# Reducing the CNOT Count for Clifford+T Circuits on NISQ Architectures

Vlad Gheorghiu<sup>2</sup>, Sarah Meng Li<sup>1</sup>, Michele Mosca<sup>2</sup>, and Priyanka Mukhopadhyay<sup>2</sup>.

<sup>1</sup>Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada <sup>2</sup>Institute for Quantum Computing, University of Waterloo, Waterloo ON, Canada

April 6th, 2021

**Compilation:** A set of instructions are realized by some universal gate set.

Implementation: Unitary operations are mapped to physical architectures.

**Connectivity constraint:** We cannot arbitrarily apply a multi-qubit gate on any set of qubits.

Clifford+T circuits are quantum circuits over the gate set

 $\{CNOT, H, T, S, X, Y, Z\}.$ 



#### **Basic Gates**



• CNOT acts on two qubits, control c and target t.

 $CNOT | c, t \rangle = | c, c \oplus t \rangle.$ 

• X, Y, Z, T, S act on a single qubit.

$$X |t\rangle = |t \oplus 1\rangle, \ Y |t\rangle = \omega^{4t} |t \oplus 1\rangle, \ Z |t\rangle = \omega^{4t} |t\rangle, \ S |t\rangle = \omega^{2t} |t\rangle, \ T |t\rangle = \omega^{t} |t\rangle.$$

 $c, t \in \mathbb{F}_2, \omega = e^{\frac{i\pi}{4}}, \oplus$  corresponds to Boolean exclusive-OR.

# **Connectivity Graph**

#### Definition

A graph is a pair  $G = (V_G, E_G)$  where  $V_G$  is a set of vertices and  $E_G$  is a set of pairs e = (u, v) such that  $u, v \in V_G$ . Each such pair is called an *edge*.

**Remark:** We are interested in the *simple undirected connected graphs*.

- Simple: there is at most one edge between two distinct vertices and no self-loops, i.e.,  $(u, u) \notin E_G$ .
- <u>Undirected</u>: edges have no direction i.e.,  $(u, v) \equiv (v, u)$ .



Rigetti 16Q-Aspen

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.



9-qubit square grid



CNOT<sub>1,9</sub> with SWAPs

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.



9-qubit square grid



CNOT<sub>1,9</sub> with SWAPs



- If the shortest path length between vertices corresponding to c and t in G is  $\ell$ , the naive solution requires about  $6(\ell 1)$  CNOT gates.
- This entails a significant increase in CNOT-count.
- Can we reduce the CNOT-count while respecting the connectivity constraint?

#### We were inspired to use the following techniques.

- Steiner tree problem reduction<sup>12</sup>.
- Parity network synthesis algorithm<sup>3</sup>.
- Linear reversible circuits synthesis<sup>4</sup>.

<sup>&</sup>lt;sup>1</sup>Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. "Quantum circuit optimizations for NISQ architectures". In: *Quantum Science and Technology* 5.2 (2020), p. 025010.

<sup>&</sup>lt;sup>2</sup>Aleks Kissinger and Arianne Meijer-van de Griend. "CNOT circuit extraction for topologically-constrained quantum memories". In: *arXiv preprint arXiv:*1904.00633 (2019).

<sup>&</sup>lt;sup>3</sup>Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. "On the controlled-NOT complexity of controlled-NOT–phase circuits". In: *Quantum Science and Technology* 4.1 (2018), p. 015002.

<sup>&</sup>lt;sup>4</sup>Ketan N Patel, Igor L Markov, and John P Hayes. "Optimal synthesis of linear reversible circuits". In: *Quantum Information & Computation 8.3* (2008), pp. 282–294.

# **Steiner Tree**

#### Definition

Given a graph  $G = (V_G, E_G)$  with a weight function  $w_E$  and a set of vertices  $S \subseteq V_G$ , a Steiner tree  $T = (V_T, E_T)$  is a minimum weight tree that is a subgraph of G such that  $S \subseteq V_T$ .

