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Integral Clifford+T circuits and On(Z[1/2])

• Integral Clifford+T circuits are circuits over

{X ,CX ,CCX ,H ⊗ H}.

• Z
[

1
2

]
=
{

u
2q |u ∈ Z, q ∈ N

}
is the ring of dyadic fractions.

• On

(
Z
[

1
2

])
is the group of orthogonal matrices over Z

[
1
2

]
,

namely, the group of orthogonal dyadic matrices.

• [Amy et al., 2020]: A 2n × 2n unitary matrix V can be exactly
represented by an n-qubit circuit over {X ,CX ,CCX ,H ⊗ H}
if and only if V ∈ O2n

(
Z
[

1
2

])
.
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Motivation

• Integral Clifford+T circuits play an important role in many
quantum algorithms.

• Given an orthogonal dyadic matrix, how to find a circuit for it?

• How to ensure that we find a short circuit?
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Basic Gates

X =

[
0 1
1 0

]
, (−1) = [−1],

H =
1√
2

[
1 1
1 −1

]
, K = H ⊗ H =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
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Two-level Operators

Definition

Let U =

[
x1,1 x1,2

x2,1 x2,2

]
. The action of U[α,β], 1 ≤ α < β ≤ n, is defined as

U[α,β]v = w , where


[
wα
wβ

]
= U

[
vα
vβ

]
,

wi = vi , i /∈ {α, β}.

Example

Let X =

[
0 1
1 0

]
. Then X[2,3] =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and X[2,3]

v1

v2

v3

v4

 =

v1

v3

v2

v4

 .
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Four-level Operator U[α,β,γ,δ]

Similarly, we can create a four-level operator by embedding a 4× 4
matrix U into an n × n identity matrix.

Example

K =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . Then K[1,2,4,6] =



1/2 1/2 0 1/2 0 1/2

1/2 −1/2 0 1/2 0 −1/2

0 0 1 0 0 0

1/2 1/2 0 −1/2 0 −1/2

0 0 0 0 1 0

1/2 −1/2 0 −1/2 0 1/2


.

K[1,2,4,6]



v1

v2

v3

v4

v5

v6


=



(v1 + v2 + v4 + v6)/2

(v1 − v2 + v4 − v6)/2

v3

(v1 + v2 − v4 − v6)/2

v5

(v1 − v2 − v4 + v6)/2


.
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Generators of On(Z[1/2])

• Our generating set:

G =
{

(−1)[α],X[α,β],K[α,β,γ,δ] : 1 ≤ α < β < γ < δ ≤ n
}
.
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Exact Synthesis of Integral Clifford+T Circuits

Theorem (Amy et al., 2020)

Let M be a unitary n × n matrix. Then M ∈ On

(
Z
[

1
2

])
if and only

if M can be written as a product of elements of G.

Proof

⇐) G ⊂ On

(
Z
[

1
2

])
and On

(
Z
[

1
2

])
is closed under multiplication.

Sarah Meng Li, Neil Julien Ross, and Peter Selinger Generators and Relations for the Group On

(
Z
[

1
2

])



Integral Clifford+T Circuits
Exact Synthesis Algorithm

Relations for On(Z[1/2])

Synthesis Algorithm in a Nutshell

Proof

⇒) For every M ∈ On

(
Z
[

1
2

])
, construct a sequence of generators

representing M.

M
−→
G1−→


0

M ′
...
0

0 · · · 0 1

 −→
G2−→


0 0

M ′′
...

...
0 0

0 · · · 0 1 0
0 · · · 0 0 1


−→
G3−→ · · ·

−→
G`−→ I

−→
G` · . . . ·

−→
G1M = I⇒ M = (

−→
G` · . . . ·

−→
G1)−1.
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Characterize Integral Clifford+T Circuits

Corollary (Amy et al., 2020)

G can be exactly represented by integral Clifford+T circuits using
at most one clean ancilla.

Theorem (Amy et al., 2020)

A 2n × 2n unitary matrix V can be exactly represented by an
n-qubit circuit over {X ,CX ,CCX ,H ⊗ H} if and only if
V ∈ O2n

(
Z
[

1
2

])
.
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Complexity of a Vector

Definition (Least Denominator Exponent)

Let t ∈ Z
[

1
2

]
. A natural number k ∈ N is a denominator exponent

for t if 2kt ∈ Z. The least such k is called the least denominator
exponent of t, written lde(t).

