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This talk

1. What are effect monoids? and why would you want to
consider the ω-complete ones.

2. Origin of effect monoids: the scalars of an effectus

3. Representation theory for ω-complete effect monoids

4. Duality for directed complete effect monoids



Effect monoids

Examples:
B, Boolean algebra; r0, 1sA “ ta P A : 0 ď a ď 1u,

A commutative unital C˚-algebra
That is: C pX , t0, 1uq; C pX , r0, 1sq, X compact Hausdorff

Definition: An effect monoid is a set M with a

1. partial addition >,
a > b :“ a_ b, a > b :“ a` b,
when a^ b “ 0 when a` b ď 1

2. a complement operation p ¨ qK,
aK :“  a aK :“ 1´ a

3. a zero (and one) element 0 (and 1 :“ 0K),

4. and a multiplication ¨,
a ¨ b :“ a^ b regular multiplication

obeying certain axioms (next slide).



Effect monoid axioms

1. a > b “ b > a

2. pa > bq> c “ a > pb > cq

3. a > 0 “ a

4. a > aK “ 1

5. a > b1 “ a > b2 implies
b1 “ b2

6. a > b “ 0 implies
a “ b “ 0

7. 1 ¨ a “ a “ a ¨ 1

8. pabqc “ apbcq

9. apb > cq Ý ab > ac &
pb > cqa Ý ba > ca

A Ý B means “when A is defined, so is B, and they’re equal.”
1
2 ¨

2
3 > 1

2 ¨
2
3 makes sense in r0, 1s, but 1

2p
2
3 > 2

3q doesn’t.

Dropping axioms 7–9 and ¨ we get an effect algebra.



Examples of effect monoids

1. Boolean algebras

2. r0, 1sA , where A is a commutative unital C˚-algebra.
(Commutative, because ab ě 0 for a, b ě 0 implies
ab “ pabq˚ “ b˚a˚ “ ba.
For non-commutative C˚-algebras, the ‘sequential product’

a&b :“
?
ab
?
a can be restricted to r0, 1sA , leading to Gudder’s

‘sequential effect algebras’.)

3. r0, 1sR , where R is a partially ordered (not necessarily
commutative) unital ring R.
(A Boolean algebra B seen as ring with ‘xor’
a‘ b :“ pa_ bq ^  pa^ bq as addition is not partially
orderable, since a‘ a “ 0.)



A non-commutative effect monoid1

r0, 1sR , where R is the totally ordered unital ring on the vector
space R5, ordered lexicographically, i.e.

v ă w ðñ DN ă 5 r vN ă wN ^ @ n ă N r vn “ wn s s,

with multiplication given on basis vectors
e1 “ p1, 0, 0, 0, 0q, . . . , e5 “ p0, 0, 0, 0, 1q by:

¨ e1 e2 e3 e4 e5
e1 e1 e2 e3 e4 e5
e2 e2 e4 e5 0 0
e3 e3 0 0 0 0
e4 e4 0 0 0 0
e5 e5 0 0 0 0

(Totally ordered non-commutative rings can not be Archimedean.)

1From Bas Westerbaan’s master’s thesis.



Effect monoids are terrible structures

1. Only trivial things can be proven about them,

2. and obvious propositions seem to be false,
(e.g. that aaK > aaK > aaK exists.)

3. though counterexamples are difficult to obtain,

4. but give no deep insight when found.

The situation is completely different for ω-complete effect
monoids!



ω-completeness

In an effect monoid (or effect algebra) M we define:

a ď b ðñ Dd P M. b “ a > d .

(By the way, such a d is unique when it exists, and written ba a.)

An effect monoid is ω-complete when every ascending sequence
a1 ď a2 ď ¨ ¨ ¨ has a supremum

Ž

n an.
(We do not require > and ¨ to preserve these suprema.)



Examples of ω-complete effect monoids (ω-EMs)

1. ω-complete Boolean algebra, such as a σ-algebra.

2. r0, 1s-valued measurable functions on a σ-algebra.

3. r0, 1sA , where A is a ‘ω-complete’ commutative unital
C˚-algebra (such as a commutative von Neumann algebra.)

4. C pX , r0, 1sq where X is a compact Hausdorff is ω-complete iff
X is basically disconnected, that is, X zf ´1p0q is open for
every f P C pX , r0, 1sq.

5. The clopens C pX , t0, 1uq of a basically disconnected compact
Hausdorff space X .



ω-complete effect monoids are great structures!

Given an ω-EM M.

1. One easily sees that M has no infinitesimals:
if na exists for all n, then a > >8

n“0 a “>8
n“0 a, so a “ 0.