**Terminals:** Vertices in S;

**Steiner nodes:** Vertices in  $V_T \setminus S$ .

Example:  $S = \{1, 6, 7, 11\}, V_T \setminus S = \{2, 3, 4, 5, 8, 9, 10, 12\}$ 



G is a simple, undirected, and unweighted graph

# **Steiner Tree**

#### Definition

Given a graph  $G = (V_G, E_G)$  with a weight function  $w_E$  and a set of vertices  $S \subseteq V_G$ , a Steiner tree  $T = (V_T, E_T)$  is a minimum weight tree that is a subgraph of G such that  $S \subseteq V_T$ .

**Terminals:** Vertices in S;

**Steiner nodes:** Vertices in  $V_T \setminus S$ .

Example:  $S = \{1, 6, 7, 11\}, V_T \setminus S = \{2, 3, 4, 5, 8, 9, 10, 12\}$ 



A solution to the Steiner tree problem on G.

Slice: Slice the circuit at the position of H gate, by either

- (A) partitioning the gates of the circuit based on the locality of H gates, or
- (B) partitioning the phase polynomial of the input circuit.

**Build:** Re-synthesize the intermediate sliced portions so that connectivity is respected and the CNOT count is reduced.

<sup>&</sup>lt;sup>5</sup>Vlad Gheorghiu et al. "Reducing the CNOT count for Clifford+ T circuits on NISQ architectures". In: *arXiv preprint arXiv:2011.12191* (2020).

- Slice: Slice the circuit at the position of H gate, by either
- $({\it A})~$  partitioning the gates of the circuit based on the locality of H gates, or
- (B) partitioning the phase polynomial of the input circuit.
- **Build:** Re-synthesize the intermediate sliced portions so that connectivity is respected and the CNOT count is reduced.

Slice



Slice



#### LINEAR-TF-SYNTH algorithm synthesize circuits over {*CNOT*, *X*}.

**PHASE-NW-SYNTH algorithm** synthesize circuits over {*CNOT*, *X*, *T*}.

#### **Overall Linear Transformation**

Consider an *n*-qubit circuit over  $\{CNOT, X\}$ , we represent the overall linear transformation using an  $n \times (n + 1)$  binary matrix.

#### Example



#### **Overall Linear Transformation**

Consider an *n*-qubit circuit over  $\{CNOT, X\}$ , we represent the overall linear transformation using an  $n \times (n + 1)$  binary matrix.

#### Example



# LINEAR-TF-SYNTH Algorithm

#### **Reverse Engineering**

- (a) Make b = 0 by applying X to corresponding qubits.
- (b) Carry out an analogue of Gaussian elimination.
- (c) Use Steiner tree to incorporate connectivity constraints.

#### Example: Let A be a linear transformation and G be the connectivity graph.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$



# **Step 1: Reducing to Upper Triangular Form**

#### **Row Operations**

- (a) Starting from the left most column, fix one column at a time.
- (b) Fixing the *i*th column means applying row operations such that  $A_{ii} = 1$  and  $A_{ji} = 0$  for every j > i.



The Steiner tree  $T_{1,S}$  with pivot at 1 and terminals  $S = \{1, 3, 4, 5\}$ .  $T_1, T_2$  and  $T_3$  are the sub-trees built from it.

# **Step 1: Reducing to Upper Triangular Form**

**Remark:** By traversing subtrees, *CNOT*s are concatenated.

$$\begin{aligned} \mathcal{Y}_{1}^{1} &= \mathsf{CNOT}_{45}, \mathsf{CNOT}_{34}, \mathsf{CNOT}_{12}, \mathsf{CNOT}_{23}, \mathsf{CNOT}_{12} \\ \mathcal{R}_{1}^{1} &= A[5,.] \leftarrow A[5,.] \oplus A[4,.], A[4,.] \leftarrow A[4,.] \oplus A[3,.], A[2,.] \leftarrow A[2,.] \oplus A[1,.], \\ A[3,.] \leftarrow A[3,.] \oplus A[2,.], A[2,.] \leftarrow A[2,.] \oplus A[1,.] \end{aligned}$$

