Euclidean Spaces in the Category of Topological Convexity Spaces

Toby Kenney

Dalhousie University

ATCAT seminar 19-01-2021 Introduction & Axioms

Affine Spaces and Lines Translations and Vector Space Structure Future Work

Previously . . . Axioms for Euclidean Spaces

Section 1

Introduction & Axioms

Previously ... Axioms for Euclidean Spaces

Previous Talk

- $\underline{\mathcal{TC}}$ Category of topological convexity spaces.
- Homomorphisms inverse image preserves closed sets, convex sets.
- Stone Duality between $\underline{\mathcal{TC}}$ and \mathcal{Sup} .
- Darboux homomorphisms forward image preserves convex sets.
- Parallel quotient occur as pushout of any pullback in *Darboux*.
- Half-space convex set with convex complement.
- Kakutani space disjoint closed convex sets separated by closed half-space.

Previously ... Axioms for Euclidean Spaces

Axioms for Euclidean Space

Definition

A Euclidean convexity space is a topological convexity space *E* satisfying the following axioms:

Axioms (Basic Topological Properties)

Axiom 1 E is connected.

Axiom 2 Singletons of E are closed and convex.

Axiom 3 Convex subsets of E are directed unions of closed convex subsets of E, and closed subsets of E are intersections of finite unions of closed convex subsets of E.

Previously . . . Axioms for Euclidean Spaces

Axioms for Euclidean Space

Definition

A Euclidean convexity space is a topological convexity space *E* satisfying the following axioms:

Axioms (Half-Spaces)

Axiom 4 Any Darboux quotient of E is Kakutani

Axiom 5 For any half-space $H \subseteq E$, there is a pushout

in \mathcal{D} arboux. For this pushout, $H = q_H^{-1}(q_H(H))$.

Previously ... Axioms for Euclidean Spaces

Axioms for Euclidean Space

Definition

A Euclidean convexity space is a topological convexity space *E* satisfying the following axioms:

Axioms (Enough Parallel Quotients)

Axiom 6 Solution For every $E \xrightarrow{f} X$, there is a universal $E \xrightarrow{q} Q$ factoring through f. General position $G \rightarrow E$, any $G \xrightarrow{g} R$, $G \rightarrow E$ $g \downarrow \qquad \downarrow q$ $H \rightarrow Q$

Previously ... Axioms for Euclidean Spaces

Axioms for Euclidean Space

Definition

A Euclidean convexity space is a topological convexity space *E* satisfying the following axioms:

Axioms (Lines and Dimensions)

Axiom 7 For any $J_2 \xrightarrow{m} E$, in the parallel pushout,

the morphism d factors through 1.

Axiom 8 General position monomorphism $D_4 \rightarrow E$.

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Section 2

Affine Spaces and Lines

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Spaces

Definition

An affine space is a subspace $A \subseteq E$ such that $A \longrightarrow 1$ is the pullback of a parallel quotient:

$$\begin{array}{c} A \rightarrowtail E \\ \downarrow & \downarrow \\ 1 \longrightarrow Q \end{array}$$

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

• Take the pullback of the parallel pushout:

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

Now we have:

$$C \longrightarrow A' \longrightarrow E$$

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

• Since A' is affine:

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

• By the pushout property:

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

Therefore

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

Therefore

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Closure

Proposition

For closed convex $C \subseteq E$, \exists smallest affine space containing C.

Proof (sketch).

Therefore

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Spaces and Half-spaces

Proposition

H closed half-space, A affine space & $A \subseteq H$ or $A \subseteq H^c$, then the pushout q_H from Axiom 5 factors through the pushout q_A .

Proof (sketch).

In the pushout from Axiom 5, the space Q_H is Kakutani and the singleton {q_H(H)} is a half-space.

$$\begin{array}{c} H \rightarrowtail E \\ \downarrow \qquad \qquad \downarrow^{q_H} \\ 1 \rightarrowtail Q_H \end{array}$$

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Spaces and Half-spaces

Proposition

H closed half-space, A affine space & $A \subseteq H$ or $A \subseteq H^c$, then the pushout q_H from Axiom 5 factors through the pushout q_A .

