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Previous Talk

T C — Category of topological convexity spaces.
Homomorphisms — inverse image preserves closed sets,
convex sets.
Stone Duality between T C and Sup.
Darboux homomorphisms — forward image preserves
convex sets.
Parallel quotient — occur as pushout of any pullback in
Darboux .
Half-space — convex set with convex complement.
Kakutani space — disjoint closed convex sets separated
by closed half-space.
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Axioms for Euclidean Space
Definition
A Euclidean convexity space is a topological convexity space E
satisfying the following axioms:

Axioms (Basic Topological Properties)
Axiom 1 E is connected.
Axiom 2 Singletons of E are closed and convex.
Axiom 3 Convex subsets of E are directed unions of closed

convex subsets of E, and closed subsets of E are
intersections of finite unions of closed convex
subsets of E.
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Axioms for Euclidean Space
Definition
A Euclidean convexity space is a topological convexity space E
satisfying the following axioms:

Axioms (Half-Spaces)
Axiom 4 Any Darboux quotient of E is Kakutani
Axiom 5 For any half-space H ⊆ E, , there is a pushout

H // //

��

E

◦qH
��

1 // // QH

in Darboux. For this pushout, H = qH
−1(qH(H)).
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Axioms for Euclidean Space
Definition
A Euclidean convexity space is a topological convexity space E
satisfying the following axioms:

Axioms (Enough Parallel Quotients)

Axiom 6 (a) For every E f � //X, there is a universal

E ◦
q +3Q factoring through f .

(b) General position G // //E, any G
g � //R,

G // //

g _��

E
◦q_��

H // // Q
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Axioms for Euclidean Space
Definition
A Euclidean convexity space is a topological convexity space E
satisfying the following axioms:

Axioms (Lines and Dimensions)

Axiom 7 For any J2 //
m //E, in the parallel pushout,

J2
j
//

��

m
��

D2

d
��

E ◦ � //Q
the morphism d factors through 1.

Axiom 8 General position monomorphism D4 // //E.
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Affine Spaces

Definition
An affine space is a subspace A ⊆ E such that A // 1 is the
pullback of a parallel quotient:

A

��

// // E
◦

_��

1 // Q
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
Take the pullback of the parallel pushout:

C

##GGGGGGG
77 ''
// // A

��

// // E
◦q_��

1 c
// Q
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Affine Spaces
Affine Spaces and Half-spaces
Lines
Parallel Lines

Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
Now we have:

C // // A′ // // E
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).

Since A′ is affine:

C // //

##HHHHHHHHHHHHHHHH A′ // //

��

E

◦
_��

1 // Q′
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Affine Spaces
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
By the pushout property:

C // //

##GGGGGGGGGGGGGGGG A′ // //

��

E
◦q_��

Q
◦_��

1 //

::

Q′
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
Therefore

A ))

))TTTTTTTTTTTTTT

��
................

C // //

##GGGGGGGGGGGGGGGG A′ // //

��

E
◦q_��

Q
◦_��

1 //

::

Q′
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
Therefore

A ))

))TTTTTTTTTTTTTT

��
................

##

C // //

##GGGGGGGGGGGGGGGG A′ // //

��

E
◦q_��

Q
◦_��

1 //

::

Q′
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Affine Closure
Proposition
For closed convex C ⊆ E, ∃ smallest affine space containing C.

Proof (sketch).
Therefore

A ))

))TTTTTTTTTTTTTT

��
................

##

C

;;

// //

##GGGGGGGGGGGGGGGG A′ // //

��

E
◦q_��

Q
◦_��

1 //

::

Q′
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Affine Spaces and Half-spaces
Proposition

H closed half-space, A affine space & A ⊆ H or A ⊆ Hc , then
the pushout qH from Axiom 5 factors through the pushout qA.

Proof (sketch).
In the pushout from Axiom 5, the space QH is Kakutani
and the singleton {qH(H)} is a half-space.

H // //

��

E

◦qH
��

1 // // QH
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Affine Spaces and Half-spaces
Proposition

H closed half-space, A affine space & A ⊆ H or A ⊆ Hc , then
the pushout qH from Axiom 5 factors through the pushout qA.

Proof (sketch).
In the pushout from Axiom 5, the space QH is Kakutani
and the singleton {qH(H)} is a half-space.
If A ⊆ H then

A // //

��

H // //

��

E

◦qH
��

1 // 1 // // QH

factors through
the pushout

A // //

��

E

◦qA
��

1 // // QH
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Affine Spaces and Half-spaces

Proposition

H closed half-space, A affine space & A ⊆ H or A ⊆ Hc , then
the pushout qH from Axiom 5 factors through the pushout qA.