After a series of row operations, the matrix *A* is reduced to an upper triangular form.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow \dots \longrightarrow A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

# **Step 1: Reducing to Upper Triangular Form**

**Remark:** By traversing subtrees, *CNOT*s are concatenated.

$$\begin{aligned} \mathcal{Y}_{1}^{1} &= \mathsf{CNOT}_{45}, \mathsf{CNOT}_{34}, \mathsf{CNOT}_{12}, \mathsf{CNOT}_{23}, \mathsf{CNOT}_{12} \\ \mathcal{R}_{1}^{1} &= A[5,.] \leftarrow A[5,.] \oplus A[4,.], A[4,.] \leftarrow A[4,.] \oplus A[3,.], A[2,.] \leftarrow A[2,.] \oplus A[1,.], \\ A[3,.] \leftarrow A[3,.] \oplus A[2,.], A[2,.] \leftarrow A[2,.] \oplus A[1,.] \end{aligned}$$

After a series of row operations, the matrix *A* is reduced to an upper triangular form.

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow \dots \longrightarrow A = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

# **Step 2: Transposing A and Reducing to Identity**

#### **Row Operations**

- (a) Starting from the left most column, fix one column at a time.
- (b) Fixing the *i*th column means applying row operations such that  $A_{ii} = 1$  and  $A_{ji} = 0$  for every j > i.



The Steiner tree  $T_{1,S}$  with pivot at 1 and terminals  $S = \{1, 2, 4, 5\}$ .  $T_1, T_2$  and  $T_3$  are the sub-trees built from it.

# Synthesize Circuits over {*CNOT*, *X*, *T*}

Consider circuits over the gate set

$$\{CNOT, X, T, S \coloneqq T^2, Z \coloneqq T^4, T^{\dagger} \coloneqq T^7, S^{\dagger} \coloneqq T^6\}$$

• *CNOT*  $|x, y\rangle = |x, x \oplus y\rangle$ ,  $T |x\rangle = \omega |x\rangle$ , where  $\omega = e^{\frac{i\pi}{4}}$  and  $x, y \in \mathbb{F}_2$ .

Example:



# Synthesize Circuits over {*CNOT*, *X*, *T*}

Consider circuits over the gate set

$$\{CNOT, X, T, S \coloneqq T^2, Z \coloneqq T^4, T^{\dagger} \coloneqq T^7, S^{\dagger} \coloneqq T^6\}.$$

• *CNOT* 
$$|x, y\rangle = |x, x \oplus y\rangle$$
,  $T |x\rangle = \omega |x\rangle$ , where  $\omega = e^{\frac{i\pi}{4}}$  and  $x, y \in \mathbb{F}_2$ .



# Circuit-polynomial Correspondence<sup>6</sup>

#### Lemma

A unitary  $U \in \mathcal{U}(2^n)$  is exactly implementable by an *n*-qubit circuit over  $\{CNOT, T\}$  if and only if

$$U|x_1x_2\ldots x_n\rangle = \omega^{p(x_1,x_2,\ldots,x_n)}|g(x_1,x_2,\ldots,x_n)\rangle$$

where  $\omega = e^{\frac{i\pi}{4}}$ ,  $x_1, x_2, \ldots, x_n \in \mathbb{F}_2$  and

$$p(x_1, x_2, \dots, x_n) = \sum_{i=1}^{\ell} c_i \cdot f_i(x_1, x_2, \dots, x_n)$$

for some linear reversible function  $g : \mathbb{F}_2^n \to \mathbb{F}_2^n$  and linear Boolean functions  $f_1, f_2, \ldots, f_\ell \in (\mathbb{F}_2^n)^*$  with coefficients  $c_1, c_2, \ldots, c_\ell \in \mathbb{Z}_8$ .

<sup>&</sup>lt;sup>6</sup>Matthew Amy, Dmitri Maslov, and Michele Mosca. "Polynomial-time T-depth optimization of Clifford+ T circuits via matroid partitioning". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 33.10 (2014), pp. 1476–1489.

