}. f−1(↓(x)) is a principal ideal ↓(c).

For any b ∈ A, f (b) ∈ ↓(x), so b 6 c. It follows that a 6 c.
Conversely, (∀b ∈ A)(f (a) > f (b)), so f (a) > x and
f (a) 6 f (c) 6 x .
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Reflection

Proposition
The inclusion Sup // // T C is reflective.

Proof.
The reflection function sends a topological convexity space
(X ,F , C) to the lattice F ∩ C ordered by inclusion.

It is easy to see that this splits Sup // // T C.
For a topological convexity space (X ,F , C), the unit ηX is
given by ηx (x) = {x} =

⋂
{T ∈ F ∩ C|x ∈ T}.
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Preconvexity Spaces, Distributive Partial Sup Lattices

Definition
A preconvexity space
is (X ,P), where
∅ ∈ P ⊆ PX is closed
under arbitrary
intersection.

Definition
A distributive partial sup lattice is an object
X of Inf with a partial homomorphism

DX
∨
/X satisfying:

1 For a ∈ A ∈ DX , a 6
∨

A when defined.
2
∨

(↓(a)) = a for all A ∈ X .
3 Every

∨−1(x) is an interval in DX .

Proposition

T C >
//
Prec >

//

oo DistPartSup >
//

oo Supoo

(X ,F , C) � //(X ,F ∩ C) � //(F ∩ C,
⋂
,
⋃

) � //(F ∩ C,
⋂

)

(L,F , I) (L, {↓(x)|x ∈ L})�oo (L,
∧
, {↓(x)|x ∈ L})�oo (L,

∧
)�oo
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Extension of Stone Duality

Stone Duality
T op

T0
// Coframeop

Restriction to spatial coframes
is a faithful fibration.
Fibres are partial orders.
Adjoint is top element of each
spatial fibre.

Extended Stone Duality
T CT0

// Sup

Faithful fibration.
Fibres are partial orders.
Adjoint is top element of
each fibre.

Not an Extension
However, the Stone duality between T op and Coframeop is not
a restriction of the duality between T C and Sup.
If L is a coframe, the corresponding topological space consists
of finitely indecomposable points, not all points.
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Fibres are Partially Ordered
Proposition

If (X ,F , C) and (X ′,F ′, C′) are T0 topological convexity spaces
in the same fibre then any parallel pair of vertical

homomorphisms X
f //

g
//X ′ has f = g.

Proof.

f , g vertical means f−1 = g−1.
For x ∈ X , let a = f (x), b = g(x).
For any a ∈ A ∈ F ′ ∩ C′, f−1(A) = g−1(A).
Since x ∈ g−1(A), b ∈ A. Conversely b ∈ A⇒ a ∈ A.
Since X is T0, (∀A ∈ F ′ ∩C′)(a ∈ A⇔ b ∈ A) means a = b.
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TD Spaces
Definition
A topological space X is TD if for every x ∈ X , {x} is an open
subset of {x}.

Proposition
TD spaces are bottom elements in fibres over their coframe of
closed sets.

Definition

A preconvexity space X is TD if for every x ∈ X {x} \ {x} is
closed convex.

Proposition
Indecomposable elements of L form a preconvexity space
where preconvex sets are prinicipal downsets of L.
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Extension of TD Spaces

Proposition
If L is a coframe join-generated by join-indecomposable
elements, then the collection I of indecomposable elements of
L with the collection {↓(x) ∩ I|x ∈ L} is a TD topological space.

Proof.

Clearly,
⋂

i∈I(↓(xi) ∩ I) = ↓
(∧

i∈I xi
)
∩ I.

Let x , y ∈ I and z ∈ I with z 6 x ∨ y .
Since L is a coframe, (z ∧ x) ∨ (z ∧ y) = z ∧ (x ∨ y) = z.
Since z is indecomposable, it follows that z 6 x or z 6 y .
Hence (x ∩ I) ∪ (y ∩ I) = (x ∨ y) ∩ I,⇒ topological space.
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Equivalent ways to Specify a Preconvexity Space

Completely Distributive Partial Sup Lattices
Complete lattice X with a partial inf-homomorphism DX /X
which is a restriction of the supremum function.

Lattices with Totally Below relation
Complete lattice X with preorder� on X such that every x ∈ X
is the join of ⇓(x).

Dense embeddings of coframes into completely distributive
lattices

Dense inf-homomorphism X i //Y where X is a coframe and
Y is completely distributive.
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Darboux functions
Definition
A homomorphism X f //Y of topological convexity spaces, is
Darboux if the forward image of a convex set is convex.

Proposition

A sup-homomorphism L f //M is a Darboux homomorphism
between topological convexity spaces iff (∃t ∈ M)(ff ∗ = t ∧ _).

Proof.
Darboux says that the forward image of an ideal is an ideal.
Let t = f (>). Since f (L) is an ideal, and t ∈ f (L), for any
a ∈ M, a ∧ t 6 t , so a ∧ t ∈ f (L). Let a ∧ t = f (x).
Since f (x) 6 a, x 6 f ∗(a), so ff ∗(a) > f (x) = a ∧ t .
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Internal Characterisation of Darboux Homomorphisms
Proposition

A X f //Y in T C is Darboux iff we can always find a diagonal
factorisation in the commutative square

Dn
a //

��

��

X

f
��

Jn b
//

b̂
>>

Y

Proof.

