Reducing the CNOT Count for Clifford+T Circuits on NISQ Architectures

Vlad Gheorghiu ${ }^{2}$, Sarah Meng Li ${ }^{1}$, Michele Mosca ${ }^{2}$, and Priyanka Mukhopadhyay ${ }^{2}$.
${ }^{1}$ Department of Mathematics and Statistics, Dalhousie University, Halifax NS, Canada
${ }^{2}$ Institute for Quantum Computing, University of Waterloo, Waterloo ON, Canada

Background

Compilation: A set of instructions are realized by some universal gate set.

Implementation: Unitary operations are mapped to physical architectures.

Connectivity constraint: We cannot arbitrarily apply a multi-qubit gate on any set of qubits.

Clifford+T Circuits

Clifford+T circuits are quantum circuits over the gate set
$\{C N O T, H, T, S, X, Y, Z\}$.

Basic Gates

- CNOT acts on two qubits, control c and target t.

$$
C N O T|c, t\rangle=|c, c \oplus t\rangle .
$$

- X, Y, Z, T, S act on a single qubit.

$$
X|t\rangle=|t \oplus 1\rangle, Y|t\rangle=\omega^{4 t}|t \oplus 1\rangle, Z|t\rangle=\omega^{4 t}|t\rangle, S|t\rangle=\omega^{2 t}|t\rangle, T|t\rangle=\omega^{t}|t\rangle .
$$

$c, t \in \mathbb{F}_{2}, \omega=e^{\frac{i \pi}{4}}, \oplus$ corresponds to Boolean exclusive-OR.

Connectivity Graph

Definition

A graph is a pair $G=\left(V_{G}, E_{G}\right)$ where V_{G} is a set of vertices and E_{G} is a set of pairs $e=(u, v)$ such that $u, v \in V_{G}$. Each such pair is called an edge.

Remark: We are interested in the simple undirected connected graphs.

- Simple: there is at most one edge between two distinct vertices and no

- Undirected: edges have no direction i.e., $(u, v) \equiv(v, u)$.

Rigetti 16Q-Aspen

Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.

9-qubit square grid

CNOT $_{1,9}$ with SWAPs

Naive Solution

Naively we can insert SWAP operators to move a pair of logical qubits to physical positions admissible for two-qubit operations.

9-qubit square grid

CNOT $_{1,9}$ with SWAPs

Motivation

- If the shortest path length between vertices corresponding to c and t in G is ℓ, the naive solution requires about $6(\ell-1)$ CNOT gates.
- This entails a significant increase in CNOT-count.
- Can we reduce the CNOT-count while respecting the connectivity constraint?

Related Work

We were inspired to use the following techniques.

- Steiner tree problem reduction ${ }^{12}$.
- Parity network synthesis algorithm ${ }^{3}$.
- Linear reversible circuits synthesis ${ }^{4}$.

[^0]
Steiner Tree

Definition

Given a graph $G=\left(V_{G}, E_{G}\right)$ with a weight function w_{E} and a set of vertices $\mathcal{S} \subseteq V_{G}$, a Steiner tree $T=\left(V_{T}, E_{T}\right)$ is a minimum weight tree that is a subgraph of G such that $\mathcal{S} \subseteq V_{T}$.
Terminals: Vertices in \mathcal{S};
Steiner nodes: Vertices in $V_{T} \backslash \mathcal{S}$.

$$
\text { Example: } \mathcal{S}=\{1,6,7,11\}, V_{T} \backslash \mathcal{S}=\{2,3,4,5,8,9,10,12\}
$$

G is a simple, undirected, and unweighted graph

Steiner Tree

Definition

Given a graph $G=\left(V_{G}, E_{G}\right)$ with a weight function w_{E} and a set of vertices $\mathcal{S} \subseteq V_{G}$, a Steiner tree $T=\left(V_{T}, E_{T}\right)$ is a minimum weight tree that is a subgraph of G such that $S \subseteq V_{T}$.
Terminals: Vertices in \mathcal{S};
Steiner nodes: Vertices in $V_{T} \backslash \mathcal{S}$.

$$
\text { Example: } \mathcal{S}=\{1,6,7,11\}, V_{T} \backslash \mathcal{S}=\{2,3,4,5,8,9,10,12\}
$$

A solution to the Steiner tree problem on G.

Slice-and-Build Technique ${ }^{5}$

Slice: Slice the circuit at the position of H gate, by either
(A) partitioning the gates of the circuit based on the locality of H gates, or
(B) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is respected and the CNOT count is reduced.

