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Ring

e The category of rings Ring has rings with 1 as objects and homomorphisms
preserving 1 as morphisms

e This is a very good category. It's monadic over Set, so complete and cocomplete.
It's locally finitely presentable, so has a notion of finitely presentable object, and
every object is a filtered colimit of them

e So why muck with it?
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Bimodules

e Given rings R and S, an S-R-bimodule M is simultaneously a left S-module and a

right R-module whose left and right actions commute

(sm)r = s(mr)

e If T is another ring and N a T-S-bimodule, the tensor product over S, N ®s M is

naturally a T-R-bimodule. We have associativity isomorphisms

P71 (N®sM)=(Per N)@s M
and unit isomorphisms
MRrR2M==S®sM

e To keep track of the various rings involved and what's acting on what and on which

side we can write
M:R—e>S

to mean that M is an S-R-bimodule
e The tensor product looks like a composition

R—Ys5s

N
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Bicategories

e Rings with bimodules as morphisms is not a category but a bicategory, Bim
e In a bicategory we have objects and morphisms which compose, but composition is
only associative and unitary up to isomorphism

e To express this isomorphism we need morphisms between morphisms

called 2-cells
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Bim

e In our example Bim

e Objects are rings
e Morphisms (1-cells) are bimodules
o A 2-cell

is a linear map of bimodules, i.e. a function such that
d(m1 + m2) = ¢(m1) + ¢(m2)
@(sm) = sp(m)
d(mr) = ¢(m)r
e Bim is a very good bicategory

e Cartesian bicategory
e Biclosed
M—NOoT P

N®sM—>P
N—>=PQrM
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Double categories

e A double category A has objects (A, B, C, D below) and two kinds of morphism,

strong, which we call horizontal (f, g below) and weak, or vertical (v, w below)
These are related by a further kind of morphism, double cells as in

A—'>B

$ :a>$w

C—D
g

e The horizontal arrows form a category HorA with composition denoted by
juxtaposition and identities by 14. Cells can also be composed horizontally forming a
category

e The vertical arrows compose to give a bicategory VertA whose 2-cells are the
globular cells of A, i.e. those with identities on the top and bottom

A A

$ ;siw

C —
Yo
Vertical composition is denoted by e and vertical identities by ida
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Rel

Example

Rel has sets as objects and functions as horizontal arrows, so HorRel = Set. A vertical
arrow R : X —e—Y is a relation between X and Y and there is a unique cell

X s x!

R$ = $R/

Y — Y’
g

if (and only if) we have

Vay(x ~rY = f(x) ~rr g(Y))
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The double category Ring

Objects are rings (with 1)

e Horizontal arrows are homomorphisms (pres. 1)
Vertical arrows are bimodules

A double cell

R%f-R'

M$ $ $M/

S—5
g

is a linear map in the sense that it preserves addition and is compatible with the
actions

¢(sm) = g(s)¢(m)
¢(mr) = ¢(m)f(r)
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Companions

e Let A be a double category, f : A—= B a horizontal arrow, and v: A—e—>B a
vertical one in A. We say that v is a companion of f if we are given cells, the
binding cells, o and f3, such that

Ao A foB f

A——=B
idA$ a $v B $id5 = idA$ idf $id3
A—=B——>B A— B

f 15 f
1a
A——A
idA$ o $V A—>1A A
A"~ B =- V$ 1, $V
V$ B $id3 B—=B
1p
B——B
1g

Companions, when they exist, are unique up to isomorphism, and we use the
notation f. to denote a choice of companion for f
e In Rel, every function f: A—= B has a companion, viz. its graph Gr(f) CAx B
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Companions in Ring

Proposition

(a) In Ring, every homomorphism f : R—=S has a companion, namely S considered as
an S-R-bimodule with actions e given by

s'es s's

ser = sf(r)

(b) A bimodule M : R—e—>S is a companion, i.e. is of the form f. for some horizontal
arrow f, if and only if it is free on one generator as a left S-module
(c) f is unique up to conjugation by a unit of S

Robert Paré (Dalhousie University) Morphisms of rings October 29, 2020 10 / 29




Companions in Ring

Proposition

(a) In Ring, every homomorphism f : R—=S has a companion, namely S considered as
an S-R-bimodule with actions e given by

s's

sf(r)