Lemma

Let v ∈ Z
[

1
2

]n
be a unit vector. Let k = lde(v). If k = 0, then

v = ±ej for some j ∈ {1, · · · , n}.
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Correctness of the Synthesis Algorithm

Lemma (Parity)

Let u1, u2, u3, u4 be odd integers. Then there exists τ1, τ2, τ3, τ4 ∈ Z2 such that

K[1,2,3,4](−1)τ1
[1]

(−1)τ2
[2]

(−1)τ3
[3]

(−1)τ4
[4]


u1

u2

u3

u4

 =


u′1
u′2
u′3
u′4

 , u′1, u
′
2, u
′
3, u
′
4 are even integers.

Lemma (Counts)

Let v ∈ Z
[

1
2

]n
be a unit vector, and lde(v) = k > 0. Let w = 2kv . Then the number

of odd entries in w is a multiple of 4.

Proof.

Let w = 2kv ∈ Zn. Since vᵀv = 1, we have wᵀw = 4k and therefore
∑

w2
j = 4k .

Note that w2
j ≡ 1(4) if and only if wj is odd and w2

j ≡ 0(4) if and only if wj is even.

Hence the number of wj such that w2
j ≡ 1(4) is a multiple of 4.
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Example (Input: v ∈ Z
[

1
2

]8 Output: G1,G2,G3 Result: G3 · G2 · G1 · v = e1)

v :
1

4



−1

1

−1

−1

3

1

1

1


lde(v) = 2

G1=K[1,2,3,4](−1)[4](−1)[3](−1)[1]−−−−−−−−−−−−−−−−−−−−−→ v ′ :
1

4



2

0

0

0

3

1

1

1


lde(v ′) = 2

G2=K[5,6,7,8](−1)[5]−−−−−−−−−−−−→

v ′′ :
1

4



2

0

0

0

0

−2

−2

−2


=

1

2



1

0

0

0

0

−1

−1

−1


lde(v ′′) = 1

G1=K[1,6,7,8](−1)[8](−1)[7](−1)[6]−−−−−−−−−−−−−−−−−−−−−→ v ′′′ :
1

2



2

0

0

0

0

0

0

0


=



1

0

0

0

0

0

0

0


= e1

lde(v ′′′) = 0

.
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Correctness of the Synthesis Algorithm

Lemma (Reducibility)

Let v ∈ Z
[

1
2

]n
be a unit vector. Let k = lde(v). If k > 0, then

there exists a sequence of generators G1, . . . ,G` such that
lde(G` · . . . · G1v) < k.

Lemma (Column Reduction)

Let v ∈ Z
[

1
2

]n
be a unit vector. Then there exists a sequence of

generators G1, . . . ,G` such that G` · . . . · G1v = ej .

Lemma

If M ∈ On

(
Z
[

1
2

])
, then M can be written as a product of

generators from G.
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Graph Representation of On

(
Z
[

1
2

])
1. Build a graph for On

(
Z
[

1
2

])
.

s0 s1

s2

s3s4

s5 E

F

G

• Vertex = group element (aka, operators, matrices, states).

• Edge = a sequence of generators (e.g., Fs4 = s3).

• Cycle = relation (e.g., EG = F ).
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Proof of Completeness

2. The exact synthesis algorithm gives a canonical path from each
group element to I.

s0 s1

s2

s3s4

s5

I
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Semantic Equivalence

• A word is a sequence of generators. We write
−→
G for Gq . . .G1.

• Each operator has a unique normal form, which is the word
output by the exact synthesis algorithm.

• The interpretation of
−→
G is J

−→
G K = Gq · . . . · G1.

Definition

Two words
−→
G and

−→
F are semantically equivalent, written

−→
G ∼

−→
F ,

if J
−→
G K = J

−→
F K.
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Motivation

Let C1 and C2 be two circuits where

C1 = X[1,2]X[3,4]X[1,2], C2 = X[3,4].