[^1]
Slice-and-Build Technique

Slice: Slice the circuit at the position of H gate, by either
(A) partitioning the gates of the circuit based on the locality of H gates, or
(B) partitioning the phase polynomial of the input circuit.

Build: Re-synthesize the intermediate sliced portions so that connectivity is respected and the CNOT count is reduced.

Slice

Slice

Build

LINEAR-TF-SYNTH algorithm synthesize circuits over $\{C N O T, X\}$.
PHASE-NW-SYNTH algorithm synthesize circuits over $\{C N O T, X, T\}$.

Synthesize Circuits over $\{C N O T, X\}$

Overall Linear Transformation

Consider an n-qubit circuit over $\{C N O T, X\}$, we represent the overall linear transformation using an $n \times(n+1)$ binary matrix.

Example

$$
A=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & b \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Synthesize Circuits over $\{C N O T, X\}$

Overall Linear Transformation

Consider an n-qubit circuit over $\{C N O T, X\}$, we represent the overall linear transformation using an $n \times(n+1)$ binary matrix.

Example

$$
A=\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & b \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

LINEAR-TF-SYNTH Algorithm

Reverse Engineering

(a) Make $\mathbf{b}=\mathbf{0}$ by applying X to corresponding qubits.
(b) Carry out an analogue of Gaussian elimination.
(c) Use Steiner tree to incorporate connectivity constraints.

Example: Let A be a linear transformation and G be the connectivity graph.

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Step 1: Reducing to Upper Triangular Form

Row Operations

(a) Starting from the left most column, fix one column at a time.
(b) Fixing the i th column means applying row operations such that $A_{i i}=1$ and $A_{j i}=0$ for every $j>i$.

The Steiner tree $T_{1, \mathcal{S}}$ with pivot at 1 and terminals $\mathcal{S}=\{1,3,4,5\} . T_{1}, T_{2}$ and T_{3} are the sub-trees built from it.

Step 1: Reducing to Upper Triangular Form

Remark: By traversing subtrees, CNOTs are concatenated.

$$
\begin{aligned}
\boldsymbol{y}_{1}^{1}= & \mathrm{CNOT}_{45}, \mathrm{CNOT}_{34}, \mathrm{CNOT}_{12}, \mathrm{CNOT}_{23}, \mathrm{CNOT}_{12} \\
\mathcal{A}_{1}^{1}= & A[5, .] \leftarrow A[5, .] \oplus A[4, .], A[4, .] \leftarrow A[4, .] \oplus A[3, .], A[2, .] \leftarrow A[2, .] \oplus A[1, .], \\
& A[3, .] \leftarrow A[3, .] \oplus A[2, .], A[2, .] \leftarrow A[2, .] \oplus A[1, .]
\end{aligned}
$$

After a series of row operations, the matrix A is reduced to an upper triangular form.

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \longrightarrow \ldots \longrightarrow A=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Step 1: Reducing to Upper Triangular Form

Remark: By traversing subtrees, CNOTs are concatenated.

$$
\begin{aligned}
\boldsymbol{y}_{1}^{1}= & \mathrm{CNOT}_{45}, \mathrm{CNOT}_{34}, \mathrm{CNOT}_{12}, \mathrm{CNOT}_{23}, \mathrm{CNOT}_{12} \\
\mathcal{A}_{1}^{1}= & A[5, .] \leftarrow A[5, .] \oplus A[4, .], A[4, .] \leftarrow A[4, .] \oplus A[3, .], A[2, .] \leftarrow A[2, .] \oplus A[1, .], \\
& A[3, .] \leftarrow A[3, .] \oplus A[2, .], A[2, .] \leftarrow A[2, .] \oplus A[1, .]
\end{aligned}
$$

After a series of row operations, the matrix A is reduced to an upper triangular form.

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \longrightarrow \ldots \longrightarrow A=\left[\begin{array}{cccccc}
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Step 2: Transposing A and Reducing to Identity

Row Operations

(a) Starting from the left most column, fix one column at a time.
(b) Fixing the i th column means applying row operations such that $A_{i i}=1$ and $A_{j i}=0$ for every $j>i$.
$A=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$

The Steiner tree $T_{1, \mathcal{S}}$ with pivot at 1 and terminals $\mathcal{S}=\{1,2,4,5\} . T_{1}, T_{2}$ and T_{3} are the sub-trees built from it.

Synthesize Circuits over $\{C N O T, X, T\}$

- Consider circuits over the gate set

$$
\left\{\text { CNOT, } X, T, S:=T^{2}, Z:=T^{4}, T^{\dagger}:=T^{7}, S^{\dagger}:=T^{6}\right\} .
$$

- CNOT $|x, y\rangle=|x, x \oplus y\rangle, T|x\rangle=\omega|x\rangle$, where $\omega=e^{\frac{i \pi}{4}}$ and $x, y \in \mathbb{F}_{2}$.

