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Background

Compilation: A set of instructions are realized by some universal gate set.
Implementation: Unitary operations are mapped to physical architectures.

Connectivity constraint: We cannot arbitrarily apply a multi-qubit gate on
any set of qubits.



Clifford+T Circuits

|
Clifford+T circuits are quantum circuits over the gate set

{CNOT,H,T,S,X.,Y,Z}.
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e CNOT acts on two qubits, control ¢ and target ¢.
CNOT |c,t) =|c,c®t).
e X, Y, Z T,S act on a single qubit.

Xity=tol), Y|y=w¥t@l), Z|t) = |t), S|t) =w? |t), T|t)=w'|t).

cteFpw=et,® corresponds to Boolean exclusive-OR.



Connectivity Graph

Definition
A graph is a pair G = (Vg, Eg) Where Vg is a set of vertices and Eg is a set of pairs
e = (u,v) such that u,v € V. Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

e Simple: there is at most one edge between two distinct vertices and no
self-loops, i.e., (u,u) ¢ Eg.

¢ Undirected: edges have no direction i.e., (u,v) = (v, u).

Rigetti 16Q-Aspen 4



Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

1) 1)

2) S 12)

15) T 15)

18) 0 D 0 18)

19) 1®9)
9-qubit square grid CNOTy 9 with SWAPs



Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

1) 1)

2) S 12)

15) T 15)

18) 0 D 0 18)

19) 1®9)
9-qubit square grid CNOTy 9 with SWAPs



|#) |y = |$) ﬂ 2
) x |6) [y |#)

e If the shortest path length between vertices corresponding tocand ¢ in G
is ¢, the naive solution requires about 6(¢ — 1) CNOT gates.

¢ This entails a significant increase in CNOT-count.

¢ Can we reduce the CNOT-count while respecting the connectivity
constraint?



Related 74

We were inspired to use the following techniques.

e Steiner tree problem reduction'2.
¢ Parity network synthesis algorithm?3.

e Linear reversible circuits synthesis*.

1Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. “Quantum circuit optimizations for NISQ
architectures”. In: Quantum Science and Technology 5.2 (2020), p. 025010.

2Aleks Kissinger and Arianne Meijer-van de Griend. “CNOT circuit extraction for
topologically-constrained quantum memories”. In: arXiv preprint arXiv:1904.00633 (2019).

3Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. “On the controlled-NOT complexity of
controlled-NOT-phase circuits”. In: Quantum Science and Technology 4.1 (2018), p. 015002.

“Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible circuits”.
In: Quantum Information & Computation 8.3 (2008), pp. 282-294.



Steiner Tree

Definition

Given a graph G = (Vg, Eg) with a weight function wg and a set of vertices

S C Vi, a Steiner tree T = (Vr, E7) is a minimum weight tree that is a subgraph
of G such that S c V7.

Terminals: Verticesin S;
Steiner nodes: Verticesin V7 \ S.

IVl S = {1,6,7,11},Vpr \ S ={2,3,4,5,8,9,10, 12}

G is a simple, undirected, and unweighted graph 8
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A solution to the Steiner tree problem on G. 8



Slice-and-Build Technique®

Slice: Slice the circuit at the position of H gate, by either
(A) partitioning the gates of the circuit based on the locality of H gates, or

(B) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is
respected and the CNOT count is reduced.

5Vlad Gheorghiu et al. “Reducing the CNOT count for Clifford+ T circuits on NISQ architectures”.
In: arXiv preprint arXiv:2011.12191 (2020).
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LINEAR-TF-SYNTH algorithm synthesize circuits over {CNOT, X}.

PHASE-NW-SYNTH algorithm synthesize circuits over {CNOT, X, T}.

n



Synthesize Circuits over {CNOT, X}

Overall Linear Transformation

Consider an n—qubit circuit over {CNOT, X}, we represent the overall linear
transformation using an n x (z + 1) binary matrix.

