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Compilation: A set of instructions are realized by some universal gate set.

Implementation: Unitary operations are mapped to physical architectures.

Connectivity constraint: We cannot arbitrarily apply a multi-qubit gate on
any set of qubits.
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Background



Clifford+T circuits are quantum circuits over the gate set

{�#$), �,), (, -,. , /}.
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Clifford+T Circuits
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• CNOT acts on two qubits, control 2 and target C.

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -,., /, ), ( act on a single qubit.

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , ( |C〉 = l2C |C〉 , ) |C〉 = lC |C〉 .

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.
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Basic Gates



Definition
A graph is a pair � = (+� , ��) where +� is a set of vertices and �� is a set of pairs
4 = (D, E) such that D, E ∈ +� . Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

• Simple: there is at most one edge between two distinct vertices and no
self-loops, i.e., (D, D) ∉ �� .

• Undirected: edges have no direction i.e., (D, E) ≡ (E, D).
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Connectivity Graph



Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

1 2 3

4 5 6

7 8 9

9-qubit square grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs
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Naive Solution
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Naive Solution



|q〉 |k〉
|k〉 |q〉

= |q〉 • |k〉
|k〉 • • |q〉

• If the shortest path length between vertices corresponding to 2 and C in �

is ℓ, the naive solution requires about 6(ℓ − 1) CNOT gates.

• This entails a significant increase in CNOT-count.

• Can we reduce the CNOT-count while respecting the connectivity
constraint?
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Motivation



We were inspired to use the following techniques.

• Steiner tree problem reduction12.

• Parity network synthesis algorithm3.

• Linear reversible circuits synthesis4.

1Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. “Quantum circuit optimizations for NISQ
architectures”. In: Quantum Science and Technology 5.2 (2020), p. 025010.

2Aleks Kissinger and Arianne Meijer-van de Griend. “CNOT circuit extraction for
topologically-constrained quantum memories”. In: arXiv preprint arXiv:1904.00633 (2019).

3Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. “On the controlled-NOT complexity of
controlled-NOT–phase circuits”. In: Quantum Science and Technology 4.1 (2018), p. 015002.

4Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible circuits”.
In: Quantum Information & Computation 8.3 (2008), pp. 282–294.
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Related Work



Definition
Given a graph � = (+� , ��) with a weight function F� and a set of vertices
S ⊆ +� , a Steiner tree ) = (+) , �) ) is a minimum weight tree that is a subgraph
of � such that S ⊆ +) .
Terminals: Vertices in S;
Steiner nodes: Vertices in +) \ S.

Example: S = {1, 6, 7, 11}, +) \ S = {2, 3, 4, 5, 8, 9, 10, 12}

� =

1 2 3

4 5 6

7 8 9

10 11 12

� is a simple, undirected, and unweighted graph 8

Steiner Tree



Definition
Given a graph � = (+� , ��) with a weight function F� and a set of vertices
S ⊆ +� , a Steiner tree ) = (+) , �) ) is a minimum weight tree that is a subgraph
of � such that S ⊆ +) .
Terminals: Vertices in S;
Steiner nodes: Vertices in +) \ S.

Example: S = {1, 6, 7, 11}, +) \ S = {2, 3, 4, 5, 8, 9, 10, 12}

� =

1 2 3

4 5 6

7 8 9

10 11 12

A solution to the Steiner tree problem on �. 8

Steiner Tree



Slice: Slice the circuit at the position of H gate, by either

(�) partitioning the gates of the circuit based on the locality of H gates, or

(�) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is
respected and the CNOT count is reduced.

5Vlad Gheorghiu et al. “Reducing the CNOT count for Clifford+ T circuits on NISQ architectures”.
In: arXiv preprint arXiv:2011.12191 (2020).
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Slice-and-Build Technique5



Slice: Slice the circuit at the position of H gate, by either

(�) partitioning the gates of the circuit based on the locality of H gates, or

(�) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is
respected and the CNOT count is reduced.
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Slice-and-Build Technique



• ) � •
• . •
( • / �

� • )

=⇒

• ) � •
• . •

( • / �

� • )

10

Slice



• ) � •
• . •
( • / �

� • )

=⇒

• ) � •
• . •

( • / �

� • )

10

Slice



LINEAR-TF-SYNTH algorithm synthesize circuits over {�#$), -}.