Example:

Synthesize Circuits over $\{C N O T, X, T\}$

- Consider circuits over the gate set

$$
\left\{\text { CNOT, } X, T, S:=T^{2}, Z:=T^{4}, T^{\dagger}:=T^{7}, S^{\dagger}:=T^{6}\right\} .
$$

- CNOT $|x, y\rangle=|x, x \oplus y\rangle, T|x\rangle=\omega|x\rangle$, where $\omega=e^{\frac{i \pi}{4}}$ and $x, y \in \mathbb{F}_{2}$.

Example:

$\left|x_{2}\right\rangle$
$\left|x_{1}\right\rangle$
$\left|x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}\right\rangle$
$\left|x_{1} \oplus x_{2} \oplus x_{4}\right\rangle$
$T_{1}: \omega^{x_{1}}$
$T_{2}: \omega^{x_{3} \oplus x_{4}}$
$T_{3}: \omega^{x_{3}}$
$T_{4}: \omega^{x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}}$
$T_{5}: \omega^{7 x_{2}}$

Circuit-polynomial Correspondence ${ }^{6}$

Lemma

A unitary $U \in \mathcal{U}\left(2^{n}\right)$ is exactly implementable by an n-qubit circuit over $\{C N O T, T\}$ if and only if

$$
U\left|x_{1} x_{2} \ldots x_{n}\right\rangle=\omega^{p\left(x_{1}, x_{2}, \ldots, x_{n}\right)}\left|g\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\rangle
$$

where $\omega=e^{\frac{i \pi}{4}}, x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}_{2}$ and

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{\ell} c_{i} \cdot f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for some linear reversible function $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ and linear Boolean functions $f_{1}, f_{2}, \ldots, f_{\ell} \in\left(\mathbb{F}_{2}^{n}\right)^{*}$ with coefficients $c_{1}, c_{2}, \ldots, c_{\ell} \in \mathbb{Z}_{8}$.

[^2]
Definition

$\omega^{p\left(x_{1}, x_{2}, \ldots, x_{n}\right)}\left|g\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\rangle$: The sum-over-paths form of a circuit.
$x_{1}, x_{2}, \ldots, x_{n}$: Path variables.
$p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: A phase polynomial.
$f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: A parity term.
\mathcal{P} : A phase polynomial set consists of linear Boolean functions together with coefficients in \mathbb{Z}_{8}.

Intuition: A unitary implemented over $\{C N O T, T\}$ can be characterized by a set $\mathcal{P}=\left\{(c, f): c \in \mathbb{Z}_{8}\right.$ and $\left.f \in\left(\mathbb{F}_{2}^{n}\right)^{*}\right\}$ and linear reversible output functions $g: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$.

Example Continued

- $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{2}\right)\left(x_{1}\right)\left(x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}\right)\left(x_{1} \oplus x_{2} \oplus x_{4}\right)$.

LINEAR-TF-SYNTH algorithm returns a circuit over $\{$ CNOT, X $\}$ that realizes g.

- $\mathcal{P}=\left\{\left(1, x_{1}\right),\left(1, x_{3} \oplus x_{4}\right),\left(1, x_{3}\right),\left(1, x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}\right),\left(7, x_{2}\right)\right\}$.
- $\forall\left(c_{1}, f_{1}\right),\left(c_{2}, f_{2}\right) \in \mathcal{P}$, if $f_{1}=f_{2}$, they can be merged into a single pair $\left(c_{1}+{ }_{8} c_{2}, f_{1}\right)$.

PHASE-NW-SYNTH Algorithm

Let \mathcal{P} be a phase polynomial set and \mathbf{A} be the matrix corresponding to the linear reversible output function g.

Synthesizing a Phase Polynomial Network

(a) Synthesize a circuit over $\{C N O T, X\}$ that realizes the parity terms in \mathcal{P}.
(b) Apply $\left\{T, T^{\dagger}, S, S^{\dagger}, Z, Y\right\}$ depending on the coefficients c in \mathcal{P}.
(c) synthesize a circuit so that the overall linear transformation is \mathbf{A}.

