
Reducing the CNOT Count for Clifford+T
Circuits on NISQ Architectures

Vlad Gheorghiu2, Sarah Meng Li1, Michele Mosca2, and Priyanka Mukhopadhyay2.

1Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada
2Institute for Quantum Computing, University of Waterloo, Waterloo ON, Canada

April 6th, 2021

Compilation: A set of instructions are realized by some universal gate set.

Implementation: Unitary operations are mapped to physical architectures.

Connectivity constraint: We cannot arbitrarily apply a multi-qubit gate on
any set of qubits.

1

Background

Clifford+T circuits are quantum circuits over the gate set

{�#$), �,), (, -,. , /}.

• � •
. •

(• /

� •)

2

Clifford+T Circuits

• � •
. •

(• /

� •)

• CNOT acts on two qubits, control 2 and target C.

�#$) |2, C〉 = |2, 2 ⊕ C〉 .

• -,., /,), (act on a single qubit.

- |C〉 = |C ⊕ 1〉 , . |C〉 = l4C |C ⊕ 1〉 , / |C〉 = l4C |C〉 , (|C〉 = l2C |C〉 ,) |C〉 = lC |C〉 .

2, C ∈ F2, l = 4
8 c
4 , ⊕ corresponds to Boolean exclusive-OR.

3

Basic Gates

Definition
A graph is a pair � = (+� , ��) where +� is a set of vertices and �� is a set of pairs
4 = (D, E) such that D, E ∈ +� . Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

• Simple: there is at most one edge between two distinct vertices and no
self-loops, i.e., (D, D) ∉ �� .

• Undirected: edges have no direction i.e., (D, E) ≡ (E, D).

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

Rigetti 16Q-Aspen 4

Connectivity Graph

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

1 2 3

4 5 6

7 8 9

9-qubit square grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs

5

Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to
physical positions admissible for two-qubit operations.

1 2 3

4 5 6

7 8 9

9-qubit square grid

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1 ⊕ 9〉

�#$)1,9 with SWAPs

5

Naive Solution

|q〉 |k〉
|k〉 |q〉

= |q〉 • |k〉
|k〉 • • |q〉

• If the shortest path length between vertices corresponding to 2 and C in �

is ℓ, the naive solution requires about 6(ℓ − 1) CNOT gates.

• This entails a significant increase in CNOT-count.

• Can we reduce the CNOT-count while respecting the connectivity
constraint?

6

Motivation

We were inspired to use the following techniques.

• Steiner tree problem reduction12.

• Parity network synthesis algorithm3.

• Linear reversible circuits synthesis4.

1Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. “Quantum circuit optimizations for NISQ
architectures”. In: Quantum Science and Technology 5.2 (2020), p. 025010.

2Aleks Kissinger and Arianne Meijer-van de Griend. “CNOT circuit extraction for
topologically-constrained quantum memories”. In: arXiv preprint arXiv:1904.00633 (2019).

3Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. “On the controlled-NOT complexity of
controlled-NOT–phase circuits”. In: Quantum Science and Technology 4.1 (2018), p. 015002.

4Ketan N Patel, Igor L Markov, and John P Hayes. “Optimal synthesis of linear reversible circuits”.
In: Quantum Information & Computation 8.3 (2008), pp. 282–294.

7

Related Work

Definition
Given a graph � = (+� , ��) with a weight function F� and a set of vertices
S ⊆ +� , a Steiner tree) = (+) , �)) is a minimum weight tree that is a subgraph
of � such that S ⊆ +) .
Terminals: Vertices in S;
Steiner nodes: Vertices in +) \ S.

Example: S = {1, 6, 7, 11}, +) \ S = {2, 3, 4, 5, 8, 9, 10, 12}

� =

1 2 3

4 5 6

7 8 9

10 11 12

� is a simple, undirected, and unweighted graph 8

Steiner Tree

Definition
Given a graph � = (+� , ��) with a weight function F� and a set of vertices
S ⊆ +� , a Steiner tree) = (+) , �)) is a minimum weight tree that is a subgraph
of � such that S ⊆ +) .
Terminals: Vertices in S;
Steiner nodes: Vertices in +) \ S.