Must define b̂(i) = a(i) for i = 1, . . . ,n
Since f is Darboux, b(0) is in image of a(Dn).

Toby Kenney Stone Duality for Topological Convexity Spaces



Topological Convexity Spaces
Stone Duality for Topological Convexity Spaces
The Category of Topological Convexity Spaces

Future work

Darboux functions
Parallel Quotients
Kakutani Spaces

Internal Characterisation of Darboux Homomorphisms
Proposition

A X f //Y in T C is Darboux iff we can always find a diagonal
factorisation in the commutative square

Dn
a //

��

��

X

f
��

Jn b
//

b̂
>>

Y

Proof.

If y ∈ f (A), finite subset Dn
s //X has y ∈ f (S).

This gives a commutative square fs = ti where t(0) = y .
Extension means that y = f (v) for some v ∈ S.
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Internal Characterisation of Darboux Homomorphisms
Proposition

A X f //Y in T C is Darboux iff we can always find a diagonal
factorisation in the commutative square

Dn
a //

��

��

X

f
��

Jn b
//

b̂
>>

Y

Corollary
Darboux homomorphisms are closed under pullback in T C.

Proof.
Pullback property induces diagonal factorisation.
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Examples of Darboux Quotients

Proposition

If Rn f � //Q is Darboux and strong epi, then Q ∼= Rk for some
k. If k > 1 then f is linear, and if k = 1 then f factors through a
linear function with codomain R.

Proof.

For any q−1(a), a ∈ Q, and any tangent line l , for any
d ∈ q(l), q−1(d) must lie on the same side of l as q−1(a).
If x , y ∈ q−1(b), if tangents from x , y to q−1(a) exist, they
must be parallel.

Only possible if either q factors through linear Rn f //R ,
or for any line l and a ∈ Q, (l ∩ q−1(a)) ∈ {∅, {z}, l}.
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Parallel Quotients

Definition

A homomorphism X ◦
q +3Q in Darboux is a parallel quotient if

for any 1 a //Q, the pullback
A

��

// // X

◦q_��

1 a
// Q

is also a pushout.
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Examples of Parallel Quotients
Proposition

A parallel quotient Rn ◦
q +3Q is a linear function Rn q

//Rm.

Proof.

If q is not linear, it factors as Rn r //R s //R where r is
linear and s is monotone continuous.
For this factorisation, s is also a parallel quotient.
Therefore, it is sufficient to prove the result for n = 1.
For [a,b] ⊆ R, the pushout in Darboux is

[a,b] // //

��

R

◦ f
��

1 // R

where f (x) =


x if x < a
a if a 6 x 6 b
x + a− b if x > b
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Half-Spaces
Definition
A half-space is a convex set with convex complement.

Lemma
Closed half-spaces H // //X correspond exactly to pullbacks

H
��

��

// 1
��

��

X χH
// S

where S = (2, {∅, {1},2},P(2)) is the “Sierpinski” space.

Proof.

{0} and {1} convex⇒ H = (χH)−1(1), Hc = (χH)−1(0) both
convex. {1} closed⇒ H closed.
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Kakutani Spaces
Definition
X ∈ ob(T C) is Kakutani if for every A,B ∈ F ∩ C with A ∩ B = ∅,
there is a closed half-space H with A ⊆ H and B ∩ H = ∅.

Remarks
The traditional definition does not mention the topology.
From the previous lemma, we can consider χH so
χH(A) = {0} and χH(B) = {1}.
We can define this as a lifting property

4

��

// S

X χA,B
//

??

3

Toby Kenney Stone Duality for Topological Convexity Spaces



Topological Convexity Spaces
Stone Duality for Topological Convexity Spaces
The Category of Topological Convexity Spaces

Future work

Euclidean Spaces
Convexity Manifolds
Metrics and Measures

Section 4

Future work

Toby Kenney Stone Duality for Topological Convexity Spaces



Topological Convexity Spaces
Stone Duality for Topological Convexity Spaces
The Category of Topological Convexity Spaces

Future work

Euclidean Spaces
Convexity Manifolds
Metrics and Measures

Euclidean Spaces (Next time)

Axiomatising Euclidean Spaces in T C
Most Darboux quotients are parallel.
Strong Kakutani-type properties.
Standard topological properties - Connected, T1, etc.
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Convexity Manifolds

Example (Projective Spaces)

The projective space Pn is not a convexity space, because
there is not a global convexity structure.
However, if we choose which hyperplane is at infinity, there
is a unique convexity structure.
Thus, projective spaces should be some kind of convexity
manifold.
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Metrics and Measures

Example (Σ-algebras)

Let (X ,B) be a Σ-algebra.
Define a topological convexity space (B,F , I) where I is
the set of intervals in the lattice B and F is the set of
collections of measureable sets closed under limits of
characteristic functions.
Metrics d inducing this topological convexity space on B
are of the form d(A,B) = µ(A4B), where µ is a measure
on (X ,B).
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