X1 Xo x3 x4 b
|x1) T % ? s> |x2) 0 1 0 0 0
x2) S s —D |x1 ©xz @ 1) (1 1 0o o0 1
|x3) T b T |x1 ®x2 ©x3 0 1) A=1] 1 0 1
|)C4> \\% \\ |)C1 Dx2®xy @ 1> 1 1 0 1 1
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LINEAR-TF-SYNTH Algorithm

Reverse Engineering

(a) Make b = 0 by applying X to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Let A be a linear transformation and G be the connectivity graph.
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Step 1: Reducing to Upper Triangular Form

Row Operations

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the ith column means applying row operations such that A;; = 1 and
Aji =0forevery j >i.

T1,(1,3,4,5)=

O = O
[ e = R
== O

OO r+~=O
[eNeNel ol
= o oo ~O

Ii%

n- @O—0

The Steiner tree T} s with pivot at1and terminals S = {1,3,4,5}. T1,T2 and T3 are the
sub-trees built from it.
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Step 1: Reducing to Upper Triangular Form

Remark: By traversing subtrees, CNOTs are concatenated.

Y! = CNOT,5 CNOTs,, CNOT;5, CNOT,;, CNOT,
Al = A[5,] — A[5,.]®A[4, .].A[4,.] — A[4,.] ®A[3,.].A[2,.] — A[2..] ® A[L, ],
A[3,.] — A[3,.] ® A[2,.],A[2,.] — A[2,.] ® A[L, ]

After a series of row operations, the matrix A is reduced to an upper triangular

form.
1 1.0 1 1 0 1 1. 01 10
001 1 01 01 1 1 00
A:O 10 00 1_) —>A=0 01 1 01
01 1 110 ’ 0 00101
001 00O 0 00010
01 0 1 0 1 0O 0 0 0 0 1
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Step 2: Transposing A and Reducing to Identity

Row Operations

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the ith column means applying row operations such that A;; = 1 and
Aji =0forevery j >i.

100 0 0 0 n- @—Q@
1100 0 0
01 1 0 0 0 _
A=li 111 0 o0 T 2.45)= L= @_@
100 0 1 0
00 1 1 0 1
Ts =

The Steiner tree T} s with pivot at1and terminals S = {1,2,4,5}. T1,T> and T3 are the
sub-trees built from it.
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Synthesize Circuits over {CNOT, X, T}

e Consider circuits over the gate set

{CNOT,X,T,S =T%Z =T*T" =77,8" = T5}.

e CNOT |x,y) = |x,x®y), T |x) = w |x), where w = eT and x,y € Fo.

h N% 7] |x2)
D & )
@ P @ @ |x1 ® x2 @ x3 ® x4)
Lo o 1 @ 12 @ x4)




Synthesize Circuits over {CNOT,

e Consider circuits over the gate set
{CNOT,X,T,S =T%*7Z =T T" =77,8" = T%}.

e CNOT |x,y) = |x,x®y), T |x) = w |x), where w = eT and x,y € Fa.

1) 7] & i -
X1 X2 .
|)C2> () () |x1) Ty : W 3®x1
Tg T w™?
x3) T3 —P D T4 [x1 ® x2 ® x3 & xy4) ) s s s
X3 X1 D X2 © x3 D x4 4 W )
[x4) ©® T, —D &b |x1 & x9 ® x4) Ts w2
X3 X4



Circuit-polynomial Correspondence®

Lemma

A unitary U € U(2") is exactly implementable by an n-qubit circuit over
{CNOT, T} if and only if

Ulxixg...xn) = WP (¥1:X250.%n) lg(x1,x2, ..., Xn))

where w = e't, x1,%a, ..., X, € Fs and

&

p(xlaxQ’ LIRS ,xn) = Zci : ﬁ(x17x2’ AR ’xn)

i=1

for some linear reversible function g : F} — F} and linear Boolean functions
fis fos- ooy fo € (F)" with coefficients c1,ca, . .., ce € Zs.

SMatthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimization of
Clifford+ T circuits via matroid partitioning”. In: [EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 33.10 (2014), pp. 1476-1489.