Example: S = {1, 6, 7, 11}, +) \ S = {2, 3, 4, 5, 8, 9, 10, 12}

� =

1 2 3

4 5 6

7 8 9

10 11 12

A solution to the Steiner tree problem on �. 8

Steiner Tree

Slice: Slice the circuit at the position of H gate, by either

(�) partitioning the gates of the circuit based on the locality of H gates, or

(�) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is
respected and the CNOT count is reduced.

5Vlad Gheorghiu et al. “Reducing the CNOT count for Clifford+ T circuits on NISQ architectures”.
In: arXiv preprint arXiv:2011.12191 (2020).

9

Slice-and-Build Technique5

Slice: Slice the circuit at the position of H gate, by either

(�) partitioning the gates of the circuit based on the locality of H gates, or

(�) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is
respected and the CNOT count is reduced.

9

Slice-and-Build Technique

•) � •
• . •
(• / �

� •)

=⇒

•) � •
• . •

(• / �

� •)

10

Slice

•) � •
• . •
(• / �

� •)

=⇒

•) � •
• . •

(• / �

� •)

10

Slice

LINEAR-TF-SYNTH algorithm synthesize circuits over {�#$), -}.

PHASE-NW-SYNTH algorithm synthesize circuits over {�#$), -,)}.

11

Build

Overall Linear Transformation
Consider an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©­­«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1

12

Synthesize Circuits over {�#$), -}

Overall Linear Transformation
Consider an =−qubit circuit over {�#$), -}, we represent the overall linear
transformation using an = × (= + 1) binary matrix.

Example

|G1〉 • |G2〉
|G2〉 • • |G1 ⊕ G2 ⊕ 1〉
|G3〉 • • |G1 ⊕ G2 ⊕ G3 ⊕ 1〉
|G4〉 |G1 ⊕ G2 ⊕ G4 ⊕ 1〉

� =

G1 G2 G3 G4 1©­­«
ª®®¬

0 1 0 0 0
1 1 0 0 1
1 1 1 0 1
1 1 0 1 1

12

Synthesize Circuits over {�#$), -}

Reverse Engineering

(a) Make b = 0 by applying - to corresponding qubits.

(b) Carry out an analogue of Gaussian elimination.

(c) Use Steiner tree to incorporate connectivity constraints.

Example: Let � be a linear transformation and � be the connectivity graph.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


� =

1 2 3

6 5 4

13

LINEAR-TF-SYNTH Algorithm

Row Operations

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =



1 1 0 1 1 0
0 0 1 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 0 0
0 1 0 1 0 1


)1,{1,3,4,5}=

1 2 3

6 5 4

)1 = 1 2 3

)2 = 3 4

)3 = 4 5

The Steiner tree)1,S with pivot at 1 and terminals S = {1, 3, 4, 5}.)1,)2 and)3 are the
sub-trees built from it.

14

Step 1: Reducing to Upper Triangular Form

Remark: By traversing subtrees, �#$)s are concatenated.

Y1
1 = CNOT45,CNOT34,CNOT12,CNOT23,CNOT12

A1
1 = �[5, .] ← �[5, .] ⊕ �[4, .], �[4, .] ← �[4, .] ⊕ �[3, .], �[2, .] ← �[2, .] ⊕ �[1, .],

�[3, .] ← �[3, .] ⊕ �[2, .], �[2, .] ← �[2, .] ⊕ �[1, .]

After a series of row operations, the matrix � is reduced to an upper triangular
form.

� =



1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


−→ . . . −→ � =



1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


15

Step 1: Reducing to Upper Triangular Form

Remark: By traversing subtrees, �#$)s are concatenated.

Y1
1 = CNOT45,CNOT34,CNOT12,CNOT23,CNOT12

A1
1 = �[5, .] ← �[5, .] ⊕ �[4, .], �[4, .] ← �[4, .] ⊕ �[3, .], �[2, .] ← �[2, .] ⊕ �[1, .],

�[3, .] ← �[3, .] ⊕ �[2, .], �[2, .] ← �[2, .] ⊕ �[1, .]

After a series of row operations, the matrix � is reduced to an upper triangular
form.

� =



1 1 0 1 1 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
0 0 1 0 0 0
0 1 0 1 0 1


−→ . . . −→ � =



1 1 0 1 1 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1


15

Step 1: Reducing to Upper Triangular Form

Row Operations

(a) Starting from the left most column, fix one column at a time.

(b) Fixing the 8th column means applying row operations such that �88 = 1 and
� 98 = 0 for every 9 > 8.