Proof (sketch).

- In the pushout from Axiom 5, the space Q_H is Kakutani and the singleton {q_H(H)} is a half-space.
- If $A \subseteq H$ then

$$\begin{array}{cccc} A \rightarrowtail H \rightarrowtail E & A \rightarrowtail E \\ \downarrow & \downarrow & \downarrow^{q_H} \\ 1 \longrightarrow 1 \rightarrowtail Q_H & \text{factors through} & \downarrow & \downarrow^{q_A} \\ \end{array}$$

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Affine Spaces and Half-spaces

Proposition

H closed half-space, A affine space & $A \subseteq H$ or $A \subseteq H^c$, then the pushout q_H from Axiom 5 factors through the pushout q_A .

Proof (sketch).

- In the pushout from Axiom 5, the space Q_H is Kakutani and the singleton {q_H(H)} is a half-space.
- $A \subseteq H^c \Rightarrow (\exists K) (A \subseteq K \subseteq H^c)$. (Kakutani property)
- $(\forall x \in E)(q_A^{-1}(q_A(x)) \subseteq q_K^{-1}(q_K(x)) \subseteq K \vee \{x\}).$
- For $x \notin H$, we can show $K \vee \{x\} \subseteq H^c$. Thus $q_A(H) \cap q_A(H^c) = \emptyset$.

Introduction & Axioms Affine Spaces and Lines Translations and Vector Space Structure Lines Future Work Lines Definition For any $x, y \in E$, the line $\langle x, y \rangle$ is defined as either: **(i)** $\langle x, y \rangle = \bigcap \{ A \subseteq E | x, y \in A, A \text{ is affine} \}$

Introduction & Axioms Affine Spaces and Lines Translations and Vector Space Structure Lines Future Work Lines Theorem The two definitions of lines are equivalent. Proof. (i) \subset (ii) If x, y, z in general position, By Axiom 6, we have

Now, $q(x) = q(y) \neq q(z)$, so $q^{-1}(q(x))$ is an affine space containing *x* and *y* but not *z*.

Introduction & Axioms Affine Spaces and Lines Translations and Vector Space Structure Lines Future Work Lines Theorem The two definitions of lines are equivalent. Proof. (ii) \subseteq (i) If $y \in [x, z]$, then $J_2 \xrightarrow{x,y,z} E$ is Darboux. By Axiom 7, is a parallel pushout. Thus any $E \stackrel{r}{\Longrightarrow} R$, with r(x) = r(y), factors through q, so r(x) = r(z).

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Parallel Lines & Parallellograms

Definition

The lines $\langle a, b \rangle$ and $\langle c, d \rangle$ are parallel if for any parallel quotient $E \stackrel{q}{\Longrightarrow} Q$, q(a) = q(b) if and only if q(c) = q(d).

Proposition

For any $a, b, c \in E$, there is a unique line $\langle c, d \rangle$ parallel to $\langle a, b \rangle$.

Sketch proof.

For any parallel quotient $E \stackrel{q}{\Longrightarrow} Q$ such that q(a) = q(b), there is an affine space $A_q = q^{-1}(q(c))$. The intersection of all these spaces is a line $\langle c, d \rangle$.

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Parallellograms

Proposition

For any a, b, c in general position, there is a unique $d \in E$ such that $\langle b, d \rangle$ is parallel to $\langle a, c \rangle$ and $\langle c, d \rangle$ is parallel to $\langle a, b \rangle$.

Proof.

Let $\langle c, s \rangle$ parallel to $\langle a, b \rangle$ and $\langle b, t \rangle$ parallel to $\langle a, c \rangle$. If $\langle c, s \rangle \cap \langle b, t \rangle = \emptyset$, \exists half-spaces $H \supseteq \langle c, s \rangle, K \supseteq \langle b, t \rangle$, and $H \cap K = \emptyset$. *H* and *K* are parallel to both $\langle c, s \rangle$ and $\langle b, t \rangle$. Therefore they are parallel to $\langle a, b, c \rangle$.