2. Harder: M can be represented by continuous functions,
that is, is isomorphic to a subalgebra of C pX , r0, 1sq for some
basically disconnected compact Hausdorff space X .

3. In particular, M is commutative.

4. Lattice: binary infima a^ b and suprema a_ b exist.

5. Above each a P M there is a least idempotent ras.

6. division: For all a ď b we can define a{b P M with
a “ pa{bqb.

7. Multiplication preserves all existing suprema (not just
countable directed ones.)



Directed complete effect monoid

A directed complete effect monoid (dcEM) is isomorphic to

C pX , r0, 1sq ‘ C pY , t0, 1uq

for extremally disconnected (the closures of opens are open)
compact Hausdorff spaces X and Y .

So a directed complete effect monoids splits into Boolean and
convex parts.

(This can be turned into a categorical duality, as we’ll see later.)



Counterexample

ω-EMs don’t split in Boolean and convex parts:

Consider, given an uncountably infinite set X , the ω-EM

M :“
!

f : X Ñ r0, 1s :

„

either f ´1p0q is cocountable
or f ´1p1q is cocountable

)

(So each f P M is either mostly equal to 0, or mostly equal to 1.)

Note that M has no Boolean idempotents, no half, but does have
a maximal set of orthogonal halvable idempotents.
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Origin of effect monoids: effectuses

An effectus is a category E with finite coproducts, final object 1,
such that

A` B
1`! //

!`1
��

A` 1

!`1
��

1` B
1`!

// 1` 1

A
! //

κ1

��

1

κ1

��
A` B

!`!
// 1` 1

are pullbacks, and

¨¨¨
¨¨ ,
¨¨¨
¨¨ : 1` 1` 1 ÝÑ 1` 1

are jointly monic.



States and predicates
Origin of effect monoids: effectuses

An effectus is intended to reason about states s : 1 Ñ X ,
predicates p : X Ñ 1` 1, (and partial maps f : X Ñ Y ` 1.)

The composition p ˝ s is a morphism 1 Ñ 1` 1 (called a scalar)
that represents the probability that predicate p holds in state s.

It’s the morphisms 1 Ñ 1` 1 that form an effect monoid.



Addition of predicates
Origin of effect monoids: effectuses

Predicates p, q : X Ñ 1` 1 (in particular, scalars 1 Ñ 1` 1) in an
effectus are summable when there is a b : X Ñ 1` 1` 1 with

1` 1

X

p
88

q &&

b // 1` 1` 1

¨¨¨
¨¨

OO

¨¨¨
¨¨
��

1` 1

,

in which case we define p > q :“ ¨¨¨¨¨ ˝ b.

(Note that b is unique by joint monicity of ¨¨¨¨¨ and ¨¨¨¨¨ .)



Predicates form an effect algebra
Origin of effect monoids: effectuses

The predicates X Ñ 1` 1 form an effect algebra with:

1 :“ p X ! // 1 κ1 // 1` 1 q

0 :“ p X ! // 1 κ2 // 1` 1 q

pK :“ p X p // 1` 1 ¨¨
¨¨
// 1` 1 q

For example, p > pK “ 1, because

b :“ p X p // 1` 1 ¨¨
¨¨¨
// 1` 1` 1 q

satisfies ¨¨¨
¨¨ ˝ b “ p, ¨¨¨

¨¨ ˝ b “ pK, ¨¨¨
¨¨ ˝ b “ 1.



Multiplication of scalars
Origin of effect monoids: effectuses

The scalars 1 Ñ 1` 1 form an effect monoid with multiplication:

s ¨ t :“ p 1 s // 1` 1 t`1 // 1` 1` 1 ¨¨¨
¨¨

// 1` 1 q

(Which is, if you like, the Kleisli composition of s and t with
respect to the monad p ¨ q ` 1 that has unit X κ1 // X ` 1 and

multiplication X ` 1` 1 ¨¨¨
¨¨
// X ` 1 .)

Note that there is no reason to expect that this multiplication is
commutative. In fact, any effect monoid M occurs as the scalars of
some effectus (for example, the effectus of ‘effect modules’
over M.)
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Idempotents

An element p of an effect monoid M is an idempotent
when p2 “ p, that is, ppK “ 0.

Given a P M, we have:

1. a ď p ðñ apK “ 0 ðñ ap “ a.

2. ap “ pap “ pa

(So all idempotents are ’central’.)

Corollary: pM is an effect monoid called (with unit p) called a
corner, and M – pM ‘ pKM via a ÞÑ ppa, pKaq.