To see if C1 ∼ C2, we can check

• by direct computation;

• or by simplifying C1:

C1 = X[1,2]X[3,4]X[1,2] ∼ X[1,2]X[1,2]X[3,4] ∼ IX[3,4] ∼ X[3,4] = C2.
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Syntactic Equivalence

Definition

Two words
−→
G and

−→
F are syntactically equivalent, written

−→
G ≈

−→
F ,

where ≈ is the smallest congruence relation on words containing
R1, . . . ,Rk and such that

−→
G ≈

−→
G ′,
−→
F ≈

−→
F ′ ⇒

−→
G
−→
F ≈

−→
G ′
−→
F ′.

Question: Can we use syntactic and semantic relations
interchangeably?
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Goal

Theorem (Analogous to Greylyn’s Theorem, 2014)

Let
−→
G and

−→
F be words over G of On

(
Z
[

1
2

])
, then

−→
G ≈

−→
F ⇐⇒

−→
G ∼

−→
F

Theorem (Soundness)
−→
G ≈

−→
F ⇒

−→
G ∼

−→
F

Proof

By matrix multiplication.
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Theorem (Completeness)

−→
G ∼

−→
F ⇒

−→
G ≈

−→
F

Proof Idea

If two words are semantically equivalent, they corresponds to the
same normal form. If we can reduce an arbitrary path to its normal
form using syntactic relations, this implies completeness.

I

s

−→
G

−→
F

−→
M

I

s−→
G ≈

−→
M
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A Complete Set of Syntactic Relations

X 2
[a,b] ≈ ε

(−1)2
[a] ≈ ε

K 2
[a,b,c,d ] ≈ ε

X[a,b]X[c,d ] ≈ X[c,d ]X[a,b]

X[a,b](−1)[c] ≈ (−1)[c]X[a,b]

X[a,b]K[c,d,e,f ] ≈ K[c,d,e,f ]X[a,b]

(−1)[a](−1)[b] ≈ (−1)[b](−1)[a]

(−1)[a]K[b,c,d,e] ≈ K[b,c,d,e](−1)[a]

K[a,b,c,d ]K[e,f ,g,h] ≈ K[e,f ,g,h]K[a,b,c,d ]

K[a,b,c,d ]K[b,d,e,f ] ≈ K[c,d,e,f ]K[a,b,c,e]

X[a,a′ ]X[a,b] ≈ X[a′,b]X[a,a′ ]

X[b,b′ ]X[a,b] ≈ X[a,b′ ]X[b,b′ ]

X[a,b](−1)[b] ≈ (−1)[a]X[a,b]

X[a,a′ ]K[a,b,c,d ] ≈ K[a′,b,c,d ]X[a,a′ ]

X[b,b′ ]K[a,b,c,d ] ≈ K[a,b′,c,b]X[b,b′ ]

X[c,c′ ]K[a,b,c,d ] ≈ K[a,b,c′,d ]X[c,c′ ]

X[d,d′ ]K[a,b,c,d ] ≈ K[a,b,c,d′ ]X[d,d′ ]

X[a,b]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ](−1)[b](−1)[d ]

X[c,d ]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ]

X[b,c]K[a,b,c,d ] ≈ (−1)[a]K[a,b,c,d ](−1)[a]K[a,b,c,d ](−1)[a]

K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h]

≈

(−1)[a](−1)[h]X[a,h]K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h]X[a,h](−1)[a](−1)[h]
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Proof of Completeness

Use induction to leverage finitely many syntactic relations such
that an arbitrary path can be rewritten into its equivalent
canonical path.

Lemma 1

Let s
−→
G−→ I be any sequence of simple edges with final state I, and

let s
−→
M
=⇒ I be the unique sequence of normal edges from s to I .

Then
−→
G ≈

−→
M .

To prove Lemma 1, we proceed by induction on the length of
−→
G .

I s

−→
M

−→
G
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I

s

r

−→
M

−→
G ′

G

−→
N

Induction Step
IH
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Lemma 2

Let s
G−→ r be a simple edge. Let s

−→
N

=⇒ I be the unique sequence

of normal edges from s to I , r
−→
M
=⇒ I be the unique sequence of

normal edges from r to I . Then
−→
MG ≈

−→
N .

To prove Lemma 2, we proceed by induction on the level of s.

I

s

r

−→
N

−→
M

G
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I

st0

tk r

−→
N0 N

−→
N ′

−→
Nk

G
−→
G ′
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Lemma 2

Let s
G−→ r be a simple edge. Let s

−→
N

==⇒ I be the unique sequence of normal

edges from s to I , r
−→
M

==⇒ I be the unique sequence of normal edges from r to I .