™ U0,

o o

S 0
I

(b) A bimodule M : R—e—>S is a companion, i.e. is of the form f. for some horizontal
arrow f, if and only if it is free on one generator as a left S-module
(c) f is unique up to conjugation by a unit of S

v

If M: R—e—>S is free as a left S-module with generator my € M. Then for every r € R
there is a unique element f(r) € S such that

mor = f(r)mo
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Companions in Ring

Proposition

(a) In Ring, every homomorphism f : R—=S has a companion, namely S considered as
an S-R-bimodule with actions e given by

s's

sf(r)

™ U0,

o o

S 0
I

(b) A bimodule M : R—e—>S is a companion, i.e. is of the form f. for some horizontal
arrow f, if and only if it is free on one generator as a left S-module
(c) f is unique up to conjugation by a unit of S

v

If M: R—e—>S is free as a left S-module with generator my € M. Then for every r € R
there is a unique element f(r) € S such that

mor = f(r)mo

If no is another free generator, then there exists an invertible element a € S such that
ng = amg. If g: R—> S corresponds to np, we have

g(r)no = nor = amor = af (r)mo = af(r)a *no
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The 2-category HorA

e Every double category A (strict or not) has a horizontal 2-category, Hor A. The
objects are those of A, the 1-cells are the horizontal arrows of A, and the 2-cells are

the special cells of A, i.e. cells of the form
B
B

A
A
Vertical composition of 2-cells uses the canonical isomorphisms A = p : id e id — id

f
—_—

—

A——A—'sB——28B
AT>B AB
$ : $

A—— AHB:B
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The 2-category Ring

When applied to the double category Ring we get a 2-category whose objects are rings,
whose arrows are homomorphisms and whose 2-cells are linear maps of the form

R—1'~5s
R$ = $S
R—S
g
Such an « is determined by its value at 1. We have a(r) = a(r-1) = g(r)a(1) and
a(r) =a(l-r) = a(1)f(r) which gives the following
Definition

The 2-category of rings, Ring, has rings as objects, homomorphisms as 1-cells and as
2-cells

elements a € S such that af(r) = g(r)a

Then (c) in the proposition says that f is isomorphic to g
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Conjoints

e Let f : A—= B be a horizontal arrow in a double category A and v: B—e—=Aa
vertical one. We say that v is conjoint to f if we are given cells ¥ and
(conjunctions) such that

1p

. BB A—'-B
$ $ $v = $|d3— idA$ “’;g $id5’
1g
B——B
V$ = $idB B2 B
A—>B .= $ = $
idA$ :w> $V A—sA
1a
A—sA
1a

e In Ring, every homomorphism f : R—=S has a conjoint f*, namely S: S —e—=R
with left action by R given by “restriction”

res = f(r)s
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Rank 2

e Homomorphisms f: R—> S correspond to bimodules M: R—e— S which are free
on one generator as left S-modules

e What if M is free on 2 generators?

e Assume M free on my, my as a left S-module. Nothing is said about the right action
(as before). Then for each r € R we get unique si1, s12, S21, 522 € S such that

mir = sum + S
mar = S;m 4+ S

Let's denote s; by f;j(r). So to each r we associate not 2 but 4 elements of S or
rather a 2 X 2 matrix in S

Robert Paré (Dalhousie University) Morphisms of rings October 29, 2020 14 / 29



Rank p
If M is free on p generators my, ..., mp:
P
mir =y fi(r)m;
j=1
Theorem

(a) Any matrix-valued homomorphism f : R— Mat,(S) induces an S-R-bimodule
structure on S

(b) Any S-R-bimodule M : R—e— S which is free on p generators as a left S-module is
isomorphic (as on S-R-bimodule) to S with R-action induced by a homomorphism

f : R— Mat,(S) as in (a)