#### Definition

 $\omega^{p(x_1,x_2,\ldots,x_n)} | g(x_1,x_2,\ldots,x_n) \rangle$ : The sum-over-paths form of a circuit.

 $x_1, x_2, \ldots, x_n$ : Path variables.

 $p(x_1, x_2, \ldots, x_n)$ : A phase polynomial.

 $f_i(x_1, x_2, \ldots, x_n)$ : A parity term.

 $\mathcal{P}$ : A phase polynomial set consists of linear Boolean functions together with coefficients in  $\mathbb{Z}_8.$ 

**Intuition:** A unitary implemented over {CNOT, T} can be characterized by a set  $\mathcal{P} = \{(c, f) : c \in \mathbb{Z}_8 \text{ and } f \in (\mathbb{F}_2^n)^*\}$  and linear reversible output functions  $g : \mathbb{F}_2^n \to \mathbb{F}_2^n$ .

# **Example Continued**



•  $g(x_1, x_2, ..., x_n) = (x_2)(x_1)(x_1 \oplus x_2 \oplus x_3 \oplus x_4)(x_1 \oplus x_2 \oplus x_4).$ 

LINEAR-TF-SYNTH algorithm returns a circuit over {CNOT, X} that realizes g.

- $\mathcal{P} = \{(1, x_1), (1, x_3 \oplus x_4), (1, x_3), (1, x_1 \oplus x_2 \oplus x_3 \oplus x_4), (7, x_2)\}.$
- $\forall (c_1, f_1), (c_2, f_2) \in \mathcal{P}$ , if  $f_1 = f_2$ , they can be merged into a single pair  $(c_1 + g_2, f_1)$ .

# **PHASE-NW-SYNTH Algorithm**

Let  $\mathcal{P}$  be a phase polynomial set and **A** be the matrix corresponding to the linear reversible output function g.

#### Synthesizing a Phase Polynomial Network

(a) Synthesize a circuit over  $\{CNOT, X\}$  that realizes the parity terms in  $\mathcal{P}$ .

(b) Apply  $\{T, T^{\dagger}, S, S^{\dagger}, Z, Y\}$  depending on the coefficients c in  $\mathcal{P}$ .

(c) synthesize a circuit so that the overall linear transformation is A.

Example: Consider a 6-qubit quantum system, let

 $\mathcal{P} = \{ (1, 1 \oplus x_1 \oplus x_4 \oplus x_5), (2, x_2 \oplus x_3 \oplus x_5 \oplus x_6), (4, 1 \oplus x_4 \oplus x_5 \oplus x_6), (4, 1 \oplus x_1 \oplus x_2 \oplus x_6), (6, 1 \oplus x_1 \oplus x_2 \oplus x_3), (7, 1 \oplus x_1 \oplus x_2 \oplus x_4 \oplus x_6), (1, x_2 \oplus x_4 \oplus x_5) \}$ 









# PHASE-NW-SYNTH Algorithm Snapshot

- Ignore the last two rows of P, let  $B = \{p'_1, p'_2, p'_3, p'_4, p'_5, p'_6, p'_7\}$ , K be an empty stack, and I = [6].
- Cycle through the set of *n*-bit strings and apply corresponding *CNOT* gates at each iteration.
- Whenever a column has a single 1, it implies that the corresponding parity has been realized.

#### Example: After the 4th iteration, we have

$$B^{(4)} = \begin{bmatrix} \frac{p_1}{1} & \frac{p_2}{0} & \frac{p_3}{0} & \frac{p_4}{1} & \frac{p_5}{1} & \frac{p_6}{1} & \frac{p_7}{0} \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

# **PHASE-NW-SYNTH Algorithm Snapshot**

- Whenever a column has a single 1, it implies that the corresponding parity has been realized.
- Remove these columns from the remaining parities.
- Place the gate X if parity realized on circuit is 1 ⊕ f for some (c, f) ∈ P. We can also place a gate in {T, T<sup>†</sup>, S, S<sup>†</sup>, Z, Y} corresponding to the value of the coefficient c.

