Morphisms of rings

Robert Paré

@CAT Talk

October 29, 2020

- The category of rings **Ring** has rings with 1 as objects and homomorphisms preserving 1 as morphisms
- This is a very good category. It's monadic over **Set**, so complete and cocomplete. It's locally finitely presentable, so has a notion of finitely presentable object, and every object is a filtered colimit of them
- So why muck with it?

Bimodules

• Given rings R and S, an S-R-bimodule M is simultaneously a left S-module and a right R-module whose left and right actions commute

$$(sm)r = s(mr)$$

• If T is another ring and N a T-S-bimodule, the tensor product over S, $N \otimes_S M$ is naturally a T-R-bimodule. We have associativity isomorphisms

$$P \otimes_{\mathcal{T}} (N \otimes_{\mathcal{S}} M) \cong (P \otimes_{\mathcal{T}} N) \otimes_{\mathcal{S}} M$$

and unit isomorphisms

$$M \otimes_R R \cong M \cong S \otimes_S M$$

• To keep track of the various rings involved and what's acting on what and on which side we can write

 $M: R \longrightarrow S$

to mean that M is an S-R-bimodule

• The tensor product looks like a composition

- Rings with bimodules as morphisms is not a category but a bicategory, Bim
- In a bicategory we have objects and morphisms which compose, but composition is only associative and unitary up to isomorphism
- To express this isomorphism we need morphisms between morphisms

called 2-cells

$\mathcal{B}im$

- In our example *Bim*
 - Objects are rings
 - Morphisms (1-cells) are bimodules
 - A 2-cell

is a linear map of bimodules, i.e. a function such that

$$\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$$

$$\phi(sm) = s\phi(m)$$

$$\phi(mr) = \phi(m)r$$

- Bim is a very good bicategory
 - Cartesian bicategory
 - Biclosed

$$\frac{M \longrightarrow N \odot_T P}{N \otimes_S M \longrightarrow P}$$
$$\frac{N \otimes_S M \longrightarrow P}{N \longrightarrow P \oslash_R M}$$

Double categories

A double category A has objects (A, B, C, D below) and two kinds of morphism, strong, which we call horizontal (f, g below) and weak, or vertical (v, w below) These are related by a further kind of morphism, double cells as in

- The horizontal arrows form a category **Hor**A with composition denoted by juxtaposition and identities by 1_A. Cells can also be composed horizontally forming a category
- The vertical arrows compose to give a bicategory $\mathcal{V}ert\mathbb{A}$ whose 2-cells are the *globular cells* of \mathbb{A} , i.e. those with identities on the top and bottom

Vertical composition is denoted by \bullet and vertical identities by id_A

Example

Rel has sets as objects and functions as horizontal arrows, so Hor Rel = Set. A vertical arrow $R : X \longrightarrow Y$ is a relation between X and Y and there is a unique cell

if (and only if) we have

$$\forall_{x,y}(x\sim_R y\Rightarrow f(x)\sim_{R'} g(y))$$

The double category $\mathbb{R}\mathrm{ing}$

- Objects are rings (with 1)
- Horizontal arrows are homomorphisms (pres. 1)
- Vertical arrows are bimodules
- A double cell

$$\begin{array}{c} R \xrightarrow{f} R' \\ M \xrightarrow{\phi} & \downarrow M' \\ S \xrightarrow{g} S' \end{array}$$

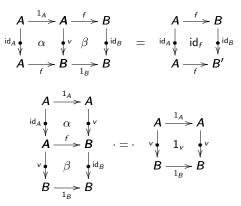
is a linear map in the sense that it preserves addition and is compatible with the actions

$$\phi(sm) = g(s)\phi(m)$$

 $\phi(mr) = \phi(m)f(r)$

Companions

Let A be a double category, f : A→ B a horizontal arrow, and v : A→ B a vertical one in A. We say that v is a *companion* of f if we are given cells, the *binding cells*, α and β, such that



Companions, when they exist, are unique up to isomorphism, and we use the notation f_\ast to denote a choice of companion for f

• In \mathbb{R} el, every function $f: A \longrightarrow B$ has a companion, viz. its graph $Gr(f) \subseteq A \times B$

Proposition

(a) In \mathbb{R} ing, every homomorphism $f : R \longrightarrow S$ has a companion, namely S considered as an S-R-bimodule with actions \bullet given by

$$s' \bullet s = s's$$

 $s \bullet r = sf(r)$

(b) A bimodule $M : R \longrightarrow S$ is a companion, i.e. is of the form f_* for some horizontal arrow f, if and only if it is free on one generator as a left S-module (c) f is unique up to conjugation by a unit of S