(c) The homomorphism f in (b) is unique up to conjugation by an invertible p X p matrix
A in Mat,(S)

v
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Proof sketch

e Module structure on S
An element of S is a row vector, i.e. a 1 x p matrix s = [s1,...,sp]

s'es=[s's1,...,5's,] and  ser = sf(r)
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|
Proof sketch

e Module structure on S
An element of S is a row vector, i.e. a 1 x p matrix s = [s1,...,sp]

s'es=[s's1,...,5's,] and  ser = sf(r)

e Preservation of multiplication:
P
mi(rr') = Z Fae(rr"Ymy
k=1

and
(mir)r" = 327 fy(r)m;r’
= Zf:l fi(r) ( et ’S'k(r/)mk)
= 0 (22 () me
So fu(rr') = 327, fi(r)fi(r'), i.e. we get a homomorphism
f: R—> Mat,(S)

into the ring of p X p matrices in S
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Examples

e (Pairs of homomorphisms)
Let f,g : R—=S be homomorphisms. Then we get a homomorphism
h: R— Mat,(S) given by
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Examples

e (Pairs of homomorphisms)
Let f,g : R—=S be homomorphisms. Then we get a homomorphism
h: R— Mat,(S) given by

e (Derivations)
Let f : R—=S be a homomorphism and d an f-derivation, i.e. an additive function
d: R—=S such that
d(r')y =d(r)f(r') + f(r)d(r)

Then we get a homomorphism R — Mat,(S)

T { Z((rr)) f(fi }
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More examples

e More generally we can consider the subring of lower triangular matrices

{[5 2]

Then a homomorphism R —= Mat»(S) that factors through L corresponds to a pair
of homomorphisms f, g : R—=S and a derivation d from f to g, i.e. an additive
function d : R— S such that

d(rr') = d(n)f(r') + g(r)d(r')

s,s',s" € 5}
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More examples

e More generally we can consider the subring of lower triangular matrices

{[5 2]

Then a homomorphism R — Mat,(S) that factors through L corresponds to a pair
of homomorphisms f, g : R—=S and a derivation d from f to g, i.e. an additive
function d : R— S such that

d(rr') = d(n)f(r') + g(r)d(r')

e We give one more, somewhat mysterious, example to illustrate the variety of
morphisms we get just in the 2 X 2 case. For any ring S we can construct a ring of
“complex numbers" over S:

s, s’ € S}

wo-{] 5 7]

This is a subring of Mat>(S). A homomorphism R — Mat,(S) that factors through
C(S) corresponds to two additive functions cosd, sind : R— S with the properties

cosd(rr') = cosd(r)cosd(r') — sind(r)sind(r")
sind(rr') = sind(r)cod(r') 4 cosd(r)sind(r")
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The graded category of rings

e Homomorphisms f: R—> Mat,(S) and g: S—> Matq(T) correspond to bimodules
$SP:R—e>5 and T@W:5—e>T,

and we can compose these
T g 5P = T(Pa)

e This gives a composite gf

f Mat, (g)
R ——= Mat,(S) ————— Mat,Mat,(T) = Matyq(T)

Thus we first apply f to an element r € R to get a p X p matrix in S, and then apply g
to each entry separately to get a p x p block matrix of g X g matrices, and then consider
this as a (pg) X (pg) matrix

Theorem

With this composition we get an (N*,.)-graded category Gring whose objects are rings
and whose morphisms of degree p are homomorphisms into p X p matrices:
Jf
r_"O_ ¢
f: R— Mat,(S)

Robert Paré (Dalhousie University) Morphisms of rings October 29, 2020 19 / 29



|
The graded double category of rings

The double category Gring

Objects rings
Horizontal arrows (p,f): R—=R’

Vertical arrows are bimodules M: R —e—>=S
e A double cell

is a linear map (a cell in Ring)
R —'> Mat,(R')
¢
d 3 e
S — > Maty(S')

where Mat, ,(M’) is the bimodule of g X p matrices with entries in M’, with the
Matq(S’) action given by matrix multiplication on the left, and similarly for Mat,(R’)
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Properties of Gring

Theorem

(1) Gring is a double category
(2) Every horizontal arrow has a companion
(3) Every horizontal arrow has a conjoint

(4) The vertically full double subcategory determined by the morphisms of degree 1 is
isomorphic to Ring
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The 2-category Gring

e The horizontal 2-category of Gring can be described as follows:
e The objects are rings

e The morphisms are graded morphisms (p,f): R—=S

e A 2-cell

(q.8)

is given by a g x p matrix A with entries in S such that for every r € R

Af(r) = g(r)A
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Cauchy completeness

e If a horizontal arrow f: A—= B in a double category A has a companion f. and a
conjoint f* then f, is left adjoint to f* in VertA

e Say that B is Cauchy complete if every adjoint pair v 1 u, v: A—e—>B,
u: B—e— Ais of the form f, - f* for some f: A—B

e A is Cauchy if every object is Cauchy complete

Example
Rel is Cauchy J
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Adjoint bimodules