Definition

wPX1X2%n) |o(xq X9, ..., x,)): The sum-over-paths form of a circuit.
X1,X2,...,%X,e Path variables.

p(x1,x2,...,x,): A phase polynomial.

fi(x1,%2,...,x,): A parity term.

P: A phase polynomial set consists of linear Boolean functions together with
coefficients in Zs.

Intuition: A unitary implemented over {CNOT, T} can be characterized by a set
P={(c,f):ceZgand f e (}Fg)*} and linear reversible output functions
g :F) — Fj.
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Example Continued

Py i
My ® nE i
|x2) © D |x1) Ty @ ws®x
. X3
Pany Pany I3:w
|x3) T3 —P DT, |x1 © x2 @ x3 ® x4) T, : 1O 050N,
|x4) &, T, b D |x1 @ x9 @ x4) Ts : W™

o g(x1,x2,...,X,) = (x2)(x1) (X1 ® X2 ® X3 @ x4) (X1 B X2 B Xg).

LINEAR-TF-SYNTH algorithm returns a circuit over {CNOT, X} that realizes g.
o P ={(1,x1), (1, x3 ®x4), (1,x3), (1,x1 & x2 ®x3 ®x4), (7,%2) }.
e Y(c1, f1), (ca, f2) € P,if f1 = fo, they can be merged into a single pair

(c1+s8 c2, f1)-

20



PHASE-NW-SYNTH Algorithm

Let P be a phase polynomial set and A be the matrix corresponding to the
linear reversible output function g.

Synthesizing a Phase Polynomial Network

(a) Synthesize a circuit over {CNOT, X} that realizes the parity terms in .

(b) Apply {T,T7,5,5",Z,Y} depending on the coefficients ¢ in P.

(c) synthesize a circuit so that the overall linear transformation is A.

Consider a 6—qubit quantum system, let

P = {(1,1@)61 D x4 GBX5),(2,.X?2 ® x3 @ x5 GBXG),(4,1@X4 @ x5 ®x6),(4,169x1 @D xo @XG),
(6,10x1 Pxo®x3), (7,1 x1 DxoBxg®xg), (1L, xoB x4 ®x5)}

21



Columns Represent Parity Term

P = {(1,1@)61 D x4 GB)C5),(2,X2 ® x3 @ x5 @XG),(4,1G§X4 ® x5 ®x6),(4,1®x1 ® xo @XG),
(6,10x1 Pxo®x3), (7, 1D x1 BxoBxg®xg), (L, xoBx4 ®x5)}

1 0 o0 1 1 1 o0 1 2 3
o 1 0 1 1 1 1

o 1 0 0 1 0 0

P={1 o0 1 0 o0 1 1 G=

1 1 1 0 0 o0 1

o 1 1 1 0 1 0

1 0o 1 1 1 1 o0 6 ) 4
1 2 4 4 6 7 1]

The parity matrix Pgx7 and connectivity graph G.
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Top Six Rows Encode Parity

P = {(1,1@X1 @D x4 GBX};),(Q,XQ ® x3 @ x5 @XG),(4,1G§X4 ® x5 ®x6),(4,1®x1 ® xo @XG),
(6,10x1 Pxo®x3), (7, 1D x1 BxoBxg®xg), (L, xoBx4 ®x5)}

1 0 o0 1 1 1 o0 1 2 3
o 1 0 1 1 1 1

O 1 0 0 1 0 0

P={1 o0 1 0 o0 1 1 G=

1 1 1 0 0 o0 1

o1 1 1 0 1 0

1 0o 1 1 1 1 o0 6 ) 4
1 2 4 4 6 7 1]

The parity matrix Pgx7 and connectivity graph G.
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The 7th Row Encodes Bit Flip
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1 2 4 4 6 7 1]

The parity matrix Pgx7 and connectivity graph G.
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The Last Row Stores Coefficients

P = {(1,1@)61 D x4 GB)C5),(2,X2 ® x3 @ x5 @XG),(4,1G§X4 ® x5 ®x6),(4,1®x1 ® xo @XG),
(6,10x1 Pxo®x3), (7,1 D x1 BxoBxg®xg), (L, xo0Bx4 ®x5)}