Example: Consider a 6-qubit quantum system, let

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(1,1 \oplus x_{1} \oplus x_{4} \oplus x_{5}\right),\left(2, x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{4} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{1} \oplus x_{2} \oplus x_{6}\right),\right. \\
& \left.\left(6,1 \oplus x_{1} \oplus x_{2} \oplus x_{3}\right),\left(7,1 \oplus x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{6}\right),\left(1, x_{2} \oplus x_{4} \oplus x_{5}\right)\right\}
\end{aligned}
$$

Columns Represent Parity Term

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(1,1 \oplus x_{1} \oplus x_{4} \oplus x_{5}\right),\left(2, x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{4} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{1} \oplus x_{2} \oplus x_{6}\right),\right. \\
& \left.\left(6,1 \oplus x_{1} \oplus x_{2} \oplus x_{3}\right),\left(7,1 \oplus x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{6}\right),\left(1, x_{2} \oplus x_{4} \oplus x_{5}\right)\right\}
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccccc}
\frac{p_{1}}{1} & \frac{p_{2}}{0} & \frac{p_{3}}{0} & \frac{p_{4}}{1} & \frac{p_{5}}{1} & \frac{p_{6}}{1} & \frac{p_{7}}{0} \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 4 & 6 & 7 & 1
\end{array}\right]
$$

The parity matrix $P_{8 \times 7}$ and connectivity graph G.

Top Six Rows Encode Parity

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(1,1 \oplus x_{1} \oplus x_{4} \oplus x_{5}\right),\left(2, x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{4} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{1} \oplus x_{2} \oplus x_{6}\right)\right. \\
& \left.\left(6,1 \oplus x_{1} \oplus x_{2} \oplus x_{3}\right),\left(7,1 \oplus x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{6}\right),\left(1, x_{2} \oplus x_{4} \oplus x_{5}\right)\right\}
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccccc}
\frac{p_{1}}{1} & \frac{p_{2}}{0} & \frac{p_{3}}{0} & \frac{p_{4}}{1} & \frac{p_{5}}{1} & \frac{p_{6}}{1} & \frac{p_{7}}{0} \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 4 & 6 & 7 & 1
\end{array}\right]
$$

The parity matrix $P_{8 \times 7}$ and connectivity graph G.

The 7th Row Encodes Bit Flip

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(1,1 \oplus x_{1} \oplus x_{4} \oplus x_{5}\right),\left(2, x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{4} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{1} \oplus x_{2} \oplus x_{6}\right),\right. \\
& \left.\left(6,1 \oplus x_{1} \oplus x_{2} \oplus x_{3}\right),\left(7,1 \oplus x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{6}\right),\left(1, x_{2} \oplus x_{4} \oplus x_{5}\right)\right\}
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccccc}
\frac{p_{1}}{1} & \frac{p_{2}}{0} & \frac{p_{3}}{0} & \frac{p_{4}}{1} & \frac{p_{5}}{1} & \frac{p_{6}}{1} & \frac{p_{7}}{0} \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 4 & 6 & 7 & 1
\end{array}\right]
$$

The parity matrix $P_{8 \times 7}$ and connectivity graph G.

The Last Row Stores Coefficients

$$
\begin{aligned}
\mathcal{P}= & \left\{\left(1,1 \oplus x_{1} \oplus x_{4} \oplus x_{5}\right),\left(2, x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{4} \oplus x_{5} \oplus x_{6}\right),\left(4,1 \oplus x_{1} \oplus x_{2} \oplus x_{6}\right),\right. \\
& \left.\left(6,1 \oplus x_{1} \oplus x_{2} \oplus x_{3}\right),\left(7,1 \oplus x_{1} \oplus x_{2} \oplus x_{4} \oplus x_{6}\right),\left(1, x_{2} \oplus x_{4} \oplus x_{5}\right)\right\}
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccccc}
\frac{p_{1}}{1} & \frac{p_{2}}{0} & \frac{p_{3}}{0} & \frac{p_{4}}{1} & \frac{p_{5}}{1} & \frac{p_{6}}{1} & \frac{p_{7}}{0} \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 4 & 6 & 7 & 1
\end{array}\right]
$$

The parity matrix $P_{8 \times 7}$ and connectivity graph G.

PHASE-NW-SYNTH Algorithm Snapshot

- Ignore the last two rows of P, let $B=\left\{p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}, p_{5}^{\prime}, p_{6}^{\prime}, p_{7}^{\prime}\right\}, \mathcal{K}$ be an empty stack, and $I=[6]$.
- Cycle through the set of n-bit strings and apply corresponding $C N O T$ gates at each iteration.
- Whenever a column has a single 1 , it implies that the corresponding parity has been realized.