Proof (sketch).
In the pushout from Axiom 5, the space QH is Kakutani
and the singleton {qH(H)} is a half-space.
A ⊆ Hc ⇒ (∃K )(A ⊆ K ⊆ Hc). (Kakutani property)
(∀x ∈ E)(qA

−1(qA(x)) ⊆ qK
−1(qK (x)) ⊆ K ∨ {x}).

For x 6∈ H, we can show K ∨ {x} ⊆ Hc . Thus
qA(H) ∩ qA(Hc) = ∅.
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Lines

Definition
For any x , y ∈ E , the line 〈x , y〉 is defined as either:

(i) 〈x , y〉 =
⋂
{A ⊆ E |x , y ∈ A,A is affine}

(ii) 〈x , y〉 = {z ∈ E |z ∈ [x , y ] or x ∈ [y , z] or y ∈ [x , z]}
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Lines
Theorem
The two definitions of lines are equivalent.

Proof.
(i)⊆(ii) If x , y , z in general position, By Axiom 6, we have

D3 //
x ,y ,z

//

��

E
◦q_��

D2 // // Q
Now, q(x) = q(y) 6= q(z), so q−1(q(x)) is an
affine space containing x and y but not z.
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Lines
Theorem
The two definitions of lines are equivalent.

Proof.

(ii)⊆(i) If y ∈ [x , z], then J2 //
x ,y ,z

//E is Darboux. By
Axiom 7,

J2 //
x ,y ,z

//

��

E
◦q_��

D2 // 1

is a parallel pushout. Thus any E ◦r +3R, with
r(x) = r(y), factors through q, so r(x) = r(z).
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Parallel Lines & Parallellograms

Definition
The lines 〈a,b〉 and 〈c,d〉 are parallel if for any parallel quotient

E ◦
q +3Q, q(a) = q(b) if and only if q(c) = q(d).

Proposition

For any a,b, c ∈ E, there is a unique line 〈c,d〉 parallel to 〈a,b〉.

Sketch proof.

For any parallel quotient E ◦
q +3Q such that q(a) = q(b), there

is an affine space Aq = q−1(q(c)). The intersection of all these
spaces is a line 〈c,d〉.
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Parallellograms

Proposition
For any a,b, c in general position, there is a unique d ∈ E such
that 〈b,d〉 is parallel to 〈a, c〉 and 〈c,d〉 is parallel to 〈a,b〉.

Proof.

s

t

b

a

c

Let 〈c, s〉 parallel to 〈a,b〉 and 〈b, t〉
parallel to 〈a, c〉.
If 〈c, s〉 ∩ 〈b, t〉 = ∅, ∃ half-spaces
H ⊇ 〈c, s〉, K ⊇ 〈b, t〉, and H∩K = ∅.
H and K are parallel to both 〈c, s〉
and 〈b, t〉. Therefore they are paral-
lel to 〈a,b, c〉.
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Modular Lattice of Affine Spaces

Lemma
If p,q ∈ 〈a,b, c〉 and a,p,q in general position, then
〈a,p,q〉 = 〈a,b, c〉.

Proof.
For s ∈ 〈a,b, c〉, the line through s parallel to 〈b, c〉
intersects both 〈a,b〉 and 〈a, c〉.
If s ∈ 〈a,b, c〉 and s 6∈ 〈a,b〉 then 〈a,b, s〉 = 〈a,b, c〉.
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Lines in Two Dimensions
Proposition

If l and m are two lines in 〈a,b, c〉, then either l and m are
parallel, or l ∩m is a singleton.

Sketch proof.

Let 〈a,p〉 parallel to l and 〈a,q〉 parallel to m.
If l , m not parallel, then 〈a,p,q〉 in general position.
If l ,m disjoint, ∃ closed half-space H separating them.
Affine space parallel to ∂H through a must contain p and q.
Since 〈a,p〉 is parallel to l ⊆ 〈a,b, c〉, we have p ∈ 〈a,b, c〉.
Similarly, q ∈ 〈a,b, c〉.
By previous lemma, 〈a,p,q〉 = 〈a,b, c〉.
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Desargue’s Theorem
Theorem
If 〈a,b, c〉 are in general position and
〈a,b〉 is parallel to 〈a′,b′〉
〈a, c〉 is parallel to 〈a′, c′〉
〈a,a′〉, 〈b,b′〉 and 〈c, c′〉 are parallel

a

b

c

a’

c’

b’

Then 〈b, c〉 is parallel to 〈b′, c′〉

Proof.
If a,b, c,a′ in general position, this follows from modularity
of the affine lattice.
If a′ ∈ 〈a,b, c〉 then choose a′′ not in 〈a,b, c〉
Apply result for a,b, c,a′′,b′′, c′′, and for a′′,b′′, c′′,a′,b′, c′.
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Translations and Vector Space Structure
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Translations
Definition

A translation is an automorphism E τ //E such that:
(∀a,b ∈ E), 〈τ(a), τ(b)〉 is parallel to 〈a,b〉
the set of fixed points of τ is either empty or the whole of E .