Boolean and halvable idempotents

An idempotent p of an effect monoid M is

1. Boolean when all a ď p are idempotents;

2. halvable when there is a P M with a > a “ p.

We say that M is Boolean/halvable when 1M is Boolean/halvable.

It turns out that:

1. An effect monoid is Boolean iff M is a Boolean algebra (easy,
because the idempotents form a Boolean algebra).

2. An ω-EM M is halvable iff M – C pX , r0, 1sq for some
basically disconnected compact Hausdorff space X
(hard—we’ll get back to this.)



How to get (Boolean and halvable) idempotents?

Given an element a of an effect monoid M we have

1 “ a > aK “ a > pa > aKqaK “ a > aaK > paKq2 “ ¨ ¨ ¨ .

Going on like that, we get:

1 “ >năN apaKqn > paKqN .

So when M is ω-complete, we can define

ras :“ >năN apaKqn and tau :“
Ź

n a
n.

Then tau is the greatest idempotent below a (intuitively, because
cn converges to 0 when c P r0, 1q) and ras is the least idempotent
above a.



Non-trivial property of ceiling

Proposition: ab “ 0 ùñ arbs “ 0.

Proof: One hopes that arbs ” a>n bpb
Kqn

?
“>npabqpb

Kqn “ 0,
but does ap ¨ q preserve suprema? (We only automatically have ě.)

Writing sN :“>N
n“0 bpb

Kqn, we have asN “ 0, so aKsN “ sN , so

rbs “
Ž

N sN “
Ž

N aKsN ď aK
Ž

N sN ” aKrbs ď rbs

Thus aKrbs “ rbs, so arbs “ 0.



How to get halvable idempotents

When b ” a > a, then rbs “ p>n apb
Kqnq> p>n apb

Kqnq is an
halvable idempotent.

How to get halvable elements? Given a, we have aaK “ aKa,
because adding a2 to either side gives a.
Now, 1 “ pa > aKq2 “ a2 > 2aaK > paKq2, so 2aaK exists.

Whence r2aaKs is a halvable idempotent (but might be zero.)
If r2aaKs “ 0, then aaK ď r2aaKs “ 0, so a is an idempotent.

Moral: When the halveable idempotents/elements of an ω-EM
are exhausted, only (Boolean) idempotents are left.



Crux of the representation theorem

Using Boolean and halvable idempotents: Let E be a maximal
set of orthogonal idempotents of an ω-EM M such that each p P E
is either Boolean or halvable, then it turns out (we’ll get back to
this) that the map

% : a ÞÑ ppaqpPE : M ÝÑ
à

pPE

pM

is an isomorphism onto its image.
(We cannot always expect surjectivity.)

Each pM, being Boolean or halvable, will turn out to be
isomorphic to either a C pX , t0, 1uq or a C pX , r0, 1sq for
some basically disconnected compact Hausdorff space X .
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From halvable ω-EM to C pX , r0, 1sq, I

Given a halvable ω-EM M and h P M with h > h “ 1, we can
define a scalar multiplication r0, 1s ˆM Ñ M first on the dyadics
by m

2n ¨ a “ mhna, and then extend it to all r0, 1s by
ω-completeness, such that:

1. λpµaq “ pλµqa

2. pλ> µqa Ý λa > µa

3. λpa > bq Ý λa > λb

4. 1 ¨ a “ a

That is, M is a ‘convex effect algebra’.



From halvable ω-EM to C pX , r0, 1sq, II

Such a convex effect algebra is, by a theorem of Gudder and
Pulmannová’s, isomorphic to r0, 1sV for some order unit space V
(i.e. partially ordered real vector space with a positive element 1
such that for each a P V there is n with ´n ď a ď n.)

However: to see that V – C pX q we need additional structure:

§ either extend multiplication to V (and use Kadison’s
representation theory for ordered algebras);

§ or show M (and thus V ) is a lattice (and use Yosida’s
representation theorem for vector lattices.)

We’ll go for the lattice structure.



Lattice structure, I

Idea: approximate a^ b using multiplication.

First approximation: ab.

Note in r0, 1s (and so in C pX , r0, 1sq too)

a^ b a ab “ paa abq ^ pb a abq.

Second approximation: ab > paa abqpb a abqq.

Going on like this. . .

Bram Westerbaan

Bram Westerbaan
A+B=A\/B + A/\B

Bram Westerbaan
A/\B ≤ C ≤ A\/B



Lattice structure, II

Given elements a and b of an ω-complete effect monoid M, define

a^ b :“
8

>
n“0

anbn where

„

aN :“ aa>năN anbn
bN :“ b a>năN anbn

Then a^ b is the infimum of a and b.