Example: After the 4th iteration, we have

$$
B^{(4)}=\left[\begin{array}{ccccccc}
\frac{p_{1}}{1} & \frac{p_{2}}{0} & \frac{p_{3}}{0} & \frac{p_{4}}{1} & \frac{p_{5}}{1} & \frac{p_{6}}{1} & \frac{p_{7}}{0} \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

PHASE-NW-SYNTH Algorithm Snapshot

- Whenever a column has a single 1 , it implies that the corresponding parity has been realized.
- Remove these columns from the remaining parities.
- Place the gate X if parity realized on circuit is $1 \oplus f$ for some $(c, f) \in \mathcal{P}$. We can also place a gate in $\left\{\mathrm{T}, \mathrm{T}^{\dagger}, \mathrm{S}, \mathrm{S}^{\dagger}, \mathbb{Z}, \mathrm{Y}\right\}$ corresponding to the value of the coefficient c.

Example: The partial circuit obtained after applying a sequence of gates from iteration 4.

Implementation

We simulated benchmarks as well as random circuits on popular architectures such as 9-qubit square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo.

Results

Architecture	\#Qubits	Initial count	SWAP-template Count	CNOT-OPT-A	
				Count	Time
9q-square	9	3	560\%	0.00\%	0.1845
		5	612\%	146\%	0.146s
		10	594\%	105\%	0.167s
		20	546\%	176\%	0.2s
		30	596\%	184.67\%	0.233 s
16q-square	16	4	1050\%	238\%	0.23s
		8	840\%	146.25\%	0.27 s
		16	817.50\%	158.13\%	0.43 s
		32	853\%	340.63\%	0.41 s
		64	892.50\%	220.78\%	0.49s
		128	858.75\%	210.63\%	0.57s
		256	897.42\%	237.5\%	0.72 s
rigetti-16q-aspen	16	4	1680\%	355\%	0.23s
		8	1740\%	253\%	0.396s
		16	1619.90\%	351\%	0.47s
		32	1794\%	469.48\%	0.48 s
		64	1755\%	399\%	0.66 s
		128	1760.63\%	368.13\%	0.58 s
		256	1757.11\%	410.9\%	0.61s

Architecture	\#Qubits	Initial count	SWAP-template Count	CNOT-OPT-A	
				Count	Time
ibm-qx5	16	4	1260\%	173\%	0.38s
		8	1035\%	295\%	0.36s
		16	1042.50\%	283\%	0.41 s
		32	1179.38\%	398.44\%	0.42 s
		64	1130.63\%	339.06\%	0.45 s
		128	1110.94\%	344.69\%	0.575 s
		256	1141.17\%	379.88\%	0.73 s
ibm-q20-tokyo	20	4	525\%	128\%	0.186 s
		8	555\%	275\%	0.295s
		16	570\%	88\%	0.37s
		32	500.63\%	154.38\%	0.55 s
		64	542.81\%	136.88\%	0.54 s
		128	539.53\%	141.02\%	0.645 s
		256	534.61\%	125.27\%	0.72s

Table: The overhead or increase in CNOT-count has been compared to the overhead obtained by using SWAP-template.

Conclusion

- We provided a heuristic algorithm that work with the univeral Clifford+T gate set.
- For both benchmark and random circuits, our algorithm results in much less overhead in terms of the increase in CNOT-count, compared to the overhead obtained by using SWAP template.
- The results will likely be improved if coupled with procedures that optimize the initial mapping of qubits.

Thank you!

[^0]: ${ }^{1}$ Beatrice Nash, Vlad Gheorghiu, and Michele Mosca. "Quantum circuit optimizations for NISQ architectures". In: Quantum Science and Technology 5.2 (2020), p. 025010.
 ${ }^{2}$ Aleks Kissinger and Arianne Meijer-van de Griend. "CNOT circuit extraction for topologically-constrained quantum memories". In: arXiv preprint arXiv:1904.00633 (2019).
 ${ }^{3}$ Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. "On the controlled-NOT complexity of controlled-NOT-phase circuits". In: Quantum Science and Technology 4.1 (2018), p. 015002.
 ${ }^{4}$ Ketan N Patel, Igor L Markov, and John P Hayes. "Optimal synthesis of linear reversible circuits". In: Quantum Information \& Computation 8.3 (2008), pp. 282-294.

[^1]: ${ }^{5}$ Vlad Gheorghiu et al. "Reducing the CNOT count for Clifford+ T circuits on NISQ architectures". In: arXiv preprint arXiv:2011.12197 (2020).

[^2]: ${ }^{6}$ Matthew Amy, Dmitri Maslov, and Michele Mosca. "Polynomial-time T-depth optimization of Clifford+ T circuits via matroid partitioning". In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33.10 (2014), pp. 1476-1489.