Theorem
∀a,b ∈ E, there is a unique translation τab with τab(a) = b.

Sketch proof.

For x 6∈ 〈a,b〉, τab(x) is given by parallellogram completion.
By Desargue’s theorem, τab = τxτab(x)

Thus, if x ∈ 〈a,b〉 and c 6∈ 〈a,b〉, τab(x) = τcτab(c)(x).
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Abelian Group of Translations

Theorem
Translations of a Euclidean space form an abelian group.

Proof.
〈στ(x), στ(y)〉 parallel to 〈τ(x), τ(y)〉, parallel to 〈x , y〉.
If στ(x) = x then τ = τxτ(x), and σ = ττ(x)x , so στ = 1E .

〈τ−1(x), τ−1(y)〉 is parallel to 〈ττ−1(x), ττ−1(y)〉 = 〈x , y〉
If c 6∈ 〈a,b〉 and d = τab(c) = τac(b), τabτac = τad = τacτab.
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Z-module

Theorem
For n ∈ N, the endofunction of E given by en(x) = (τax)

n(a) is a
homomorphism of topological convexity spaces.

Theorem
The homomorphism en has the property that for any x , y ∈ E,
〈en(x),en(y)〉 is parallel to 〈x , y〉
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Q2-Module structure
Theorem

The homomorphism E
e2 //E is invertible.

Proof.

a y

b

x

c

abyc is a parallellogram.
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Q2-Module structure
Theorem

The homomorphism E
e2 //E is invertible.

Proof.

a y

b

x

cq

abyc is a parallellogram.
q = τba(x), so τaq = τbx
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Q2-Module structure
Theorem

The homomorphism E
e2 //E is invertible.

Proof.

a y

b

x

cq

abyc is a parallellogram.
q = τba(x), so τaq = τbx

By Desargue’s theorem, 〈a, x〉
and 〈q, c〉 are parallel.
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Q2-Module structure
Theorem

The homomorphism E
e2 //E is invertible.

Proof.

a y

b

x

cqq

abyc is a parallellogram.
q = τba(x), so τaq = τbx

By Desargue’s theorem, 〈a, x〉
and 〈q, c〉 are parallel.
So τbx(x) = τaq(x) = c
and τax(x) = τqc(x) = y
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R-action

Theorem
For any λ ∈ R, and any x ∈ E, there is a unique element y such
that [a, y ] =

∨
r∈Q2|r∈[0,λ][a,er (x)]

Definition
For λ ∈ R, we define eλ(x) is the element such that
[a, λ ∗ x ] =

∨
r∈Q2|r∈[0,λ][a,er (x)]

Theorem
The function eλ is a homomorphism for any λ ∈ R.
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Topology

Theorem
A Euclidean space is a real vector space with product topology.

Proof.
Every open set is a union of finite intersections of open
half-spaces.
Finite intersections of open half-spaces are open in the
product topology.
Conversely, every open set in the product topology is a
union of finite intersections of open half-spaces.
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Future Work
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Future work

Rewrite axioms in terms of the lattice of closed convex sets.
T1 spaces determined by lattice of closed convex sets.
Can rewrite Euclidean axioms in terms of this lattice.

Euclidean-like spaces

Let π = (B1, . . . ,Bk ) be a partition of n.

Sn
tπ //

k∏
i=1

SBi , where (tπ(σ))i(w) = |{j ∈ Bi |σ(j) < σ(w)}|

behaves very like a parallel quotient.
Weaken Euclidean axioms to include this case.
How much geometry remains for the weaker axioms?
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Future Work (Cont.)

Algebraic Geometry

Can define conic sections using only linear properties.
Develop similar definitions for higher degree.
What are these in Euclidean-like spaces?
Can these generate Euclidean embeddings?

Sheaves on Topological Convexity Spaces?
Extend sheaves to topological convexity spaces
Sheaves based on open sets. Need to redefine.
Fundamental notion is inequality.
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