1 0 o0 1 1 1 o0 1 2 3
o 1 0 1 1 1 1

o 1 0 0 1 0 0

P={1 o0 1 0 o0 1 1 G=

1 1 1 0 0 o0 1

o 1 1 1 0 1 0

1 0o 1 1 1 1 o0 6 ) 4
1 2 4 4 6 7 1]

The parity matrix Pgx7 and connectivity graph G.
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PHASE-NW-SYNTH Algorithm Snapshot

¢ Ignore the last two rows of P, let B = {p}, p}, p}, p}. P%. pg. 5}, K be an empty
stack,and I = [6].

e Cycle through the set of n-bit strings and apply corresponding CNOT gates
at each iteration.

e Whenever a column has a single 1, it implies that the corresponding parity
has been realized.

After the 4th iteration, we have

Pr P2 P3s P1 Ps Po Pi
1 0 O 1 1 1 0
0 1 0 1 1 1 1
BY=l0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0O 0 O 1 0
1t 0 0o 1 0 1 1]
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PHASE-NW-SYNTH Algorithm Snapshot

e Whenever a column has a single 1, it implies that the corresponding parity
has been realized.
e Remove these columns from the remaining parities.

e Place the gate X if parity realized on circuitis 1 @ f for some (c, f) € . We
can also place a gate in {T,T",S,S", Z, Y} corresponding to the value of the
coefficient c.

ERetaorg The partial circuit obtained after applying a sequence of gates from

iteration 4.
x1 X1
piL P2 P3 ps Ps Ps Pr P X2
1 0 0 1 1 1 0 s 3
o 1 o 1 1 1 1
BW=|lo 1 0 0 1 0 0 x4 ——— 1@ x4 ®x5 D X6
1 o 1 o0 0 1 1
0 1 0 0 0 1 o0 X5 D X5 @ X6
1 o o 1 o 1 1 X6 x5
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Implementation

We simulated benchmarks as well as random circuits on popular architectures
such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen,
16-qubit IBM QX5 and 20-qubit IBM Tokyo.

Rigetti 16Q-Aspen 16g-Square Grid
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Architecture #Qubits | Initial | SWAP-template CNOT-OPT-A
count Count Count | Time
3 560% 0.00% 0.184s
5 612% 146% 0.146s
9g-square 9 10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 184.67% | 0.233s
4 1050% 238% 0.23s
8 840% 146.25% 0.27s
16 817.50% 158.13% 0.43s
16g-square 16 32 853% 340.63% 0.41s
64 892.50% 220.78% 0.49s
128 858.75% 210.63% 0.57s
256 897.42% 237.5% 0.72s
4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1619.90% 351% 0.47s
rigetti-16g-aspen 16 32 1794% 469.48% | 0.48s
64 1755% 399% 0.66s
128 1760.63% 368.13% 0.58s
256 1757.11% 410.9% 0.61s
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Architecture #Qubits | Initial | SWAP-template CNOT-OPT-A
count Count Count | Time
4 1260% 173% 0.38s
8 1035% 295% 0.36s
16 1042.50% 283% 0.41s
ibm-gx5 16 32 1179.38% 398.44% 0.42s
64 1130.63% 339.06% 0.45s
128 1110.94% 344.69% | 0.575s
256 1141.17% 379.88% 0.73s
4 525% 128% 0.186s
8 555% 275% 0.295s
16 570% 88% 0.37s
ibm-q20-tokyo 20 32 500.63% 154.38% 0.55s
64 542.81% 136.88% 0.54s
128 539.53% 141.02% | 0.645s
256 534.61% 125.27% 0.72s

Table: The overhead or increase in CNOT-count has been compared to the overhead
obtained by using SWAP-template.



Conclusion

e We provided a heuristic algorithm that work with the univeral Clifford+T
gate set.

e For both benchmark and random circuits, our algorithm results in much
less overhead in terms of the increase in CNOT-count, compared to the
overhead obtained by using SWAP template.

e The results will likely be improved if coupled with procedures that
optimize the initial mapping of qubits.
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Thank youl!
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