Proposition

(a) In Ring, every homomorphism $f : R \longrightarrow S$ has a companion, namely S considered as an S-R-bimodule with actions \bullet given by

$$s' \bullet s = s's$$

 $s \bullet r = sf(r)$

(b) A bimodule $M : R \longrightarrow S$ is a companion, i.e. is of the form f_* for some horizontal arrow f, if and only if it is free on one generator as a left S-module (c) f is unique up to conjugation by a unit of S

If $M : R \longrightarrow S$ is free as a left S-module with generator $m_0 \in M$. Then for every $r \in R$ there is a unique element $f(r) \in S$ such that

$$m_0r=f(r)m_0$$

Proposition

(a) In Ring, every homomorphism $f : R \longrightarrow S$ has a companion, namely S considered as an S-R-bimodule with actions \bullet given by

$$s' \bullet s = s's$$

 $s \bullet r = sf(r)$

(b) A bimodule $M : R \longrightarrow S$ is a companion, i.e. is of the form f_* for some horizontal arrow f, if and only if it is free on one generator as a left S-module (c) f is unique up to conjugation by a unit of S

If $M : R \longrightarrow S$ is free as a left S-module with generator $m_0 \in M$. Then for every $r \in R$ there is a unique element $f(r) \in S$ such that

$$m_0 r = f(r)m_0$$

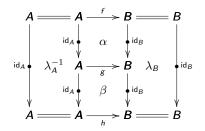
If n_0 is another free generator, then there exists an invertible element $a \in S$ such that $n_0 = am_0$. If $g : R \longrightarrow S$ corresponds to n_0 , we have

$$g(r)n_0 = n_0r = am_0r = af(r)m_0 = af(r)a^{-1}n_0$$

The 2-category $\mathcal{H}or\mathbb{A}$

• Every double category A (strict or not) has a horizontal 2-category, $\mathcal{H}or A$. The objects are those of A, the 1-cells are the horizontal arrows of A, and the 2-cells are the *special cells* of A, i.e. cells of the form

Vertical composition of 2-cells uses the canonical isomorphisms $\lambda = \rho$: id • id \rightarrow id



The 2-category *Ring*

When applied to the double category \mathbb{R} ing we get a 2-category whose objects are rings, whose arrows are homomorphisms and whose 2-cells are linear maps of the form

Such an α is determined by its value at 1. We have $\alpha(r) = \alpha(r \cdot 1) = g(r)\alpha(1)$ and $\alpha(r) = \alpha(1 \cdot r) = \alpha(1)f(r)$ which gives the following

Definition

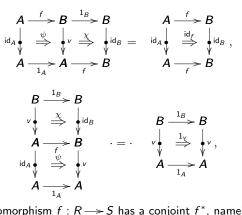
The 2-category of rings, $\mathcal{R}\textit{ing}$, has rings as objects, homomorphisms as 1-cells and as 2-cells

elements $a \in S$ such that af(r) = g(r)a

Then (c) in the proposition says that f is isomorphic to g

Conjoints

Let f : A→B be a horizontal arrow in a double category A and v : B→A a vertical one. We say that v is conjoint to f if we are given cells ψ and χ (conjunctions) such that



• In Ring, every homomorphism $f : R \longrightarrow S$ has a conjoint f^* , namely $S : S \longrightarrow R$ with left action by R given by "restriction"

$$r \bullet s = f(r)s$$

Robert Paré (Dalhousie University)

Morphisms of rings

- Homomorphisms f: R → S correspond to bimodules M: R → S which are free on one generator as left S-modules
- What if *M* is free on 2 generators?
- Assume M free on m₁, m₂ as a left S-module. Nothing is said about the right action (as before). Then for each r ∈ R we get unique s₁₁, s₁₂, s₂₁, s₂₂ ∈ S such that

 $m_1 r = s_{11} m_1 + s_{12} m_2$ $m_2 r = s_{21} m_1 + s_{22} m_2$

Let's denote s_{ij} by $f_{ij}(r)$. So to each r we associate not 2 but 4 elements of S or rather a 2 \times 2 matrix in S