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Modular Lattice of Affine Spaces

Lemma

If $p, q \in \langle a, b, c \rangle$ and a, p, q in general position, then $\langle a, p, q \rangle = \langle a, b, c \rangle$.

Proof.

- For s ∈ ⟨a, b, c⟩, the line through s parallel to ⟨b, c⟩ intersects both ⟨a, b⟩ and ⟨a, c⟩.
- If $s \in \langle a, b, c \rangle$ and $s \notin \langle a, b \rangle$ then $\langle a, b, s \rangle = \langle a, b, c \rangle$.

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Lines in Two Dimensions

Proposition

If I and m are two lines in $\langle a, b, c \rangle$, then either I and m are parallel, or $I \cap m$ is a singleton.

Sketch proof.

- Let $\langle a, p \rangle$ parallel to *I* and $\langle a, q \rangle$ parallel to *m*.
- If *I*, *m* not parallel, then $\langle a, p, q \rangle$ in general position.
- If I, m disjoint, \exists closed half-space H separating them.
- Affine space parallel to ∂H through *a* must contain *p* and *q*.
- Since $\langle a, p \rangle$ is parallel to $I \subseteq \langle a, b, c \rangle$, we have $p \in \langle a, b, c \rangle$.
- Similarly, $q \in \langle a, b, c \rangle$.
- By previous lemma, $\langle a, p, q \rangle = \langle a, b, c \rangle$.

Affine Spaces Affine Spaces and Half-spaces Lines Parallel Lines

Desargue's Theorem

Theorem

- If $\langle a, b, c \rangle$ are in general position and
- $\langle a,b
 angle$ is parallel to $\langle a',b'
 angle$
- $\langle a,c
 angle$ is parallel to $\langle a',c'
 angle$
- $\langle a, a' \rangle$, $\langle b, b' \rangle$ and $\langle c, c' \rangle$ are parallel Then $\langle b, c \rangle$ is parallel to $\langle b', c' \rangle$

Proof.

- If a, b, c, a' in general position, this follows from modularity of the affine lattice.
- If $a' \in \langle a, b, c \rangle$ then choose a'' not in $\langle a, b, c \rangle$
- Apply result for a, b, c, a'', b'', c'', and for a'', b'', c'', a', b', c'.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Section 3

Translations and Vector Space Structure

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Translations

Definition

A translation is an automorphism $E \xrightarrow{\tau} E$ such that:

- ($\forall a, b \in E$), $\langle \tau(a), \tau(b) \rangle$ is parallel to $\langle a, b \rangle$
- the set of fixed points of τ is either empty or the whole of *E*.

Theorem

 $\forall a, b \in E$, there is a unique translation τ_{ab} with $\tau_{ab}(a) = b$.

Sketch proof.

- For $x \notin \langle a, b \rangle$, $\tau_{ab}(x)$ is given by parallellogram completion.
- By Desargue's theorem, $\tau_{ab} = \tau_{x\tau_{ab}(x)}$
- Thus, if $x \in \langle a, b \rangle$ and $c \notin \langle a, b \rangle$, $\tau_{ab}(x) = \tau_{c\tau_{ab}(c)}(x)$.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Abelian Group of Translations

Theorem

Translations of a Euclidean space form an abelian group.

Proof.

- $\langle \sigma \tau(x), \sigma \tau(y) \rangle$ parallel to $\langle \tau(x), \tau(y) \rangle$, parallel to $\langle x, y \rangle$.
- If $\sigma \tau(x) = x$ then $\tau = \tau_{x\tau(x)}$, and $\sigma = \tau_{\tau(x)x}$, so $\sigma \tau = \mathbf{1}_{E}$.
- $\langle \tau^{-1}(x), \tau^{-1}(y) \rangle$ is parallel to $\langle \tau \tau^{-1}(x), \tau \tau^{-1}(y) \rangle = \langle x, y \rangle$

• If
$$c \notin \langle a, b \rangle$$
 and $d = \tau_{ab}(c) = \tau_{ac}(b)$, $\tau_{ab}\tau_{ac} = \tau_{ad} = \tau_{ac}\tau_{ab}$.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

\mathbb{Z} -module

Theorem

For $n \in \mathbb{N}$, the endofunction of E given by $e_n(x) = (\tau_{ax})^n(a)$ is a homomorphism of topological convexity spaces.