Recall that two bimodules M : R—e—= S and N : S—e—= R are adjoint, or more
precisely M is left adjoint to N, if there are an S-S linear map

e MRr N—S

and an R-R linear map
n:R—>N®sM

such that
M®r N®s M

M W &M

and
N®s M®r N

WW %5

RQrN—>N—>M®s$S
commute
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Characterization

The following theorem is well-known

Theorem

A bimodule M : R—e—S has a right adjoint if and only if it is finitely generated and
projective as a left S-module

Remark

Given this theorem then, we see that S is Cauchy-complete in Gring if and only if every
finitely generated projective left S-module is free. Commutative rings with this property
are of considerable interest in algebraic geometry having to do with when vector bundles
are trivial. If S is a PID or a local ring then it is Cauchy. That polynomial rings are so is
the content of the Quillen-Suslin theorem, which is highly non trivial
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Finitely generated projective

M is finitely generated, by ms,..., m, say, if and only if the S-linear map
:5°) > Mm

T(s1...8) = Y%, sim; is surjective. If M is S-projective, then T splits, i.e. there is an
S-linear map
c:M —=5P)

such that 7o = 1p. In fact, M is a finitely generated and projective S-module if and only
if there exist p, 7,0 such that 7o = 1y

Let the components of o be 01,...,0, : M—=S. Then 70 = 1) means that for every

m € M we will have
P

m= Z ci(m)m;

i=1
i.e. the o; provide an S-linear choice of coordinates for m relative to the generators
mi ... mp. All of this is independent of R

Robert Paré (Dalhousie University) Morphisms of rings October 29, 2020 26 / 29



Amplifying homomorphisms

For any r we can write
P

mir = Z oj(mir)m;

j=t

If we let £;(r) = oj(mir) we get the same formula as for Gring (on frame 15)

P
mir =y fi(r)m;
j=1

Theorem

(1) The functions f; define a non-unital homomorphism f : R — Mat,(S)
(2) Any such homomorphism comes from a bimodule which is finitely generated and
projective as a left S-module

(Non-unital) homomorphisms R — Mat,(S) have already appeared in the quantum field
theory literature (see e.g. Szlachanyi, K, Vecsernyes, K, Quantum symmetry and braid
group statistics in G-spin models, Commun. Math. Phys. 156, 127-168 (1993)) where
they are called amplifying homomorphisms or amplimorphisms for short
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The double category Ampli

e Objects: rings (with 1)
e Horizontal arrows: amplimorphisms R —= S,
e Vertical arrows: bimodules M : R—e—>S

o Cells:
LY R > Mat,(R)
M$ :¢> $M’ are cells M$ :¢> $Matq.,p(M/)
S s s’ S—> Matq(S')

i.e. additive functions ¢ : M —> Mat, ,(M’) such that

¢(mr) = ¢(m)f(r) — ¢(sm) = g(s)¢(m)

Theorem

(1) Ampli is a double category

(2) Ampli is vertically self dual

(3) Every horizontal arrow has a companion and a conjoint
(4) Ampli is Cauchy
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The 2-category Ampli

Proposition

The 2-category Ampli of amplifying homomorphisms has unitary rings as objects,
amplimorphisms (p,f) : R—=S as morphisms and as 2-cells ¢ : (p,f) = (q,8), g X p
matrices A such that

(1) Af(1)=A

(2) forevery re R,Af(r)=g(r)A

The identity 2-cell on (p, f) is the p x p matrix f(1)

Corollary

Two representations (p, f) and (q, g) of the same S-R-bimodule (finitely generated
projective over S) are related as follows: There is a g X p matrix A and a p X q matrix B,
both with entries in S, such that

(1) Af(1)=A and Af(r)=g(r)A

(2) Bg(1) =B and Bg(r)=1f(r)B

(3) AB=g(1) and BA=f(1)
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