If *M* is free on *p* generators m_1, \ldots, m_p :

$$m_i r = \sum_{j=1}^{p} f_{ij}(r) m_j$$

Theorem

(a) Any matrix-valued homomorphism $f : R \longrightarrow Mat_p(S)$ induces an S-R-bimodule structure on $S^{(p)}$

1

(b) Any S-R-bimodule $M : R \longrightarrow S$ which is free on p generators as a left S-module is isomorphic (as on S-R-bimodule) to $S^{(p)}$ with R-action induced by a homomorphism $f : R \longrightarrow Mat_p(S)$ as in (a)

(c) The homomorphism f in (b) is unique up to conjugation by an invertible $p\times p$ matrix A in $Mat_p(S)$

Proof sketch

• Module structure on $S^{(p)}$:

An element of $S^{(p)}$ is a row vector, i.e. a $1 \times p$ matrix $\mathbf{s} = [s_1, \ldots, s_p]$

$$s' \bullet \mathbf{s} = [s's_1, \dots, s's_p]$$
 and $\mathbf{s} \bullet r = \mathbf{s}f(r)$

Proof sketch

• Module structure on $S^{(p)}$:

An element of $S^{(p)}$ is a row vector, i.e. a $1 \times p$ matrix $\mathbf{s} = [s_1, \ldots, s_p]$

$$s' \bullet \mathbf{s} = [s's_1, \dots, s's_p]$$
 and $\mathbf{s} \bullet r = \mathbf{s}f(r)$

• Preservation of multiplication:

$$m_i(rr') = \sum_{k=1}^p f_{ik}(rr')m_k$$

and

$$\begin{aligned} (m_i r)r' &= \sum_{j=1}^{p} f_{ij}(r)m_j r' \\ &= \sum_{j=1}^{p} f_{ij}(r) \left(\sum_{k=1}^{p} f_{jk}(r')m_k \right) \\ &= \sum_{k=1}^{p} \left(\sum_{j=1}^{p} f_{ij}(r)f_{jk}(r') \right) m_k \end{aligned}$$

So $f_{ik}(rr') = \sum_{j=1}^{p} f_{ij}(r) f_{jk}(r')$, i.e. we get a homomorphism

$$f: R \longrightarrow Mat_p(S)$$

into the ring of $p \times p$ matrices in S

Examples

• (Pairs of homomorphisms) Let $f, g: R \longrightarrow S$ be homomorphisms. Then we get a homomorphism $h: R \longrightarrow Mat_2(S)$ given by

$$h(r) = \left[\begin{array}{cc} f(r) & 0 \\ 0 & g(r) \end{array} \right]$$

Examples

• (Pairs of homomorphisms) Let $f, g: R \longrightarrow S$ be homomorphisms. Then we get a homomorphism $h: R \longrightarrow Mat_2(S)$ given by

$$h(r) = \left[\begin{array}{cc} f(r) & 0 \\ 0 & g(r) \end{array} \right]$$

• (Derivations)

Let $f : R \longrightarrow S$ be a homomorphism and d an f-derivation, i.e. an additive function $d : R \longrightarrow S$ such that

$$d(rr') = d(r)f(r') + f(r)d(r')$$

Then we get a homomorphism $R \longrightarrow Mat_2(S)$

$$r \mapsto \left[\begin{array}{cc} f(r) & 0 \\ d(r) & f(r) \end{array}
ight]$$

More examples

• More generally we can consider the subring of lower triangular matrices

$$L = \left\{ \left[\begin{array}{cc} s & 0 \\ s' & s'' \end{array} \right] \middle| s, s', s'' \in S \right\}$$

Then a homomorphism $R \longrightarrow Mat_2(S)$ that factors through *L* corresponds to a pair of homomorphisms $f, g: R \longrightarrow S$ and a derivation *d* from *f* to *g*, i.e. an additive function $d: R \longrightarrow S$ such that

$$d(rr') = d(r)f(r') + g(r)d(r')$$

More examples

· More generally we can consider the subring of lower triangular matrices

$$L = \left\{ \left[\begin{array}{cc} s & 0 \\ s' & s'' \end{array} \right] \middle| s, s', s'' \in S \right\}$$