Theorem

The homomorphism e_n has the property that for any $x, y \in E$, $\langle e_n(x), e_n(y) \rangle$ is parallel to $\langle x, y \rangle$

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

\mathbb{Q}_2 -Module structure

Theorem

The homomorphism $E \xrightarrow{e_2} E$ is invertible.

Proof.

• *abyc* is a parallellogram.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Q₂-Module structure

Theorem

The homomorphism $E \xrightarrow{e_2} E$ is invertible.

Proof.

a q c • *abyc* is a parallellogram.

•
$$q = \tau_{ba}(x)$$
, so $\tau_{aq} = \tau_{bx}$

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Q₂-Module structure

Theorem

The homomorphism $E \xrightarrow{e_2} E$ is invertible.

Proof.

• *abyc* is a parallellogram.

•
$$q = au_{ba}(x)$$
, so $au_{aq} = au_{bx}$

 By Desargue's theorem, (a, x) and (q, c) are parallel.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Q₂-Module structure

Theorem

The homomorphism $E \xrightarrow{e_2} E$ is invertible.

Proof.

• *abyc* is a parallellogram.

•
$$m{q}= au_{ba}(m{x})$$
, so $au_{aq}= au_{bx}$

 By Desargue's theorem, ⟨a, x⟩ and ⟨q, c⟩ are parallel.

• So
$$\tau_{bx}(x) = \tau_{aq}(x) = c$$

• and
$$\tau_{ax}(x) = \tau_{qc}(x) = y$$

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

\mathbb{R} -action

Theorem

For any $\lambda \in \mathbb{R}$, and any $x \in E$, there is a unique element y such that $[a, y] = \bigvee_{r \in \mathbb{Q}_2 | r \in [0, \lambda]} [a, e_r(x)]$

Definition

For $\lambda \in \mathbb{R}$, we define $e_{\lambda}(x)$ is the element such that $[a, \lambda * x] = \bigvee_{r \in \mathbb{Q}_2 | r \in [0, \lambda]} [a, e_r(x)]$

Theorem

The function e_{λ} is a homomorphism for any $\lambda \in \mathbb{R}$.

Translations Abelian Group of Translations Vector Space Structure Topology in Infinite Dimensions

Topology

Theorem

A Euclidean space is a real vector space with product topology.

Proof.

- Every open set is a union of finite intersections of open half-spaces.
- Finite intersections of open half-spaces are open in the product topology.
- Conversely, every open set in the product topology is a union of finite intersections of open half-spaces.

Section 4

Future Work

Toby Kenney Euclidean Spaces

Future work

Rewrite axioms in terms of the lattice of closed convex sets.

- *T*₁ spaces determined by lattice of closed convex sets.
- Can rewrite Euclidean axioms in terms of this lattice.

Euclidean-like spaces

• Let
$$\pi = (B_1, \ldots, B_k)$$
 be a partition of n .

- $S_n \xrightarrow{t_{\pi}} \prod_{i=1}^{n} S_{B_i}$, where $(t_{\pi}(\sigma))_i(w) = |\{j \in B_i | \sigma(j) < \sigma(w)\}|$ behaves very like a parallel quotient.
- Weaken Euclidean axioms to include this case.
- How much geometry remains for the weaker axioms?

Future Work (Cont.)

Algebraic Geometry

- Can define conic sections using only linear properties.
- Develop similar definitions for higher degree.
- What are these in Euclidean-like spaces?
- Can these generate Euclidean embeddings?

Sheaves on Topological Convexity Spaces?

- Extend sheaves to topological convexity spaces
- Sheaves based on open sets. Need to redefine.
- Fundamental notion is inequality.