PHASE-NW-SYNTH algorithm synthesize circuits over {�#$), -, )}.
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Build



Overall Linear Transformation
Consider an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©­­«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1
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Synthesize Circuits over {�#$), -}
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Synthesize Circuits over {�#$), -}



Reverse Engineering

(a) Make b = 0 by applying - to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Example: Let � be a linear transformation and � be the connectivity graph.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


� =

1 2 3

6 5 4
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LINEAR-TF-SYNTH Algorithm



Row Operations

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

The Steiner tree )1,S with pivot at 1 and terminals S = {1, 3, 4, 5}. )1, )2 and )3 are the
sub-trees built from it.
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Step 1: Reducing to Upper Triangular Form



Remark: By traversing subtrees, �#$)s are concatenated.

Y1
1 = CNOT45,CNOT34,CNOT12,CNOT23,CNOT12

A1
1 = �[5, .] ← �[5, .] ⊕ �[4, .], �[4, .] ← �[4, .] ⊕ �[3, .], �[2, .] ← �[2, .] ⊕ �[1, .],

�[3, .] ← �[3, .] ⊕ �[2, .], �[2, .] ← �[2, .] ⊕ �[1, .]

After a series of row operations, the matrix � is reduced to an upper triangular
form.

� =



1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


−→ . . . −→ � =



1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


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Step 2: Transposing A and Reducing to Identity



• Consider circuits over the gate set

{�#$), -, ), ( B )2, / B )4, )† B )7, († B )6}.

• �#$) |G, H〉 = |G, G ⊕ H〉, ) |G〉 = l |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example:

|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉
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Synthesize Circuits over {�#$), -, )}



• Consider circuits over the gate set

{�#$), -, ), ( B )2, / B )4, )† B )7, († B )6}.
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G1

G3 ⊕ G4

G3 G1 ⊕ G2 ⊕ G3 ⊕ G4

G2

Synthesize Circuits over {�#$), -, )}



Lemma
A unitary * ∈ U(2=) is exactly implementable by an =-qubit circuit over
{CNOT, T} if and only if

* |G1G2 . . . G=〉 = l? (G1 ,G2 ,...,G=) |6(G1, G2, . . . , G=)〉

where l = 4
8 c
4 , G1, G2, . . . , G= ∈ F2 and

?(G1, G2, . . . , G=) =
ℓ∑
8=1

28 · 58 (G1, G2, . . . , G=)

for some linear reversible function 6 : F=2 → F=2 and linear Boolean functions
51, 52, . . . , 5ℓ ∈

(
F=2

)∗ with coefficients 21, 22, . . . , 2ℓ ∈ Z8.

6Matthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimization of
Clifford+ T circuits via matroid partitioning”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 33.10 (2014), pp. 1476–1489.
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Circuit-polynomial Correspondence6



Definition

l? (G1 ,G2 ,...,G=) |6(G1, G2, . . . , G=)〉: The sum-over-paths form of a circuit.

G1, G2, . . . , G=: Path variables.

?(G1, G2, . . . , G=): A phase polynomial.

58 (G1, G2, . . . , G=): A parity term.

P: A phase polynomial set consists of linear Boolean functions together with
coefficients in Z8.

Intuition: A unitary implemented over {CNOT, T} can be characterized by a set
P = {(2, 5 ) : 2 ∈ Z8 and 5 ∈

(
F=2

)∗} and linear reversible output functions
6 : F=2 → F=2 .

19



|G1〉 )1 • • )
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • • )3 )4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉 )2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• 6(G1, G2, . . . , G=) = (G2) (G1) (G1 ⊕ G2 ⊕ G3 ⊕ G4) (G1 ⊕ G2 ⊕ G4).

LINEAR-TF-SYNTH algorithm returns a circuit over {CNOT,X} that realizes 6.