Then a homomorphism $R \longrightarrow Mat_2(S)$ that factors through *L* corresponds to a pair of homomorphisms $f, g: R \longrightarrow S$ and a derivation *d* from *f* to *g*, i.e. an additive function $d: R \longrightarrow S$ such that

$$d(rr') = d(r)f(r') + g(r)d(r')$$

• We give one more, somewhat mysterious, example to illustrate the variety of morphisms we get just in the 2 × 2 case. For any ring *S* we can construct a ring of "complex numbers" over *S*:

$$\mathbb{C}(S) = \left\{ \left[egin{array}{cc} s & s' \ -s' & s \end{array}
ight] \middle| s,s' \in S
ight\}$$

This is a subring of $Mat_2(S)$. A homomorphism $R \longrightarrow Mat_2(S)$ that factors through $\mathbb{C}(S)$ corresponds to two additive functions cosd, $sind : R \longrightarrow S$ with the properties

$$cosd(rr') = cosd(r)cosd(r') - sind(r)sind(r')$$

sind(rr') = sind(r)cod(r') + cosd(r)sind(r')

The graded category of rings

• Homomorphisms $f: R \longrightarrow Mat_p(S)$ and $g: S \longrightarrow Mat_q(T)$ correspond to bimodules

$$S^{(p)}: R \longrightarrow S$$
 and $T^{(q)}: S \longrightarrow T$,

and we can compose these

$$T^{(q)}\otimes_S S^{(p)}\cong T^{(pq)}$$

• This gives a composite gf

$$R \xrightarrow{f} Mat_{p}(S) \xrightarrow{Mat_{p}(g)} Mat_{p}Mat_{q}(T) \cong Mat_{pq}(T)$$

Thus we first apply f to an element $r \in R$ to get a $p \times p$ matrix in S, and then apply g to each entry separately to get a $p \times p$ block matrix of $q \times q$ matrices, and then consider this as a $(pq) \times (pq)$ matrix

Theorem

With this composition we get an (\mathbb{N}^+, \cdot) -graded category **Gring** whose objects are rings and whose morphisms of degree p are homomorphisms into $p \times p$ matrices:

$$\frac{R \xrightarrow{(p,f)} S}{f: R \longrightarrow Mat_p(S)}$$

The graded double category of rings

The double category $\mathbb{G}\mathrm{ring}$

- Objects rings
- Horizontal arrows $(p, f): R \longrightarrow R'$
- Vertical arrows are bimodules $M: R \longrightarrow S$
- A double cell

is a linear map (a cell in $\mathbb{R}ing$)

$$\begin{array}{c|c} R \xrightarrow{f} Mat_{p}(R') \\ & \downarrow & \downarrow \\ M & \downarrow & \downarrow \\ M & \downarrow & \downarrow \\ Mat_{q,p}(M') \\ S \xrightarrow{g} Mat_{q}(S') \end{array}$$

where $Mat_{q,p}(M')$ is the bimodule of $q \times p$ matrices with entries in M', with the $Mat_q(S')$ action given by matrix multiplication on the left, and similarly for $Mat_p(R')$

Theorem

(1) \mathbb{G} ring is a double category

(2) Every horizontal arrow has a companion

(3) Every horizontal arrow has a conjoint

(4) The vertically full double subcategory determined by the morphisms of degree 1 is isomorphic to $\mathbb{R}ing$

- The horizontal 2-category of Gring can be described as follows:
- The objects are rings
- The morphisms are graded morphisms $(p, f): R \longrightarrow S$
- A 2-cell

is given by a $q \times p$ matrix A with entries in S such that for every $r \in R$

Af(r) = g(r)A

- If a horizontal arrow f: A→B in a double category A has a companion f_{*} and a conjoint f^{*} then f_{*} is left adjoint to f^{*} in VertA
- Say that B is Cauchy complete if every adjoint pair v ⊢ u, v: A → B,
 u: B → A is of the form f_{*} ⊢ f^{*} for some f: A → B
- A is Cauchy if every object is Cauchy complete

Example

 \mathbb{R} el is Cauchy

Adjoint bimodules

Recall that two bimodules $M : R \longrightarrow S$ and $N : S \longrightarrow R$ are adjoint, or more precisely M is left adjoint to N, if there are an S-S linear map

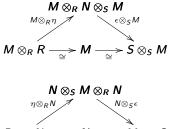
$$\epsilon: M \otimes_R N \longrightarrow S$$

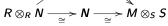
and an R-R linear map

$$\eta: R \longrightarrow N \otimes_S M$$

such that

and





commute

The following theorem is well-known

Theorem

A bimodule $M : R \longrightarrow S$ has a right adjoint if and only if it is finitely generated and projective as a left S-module