Then
−→
MG ≈

−→
N .

I

st0

tk r

t1

tk−1

−→
N0

N

−→
N ′

−→
Nk

−→
N1

−−−→
Nk−1

... IH

IH

Main Lemma

IH

G

G1

Gk
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Main Lemma

Let s, t, and r be states, N : s ⇒ t be a normal edge, and G : s → r be a
simple edge. Then there exists a state q, a sequence of normal edges−→
N ′ : r ⇒ q and a sequence of simple edges

−→
G ′ : t → q such that the diagram

s r

t q

G

−→
G ′

N
−→
N ′

commutes syntactically and level(
−→
G ′ : t → q) < level(s).

Proof

Since t and N are uniquely determined by s, and r is uniquely determined by
G , it suffices to distinguish cases based on the pair (s, G).
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Basic Edges

Definition

Consider

G′ = {X[α,α+1],K[1,2,3,4], (−1)[1] | 1 ≤ α ≤ n − 1}

and G′ ⊂ G. We call an element from G a simple generator, an

element from G′ a basic generator. Furthermore, an edge s
G−→ t is

simple if G is a simple generator. An edge s
G−→ t is basic if G is a

basic generator.

Lemma

Basic edges and simple edges can be used interchangeably while
the levels of edges are respected.
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Proof by Cases

(s,G)

G = X[α,α+1]

Subcase 3

G = K[1,2,3,4]
Subcase 2

G = (−1)[1]

Subcase
1
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A Complete Set of Syntactic Relations

X 2
[a,b] ≈ ε

(−1)2
[a] ≈ ε

K 2
[a,b,c,d ] ≈ ε

X[a,b]X[c,d ] ≈ X[c,d ]X[a,b]

X[a,b](−1)[c] ≈ (−1)[c]X[a,b]

X[a,b]K[c,d,e,f ] ≈ K[c,d,e,f ]X[a,b]

(−1)[a](−1)[b] ≈ (−1)[b](−1)[a]

(−1)[a]K[b,c,d,e] ≈ K[b,c,d,e](−1)[a]

K[a,b,c,d ]K[e,f ,g,h] ≈ K[e,f ,g,h]K[a,b,c,d ]

K[a,b,c,d ]K[b,d,e,f ] ≈ K[c,d,e,f ]K[a,b,c,e]

X[a,a′ ]X[a,b] ≈ X[a′,b]X[a,a′ ]

X[b,b′ ]X[a,b] ≈ X[a,b′ ]X[b,b′ ]

X[a,b](−1)[b] ≈ (−1)[a]X[a,b]

X[a,a′ ]K[a,b,c,d ] ≈ K[a′,b,c,d ]X[a,a′ ]

X[b,b′ ]K[a,b,c,d ] ≈ K[a,b′,c,b]X[b,b′ ]

X[c,c′ ]K[a,b,c,d ] ≈ K[a,b,c′,d ]X[c,c′ ]

X[d,d′ ]K[a,b,c,d ] ≈ K[a,b,c,d′ ]X[d,d′ ]

X[a,b]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ](−1)[b](−1)[d ]

X[c,d ]K[a,b,c,d ] ≈ K[a,b,c,d ]X[b,d ]

X[b,c]K[a,b,c,d ] ≈ (−1)[a]K[a,b,c,d ](−1)[a]K[a,b,c,d ](−1)[a]

K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h]

≈

(−1)[a](−1)[h]X[a,h]K[e,f ,g,h]K[a,b,c,d ]X[d,e]K[a,b,c,d ]K[e,f ,g,h]X[a,h](−1)[a](−1)[h]
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Future Work

• Improve the complexity of the synthesis algorithm:

O(22nnk)
Householder−−−−−−−−−−−→

Decomposition
O(4nnk)

Global−−−−−−−→
Synthesis

O(?)

• Interpret syntactic relations in terms of quantum circuit
relations.

• Find a minimal set of syntactic relations for On

(
Z
[

1
2

])
.

• Find syntactic relations for other restricted Clifford+T matrix
groups (e.g., imaginary Clifford+T circuits).
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Thank You!
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