• P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• ∀(21, 51), (22, 52) ∈ P, if 51 = 52, they can be merged into a single pair
(21 +8 22, 51).
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Example Continued



Let P be a phase polynomial set and A be the matrix corresponding to the
linear reversible output function 6.

Synthesizing a Phase Polynomial Network

(a) Synthesize a circuit over {�#$), -} that realizes the parity terms in P.

(b) Apply {),)†, (, (†, /,. } depending on the coefficients 2 in P.

(c) synthesize a circuit so that the overall linear transformation is A.

Example: Consider a 6−qubit quantum system, let

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}
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PHASE-NW-SYNTH Algorithm



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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Columns Represent Parity Term



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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Top Six Rows Encode Parity



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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The 7th Row Encodes Bit Flip



P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.
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The Last Row Stores Coefficients



• Ignore the last two rows of %, let � = {?′1, ?′2, ?′3, ?′4, ?′5, ?′6, ?′7}, K be an empty
stack, and � = [6].
• Cycle through the set of =-bit strings and apply corresponding �#$) gates

at each iteration.

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.

Example: After the 4th iteration, we have

� (4) =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1


23

PHASE-NW-SYNTH Algorithm Snapshot



• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.
• Remove these columns from the remaining parities.

• Place the gate X if parity realized on circuit is 1 ⊕ 5 for some (2, 5 ) ∈ P. We
can also place a gate in {T, T†,S,S†,Z,Y} corresponding to the value of the
coefficient 2.

Example: The partial circuit obtained after applying a sequence of gates from
iteration 4.

� (4) =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1



G1 G1
G2 G2
G3 G3

G4 -/ 1 ⊕ G4 ⊕ G5 ⊕ G6

G5 • G5 ⊕ G6
G6 • G6

23

PHASE-NW-SYNTH Algorithm Snapshot



We simulated benchmarks as well as random circuits on popular architectures
such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen,
16-qubit IBM QX5 and 20-qubit IBM Tokyo.

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

Rigetti 16Q-Aspen

1 2 5 6

16 3 4 7

15 12 11 8

14 13 10 9

16q-Square Grid
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Implementation



Architecture #Qubits Initial SWAP-template CNOT-OPT-A
count Count Count Time

9q-square 9

3 560% 0.00% 0.184s
5 612% 146% 0.146s
10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 184.67% 0.233s

16q-square 16

4 1050% 238% 0.23s
8 840% 146.25% 0.27s
16 817.50% 158.13% 0.43s
32 853% 340.63% 0.41s
64 892.50% 220.78% 0.49s
128 858.75% 210.63% 0.57s
256 897.42% 237.5% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1619.90% 351% 0.47s
32 1794% 469.48% 0.48s
64 1755% 399% 0.66s
128 1760.63% 368.13% 0.58s
256 1757.11% 410.9% 0.61s

25

Results



Architecture #Qubits Initial SWAP-template CNOT-OPT-A
count Count Count Time

ibm-qx5 16

4 1260% 173% 0.38s
8 1035% 295% 0.36s
16 1042.50% 283% 0.41s
32 1179.38% 398.44% 0.42s
64 1130.63% 339.06% 0.45s
128 1110.94% 344.69% 0.575s
256 1141.17% 379.88% 0.73s

ibm-q20-tokyo 20

4 525% 128% 0.186s
8 555% 275% 0.295s
16 570% 88% 0.37s
32 500.63% 154.38% 0.55s
64 542.81% 136.88% 0.54s
128 539.53% 141.02% 0.645s
256 534.61% 125.27% 0.72s

Table: The overhead or increase in CNOT-count has been compared to the overhead
obtained by using SWAP-template.
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• We provided a heuristic algorithm that work with the univeral Clifford+T
gate set.

• For both benchmark and random circuits, our algorithm results in much
less overhead in terms of the increase in CNOT-count, compared to the
overhead obtained by using SWAP template.

• The results will likely be improved if coupled with procedures that
optimize the initial mapping of qubits.
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Conclusion



Thank you!
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