� =



1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
0 0 1 1 0 1


)1,{1,2,4,5}=

1 2 3

6 5 4

)1 = 1 2

)2 = 2 5

)3 = 5 4

The Steiner tree)1,S with pivot at 1 and terminals S = {1, 2, 4, 5}.)1,)2 and)3 are the
sub-trees built from it.

16

Step 2: Transposing A and Reducing to Identity

• Consider circuits over the gate set

{�#$), -,), (B)2, / B)4,)† B)7, († B)6}.

• �#$) |G, H〉 = |G, G ⊕ H〉,) |G〉 = l |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example:

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

17

Synthesize Circuits over {�#$), -,)}

• Consider circuits over the gate set

{�#$), -,), (B)2, / B)4,)† B)7, († B)6}.

• �#$) |G, H〉 = |G, G ⊕ H〉,) |G〉 = l |G〉, where l = 4
8 c
4 and G, H ∈ F2.

Example:

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

17

G1

G3 ⊕ G4

G3 G1 ⊕ G2 ⊕ G3 ⊕ G4

G2

Synthesize Circuits over {�#$), -,)}

Lemma
A unitary * ∈ U(2=) is exactly implementable by an =-qubit circuit over
{CNOT, T} if and only if

* |G1G2 . . . G=〉 = l? (G1 ,G2 ,...,G=) |6(G1, G2, . . . , G=)〉

where l = 4
8 c
4 , G1, G2, . . . , G= ∈ F2 and

?(G1, G2, . . . , G=) =
ℓ∑
8=1

28 · 58 (G1, G2, . . . , G=)

for some linear reversible function 6 : F=2 → F=2 and linear Boolean functions
51, 52, . . . , 5ℓ ∈

(
F=2

)∗ with coefficients 21, 22, . . . , 2ℓ ∈ Z8.

6Matthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimization of
Clifford+ T circuits via matroid partitioning”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 33.10 (2014), pp. 1476–1489.

18

Circuit-polynomial Correspondence6

Definition

l? (G1 ,G2 ,...,G=) |6(G1, G2, . . . , G=)〉: The sum-over-paths form of a circuit.

G1, G2, . . . , G=: Path variables.

?(G1, G2, . . . , G=): A phase polynomial.

58 (G1, G2, . . . , G=): A parity term.

P: A phase polynomial set consists of linear Boolean functions together with
coefficients in Z8.

Intuition: A unitary implemented over {CNOT, T} can be characterized by a set
P = {(2, 5) : 2 ∈ Z8 and 5 ∈

(
F=2

)∗} and linear reversible output functions
6 : F=2 → F=2 .

19

|G1〉)1 • •)
†
5

|G2〉

|G2〉 • • • |G1〉

|G3〉 • •)3)4 |G1 ⊕ G2 ⊕ G3 ⊕ G4〉

|G4〉)2 • |G1 ⊕ G2 ⊕ G4〉

)1 : lG1

)2 : lG3⊕G4

)3 : lG3

)4 : lG1⊕G2⊕G3⊕G4

)5 : l7G2

• 6(G1, G2, . . . , G=) = (G2) (G1) (G1 ⊕ G2 ⊕ G3 ⊕ G4) (G1 ⊕ G2 ⊕ G4).

LINEAR-TF-SYNTH algorithm returns a circuit over {CNOT,X} that realizes 6.

• P = {(1, G1), (1, G3 ⊕ G4), (1, G3), (1, G1 ⊕ G2 ⊕ G3 ⊕ G4), (7, G2)}.

• ∀(21, 51), (22, 52) ∈ P, if 51 = 52, they can be merged into a single pair
(21 +8 22, 51).

20

Example Continued

Let P be a phase polynomial set and A be the matrix corresponding to the
linear reversible output function 6.

Synthesizing a Phase Polynomial Network

(a) Synthesize a circuit over {�#$), -} that realizes the parity terms in P.

(b) Apply {),)†, (, (†, /,. } depending on the coefficients 2 in P.

(c) synthesize a circuit so that the overall linear transformation is A.