Example: The partial circuit obtained after applying a sequence of gates from iteration 4.

$$B^{(4)} = \begin{bmatrix} \frac{p_1}{1} & \frac{p_2}{0} & \frac{p_3}{0} & \frac{p_4}{1} & \frac{p_5}{1} & \frac{p_6}{1} & \frac{p_7}{0} \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_4 \\ x_5 \\ x_6 \\$$

We simulated benchmarks as well as random circuits on popular architectures such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo.



Rigetti 16Q-Aspen



16q-Square Grid

# Results

| Architecture      | #Qubits | Initial | SWAP-template | CNOT-OPT-A |        |
|-------------------|---------|---------|---------------|------------|--------|
|                   |         | count   | Count         | Count      | Time   |
| 9q-square         | 9       | 3       | 560%          | 0.00%      | 0.184s |
|                   |         | 5       | 612%          | 146%       | 0.146s |
|                   |         | 10      | 594%          | 105%       | 0.167s |
|                   |         | 20      | 546%          | 176%       | 0.2s   |
|                   |         | 30      | 596%          | 184.67%    | 0.233s |
| 16q-square        | 16      | 4       | 1050%         | 238%       | 0.23s  |
|                   |         | 8       | 840%          | 146.25%    | 0.27s  |
|                   |         | 16      | 817.50%       | 158.13%    | 0.43s  |
|                   |         | 32      | 853%          | 340.63%    | 0.41s  |
|                   |         | 64      | 892.50%       | 220.78%    | 0.49s  |
|                   |         | 128     | 858.75%       | 210.63%    | 0.57s  |
|                   |         | 256     | 897.42%       | 237.5%     | 0.72s  |
| rigetti-16q-aspen | 16      | 4       | 1680%         | 355%       | 0.23s  |
|                   |         | 8       | 1740%         | 253%       | 0.396s |
|                   |         | 16      | 1619.90%      | 351%       | 0.47s  |
|                   |         | 32      | 1794%         | 469.48%    | 0.48s  |
|                   |         | 64      | 1755%         | 399%       | 0.66s  |
|                   |         | 128     | 1760.63%      | 368.13%    | 0.58s  |
|                   |         | 256     | 1757.11%      | 410.9%     | 0.61s  |

| Architecture  | #Qubits | Initial | SWAP-template | CNOT-OPT-A |        |
|---------------|---------|---------|---------------|------------|--------|
|               |         | count   | Count         | Count      | Time   |
| ibm-qx5       | 16      | 4       | 1260%         | 173%       | 0.38s  |
|               |         | 8       | 1035%         | 295%       | 0.36s  |
|               |         | 16      | 1042.50%      | 283%       | 0.41s  |
|               |         | 32      | 1179.38%      | 398.44%    | 0.42s  |
|               |         | 64      | 1130.63%      | 339.06%    | 0.45s  |
|               |         | 128     | 1110.94%      | 344.69%    | 0.575s |
|               |         | 256     | 1141.17%      | 379.88%    | 0.73s  |
| ibm-q20-tokyo | 20      | 4       | 525%          | 128%       | 0.186s |
|               |         | 8       | 555%          | 275%       | 0.295s |
|               |         | 16      | 570%          | 88%        | 0.37s  |
|               |         | 32      | 500.63%       | 154.38%    | 0.55s  |
|               |         | 64      | 542.81%       | 136.88%    | 0.54s  |
|               |         | 128     | 539.53%       | 141.02%    | 0.645s |
|               |         | 256     | 534.61%       | 125.27%    | 0.72s  |

Table: The overhead or increase in CNOT-count has been compared to the overhead obtained by using SWAP-template.

- We provided a heuristic algorithm that work with the univeral Clifford+T gate set.
- For both benchmark and random circuits, our algorithm results in much less overhead in terms of the increase in CNOT-count, compared to the overhead obtained by using SWAP template.
- The results will likely be improved if coupled with procedures that optimize the initial mapping of qubits.

# Thank you!