Remark

Given this theorem then, we see that S is Cauchy-complete in \mathbb{G} ring if and only if every finitely generated projective left S-module is free. Commutative rings with this property are of considerable interest in algebraic geometry having to do with when vector bundles are trivial. If S is a PID or a local ring then it is Cauchy. That polynomial rings are so is the content of the Quillen-Suslin theorem, which is highly non trivial

Finitely generated projective

M is finitely generated, by m_1, \ldots, m_p say, if and only if the S-linear map

$$\tau: S^{(p)} \longrightarrow M$$

 $\tau(s_1 \dots s_p) = \sum_{i=1}^p s_i m_i$ is surjective. If M is S-projective, then τ splits, i.e. there is an S-linear map

$$\sigma: M \longrightarrow S^{(p)}$$

such that $\tau \sigma = \mathbf{1}_M$. In fact, M is a finitely generated and projective S-module if and only if there exist p, τ, σ such that $\tau \sigma = \mathbf{1}_M$

Let the components of σ be $\sigma_1, \ldots, \sigma_p : M \longrightarrow S$. Then $\tau \sigma = 1_M$ means that for every $m \in M$ we will have

$$m=\sum_{i=1}^p\sigma_i(m)m_i$$

i.e. the σ_i provide an *S*-linear choice of coordinates for *m* relative to the generators $m_1 \dots m_p$. All of this is independent of *R*

Amplifying homomorphisms

For any r we can write

$$m_i r = \sum_{j=1}^p \sigma_j(m_i r) m_j$$

If we let $f_{ij}(r) = \sigma_j(m_i r)$ we get the same formula as for Gring (on frame 15)

$$m_i r = \sum_{j=1}^p f_{ij}(r) m_j$$

Theorem

(1) The functions f_{ij} define a non-unital homomorphism $f : R \longrightarrow Mat_p(S)$ (2) Any such homomorphism comes from a bimodule which is finitely generated and projective as a left S-module

(Non-unital) homomorphisms $R \longrightarrow Mat_p(S)$ have already appeared in the quantum field theory literature (see e.g. Szlachanyi, K, Vecsernyes, K, Quantum symmetry and braid group statistics in *G*-spin models, Commun. Math. Phys. 156, 127-168 (1993)) where they are called *amplifying homomorphisms* or *amplimorphisms* for short

The double category Ampli

- Objects: rings (with 1)
- Horizontal arrows: amplimorphisms $R \longrightarrow S$,
- Vertical arrows: bimodules $M: R \longrightarrow S$
- Cells:

$$\begin{array}{cccc} R & \stackrel{(p,f)}{\longrightarrow} R' & & R \stackrel{f}{\longrightarrow} Mat_p(R') \\ M & \stackrel{\phi}{\downarrow} & \stackrel{\phi}{\Longrightarrow} & \stackrel{f}{\downarrow} M' & \text{are cells} & & M \stackrel{\phi}{\downarrow} & \stackrel{\phi}{\Longrightarrow} & \stackrel{f}{\downarrow} Mat_{q,p}(M') \\ S & \stackrel{\phi}{\longrightarrow} & S' & & S \stackrel{-}{\longrightarrow} Mat_q(S') \end{array}$$

i.e. additive functions $\phi: M \longrightarrow Mat_{q,p}(M')$ such that

$$\phi(mr) = \phi(m)f(r)$$
 $\phi(sm) = g(s)\phi(m)$

Theorem

(1) Ampli is a double category
(2) Ampli is vertically self dual
(3) Every horizontal arrow has a companion and a conjoint
(4) Ampli is Cauchy

The 2-category *Ampli*

Proposition

The 2-category Ampli of amplifying homomorphisms has unitary rings as objects, amplimorphisms $(p, f) : R \longrightarrow S$ as morphisms and as 2-cells $\phi : (p, f) \Rightarrow (q, g), q \times p$ matrices A such that (1) Af(1) = A(2) for every $r \in R, Af(r) = g(r)A$ The identity 2-cell on (p, f) is the $p \times p$ matrix f(1)

Corollary

Two representations (p, f) and (q, g) of the same S-R-bimodule (finitely generated projective over S) are related as follows: There is a $q \times p$ matrix A and a $p \times q$ matrix B, both with entries in S, such that (1) Af(1) = A and Af(r) = g(r)A(2) Bg(1) = B and Bg(r) = f(r)B(3) AB = g(1) and BA = f(1)