Example: Consider a 6−qubit quantum system, let

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

21

PHASE-NW-SYNTH Algorithm

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

22

Columns Represent Parity Term

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

22

Top Six Rows Encode Parity

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

22

The 7th Row Encodes Bit Flip

P = {(1, 1 ⊕ G1 ⊕ G4 ⊕ G5), (2, G2 ⊕ G3 ⊕ G5 ⊕ G6), (4, 1 ⊕ G4 ⊕ G5 ⊕ G6), (4, 1 ⊕ G1 ⊕ G2 ⊕ G6),
(6, 1 ⊕ G1 ⊕ G2 ⊕ G3), (7, 1 ⊕ G1 ⊕ G2 ⊕ G4 ⊕ G6), (1, G2 ⊕ G4 ⊕ G5)}

% =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
1 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 1 1 1 1 0
1 2 4 4 6 7 1


� =

1 2 3

6 5 4

The parity matrix %8×7 and connectivity graph �.

22

The Last Row Stores Coefficients

• Ignore the last two rows of %, let � = {?′1, ?′2, ?′3, ?′4, ?′5, ?′6, ?′7}, K be an empty
stack, and � = [6].
• Cycle through the set of =-bit strings and apply corresponding �#$) gates

at each iteration.

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.

Example: After the 4th iteration, we have

� (4) =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1


23

PHASE-NW-SYNTH Algorithm Snapshot

• Whenever a column has a single 1, it implies that the corresponding parity
has been realized.
• Remove these columns from the remaining parities.

• Place the gate X if parity realized on circuit is 1 ⊕ 5 for some (2, 5) ∈ P. We
can also place a gate in {T, T†,S,S†,Z,Y} corresponding to the value of the
coefficient 2.

Example: The partial circuit obtained after applying a sequence of gates from
iteration 4.

� (4) =



?1 ?2 ?3 ?4 ?5 ?6 ?7

1 0 0 1 1 1 0
0 1 0 1 1 1 1
0 1 0 0 1 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 0 1 1



G1 G1
G2 G2
G3 G3

G4 -/ 1 ⊕ G4 ⊕ G5 ⊕ G6

G5 • G5 ⊕ G6
G6 • G6

23

PHASE-NW-SYNTH Algorithm Snapshot

We simulated benchmarks as well as random circuits on popular architectures
such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen,
16-qubit IBM QX5 and 20-qubit IBM Tokyo.

5 6

4

3

7

8

2 1

16

9

15 14

13

12

1110

Rigetti 16Q-Aspen

1 2 5 6

16 3 4 7

15 12 11 8

14 13 10 9

16q-Square Grid

24

Implementation

Architecture #Qubits Initial SWAP-template CNOT-OPT-A
count Count Count Time

9q-square 9

3 560% 0.00% 0.184s
5 612% 146% 0.146s
10 594% 105% 0.167s
20 546% 176% 0.2s
30 596% 184.67% 0.233s

16q-square 16

4 1050% 238% 0.23s
8 840% 146.25% 0.27s
16 817.50% 158.13% 0.43s
32 853% 340.63% 0.41s
64 892.50% 220.78% 0.49s
128 858.75% 210.63% 0.57s
256 897.42% 237.5% 0.72s

rigetti-16q-aspen 16

4 1680% 355% 0.23s
8 1740% 253% 0.396s
16 1619.90% 351% 0.47s
32 1794% 469.48% 0.48s
64 1755% 399% 0.66s
128 1760.63% 368.13% 0.58s
256 1757.11% 410.9% 0.61s

25

Results

Architecture #Qubits Initial SWAP-template CNOT-OPT-A
count Count Count Time

ibm-qx5 16

4 1260% 173% 0.38s
8 1035% 295% 0.36s
16 1042.50% 283% 0.41s
32 1179.38% 398.44% 0.42s
64 1130.63% 339.06% 0.45s
128 1110.94% 344.69% 0.575s
256 1141.17% 379.88% 0.73s

ibm-q20-tokyo 20

4 525% 128% 0.186s
8 555% 275% 0.295s
16 570% 88% 0.37s
32 500.63% 154.38% 0.55s
64 542.81% 136.88% 0.54s
128 539.53% 141.02% 0.645s
256 534.61% 125.27% 0.72s

Table: The overhead or increase in CNOT-count has been compared to the overhead
obtained by using SWAP-template.

26

• We provided a heuristic algorithm that work with the univeral Clifford+T
gate set.

• For both benchmark and random circuits, our algorithm results in much
less overhead in terms of the increase in CNOT-count, compared to the
overhead obtained by using SWAP template.

• The results will likely be improved if coupled with procedures that
optimize the initial mapping of qubits.

27

Conclusion

Thank you!

	Introduction