(Note that aNbN is summable with >năN anbn, because
aN ě aNbN is, by definition; moreover, aN > >năN anbn “ a,
implies >nďN anbn ď a.)

We also get:

Ź

n an :“ aa a^ b and
Ź

n bn :“ b a a^ b.



Lattice structure, III

So why is a^ b the infimum? Clearly, a^ b ď a, b.
So let ` ď a, b be given; we must show that a^ b ě `.

Note that p
Ź

n anqp
Ź

n bnq ď
Ź

n anbn “ 0, because N
Ź

anbn
exists for all N, because >N anbn exists.
Writing p :“ r

Ź

n bns, we have:

p
Ź

n anqp “ 0 and p
Ź

n bnqp
K “ 0.

Thus, as a^ b >
Ź

n bn “ b,

bpK “ pa^ bqpK and similarly ap “ pa^ bqp.

Now, ` “ `pK > `p ď bpK > ap “ pa^ bqpK > pa^ bqp “ a^ b.

Whence: a^ b is the greatest lower bound of a and b.



From halvable ω-EM to C pX , r0, 1sq, III

Getting back to our halvable ω-EM M that is isomorphic to r0, 1sV
for some order unit space V :

§ Since M is a lattice, so is V ;

§ Since M is ω-complete, so is V , for bounded sequences.

Whence V is a ‘σ-Dedekind complete Riesz space’, and thus,
by Yosida’s representation theorem, isomorphic to C pX q for some
basically disconnected compact Hausdorff space.

(As a result, M – C pX , r0, 1sq.)



From halvable ω-EM to C pX , r0, 1sq, IV

In more detail: We have a Riesz space isomorphism (linear,
unital, and ^-preserving)

a ÞÑ pϕ ÞÑ ϕpaqq : V ÝÑ C pSpecpV qq,

where SpecpV q is the basically disconnected compact Hausdorff
subspace of RV consisting of the Riesz homomorphisms
ϕ : V Ñ R.

This map restricts to an isomorphism M Ñ C pSpecpV q, r0, 1sq, of
lattice effect algebras.

But does this isomorphism preserve multiplication?



From halvable ω-EM to C pX , r0, 1sq, V

For a ÞÑ pϕ ÞÑ ϕpaqq : M ÝÑ C pSpecpV q, r0, 1sq to preserve
multiplication, it suffices to show that ϕpabq “ ϕpaqϕpbq for
all a, b P M and ϕ P SpecpV q.

Proof: define dpa, bq :“ a_ b a a^ b. Then:

1. dpab, acq ď a dpb, cq ď dpb, cq,
since ab _ ac ď apb _ cq and ab ^ ac ě apb ^ cq.

2. dpa, bq “ 0 ùñ a “ b,
since a and b are squeezed between a^ b and a_ b.

3. ϕpdpa, bqq “ dpϕpaq, ϕpbqq, since ϕ preserves ^, _ and a.

Now: dpϕpabq, ϕpaqϕpbq q “ ϕpdp ab, aϕpbq qq ď
ϕp dpb, ϕpbq1q q “ dpϕpbq, ϕpbqq “ 0, thus ϕpabq “ ϕpaqϕpbq.

So indeed, halvable ω-EMs are C pX , r0, 1sq-es!



Crux of the representation theorem, II

The key to proving that given an maximal orthogonal set of
idempotents E of an ω-complete effect monoid M the map

% : a ÞÑ ppaqpPE : M ÝÑ
à

pPE

pM

is an embedding is showing that % reflects the order:

a ď b ðù @p P E r pa ď pb s.

For this, it suffices to show that a “
Ž

pPE pa.

We can get this using
Ž

E “ 1 (because E is maximal) if
multiplication preserves arbitrary suprema:

a “ 1 ¨ a “ p
Ž

E qa “
Ž

pPE pa.



Preservation of suprema

How does one prove an operation preserves suprema?

Example: Given an element a of an ordered vector space V ,

a` p ¨ q : V Ñ V is not only order preserving,

but also has an order preserving inverse p ¨ q ´ a : V Ñ V ,
so a` p ¨ q is an order isomorphism, and therefore preserves
suprema (and infima.)



Division

Similarly, multiplication in an ω-EM M preserves suprema,
essentially because of the existence of a (partially defined)
division:

Proposition: Given a ď b in M,

a{b :“ >8n“0apb
Kqn

satisfies pa{bqb “ a, and provides an order preserving inverse to
the map a ÞÑ ab : Mrbs Ñ Mb.

P.S. note that a{a “ ras. (So 0{0 “ 0 in this context.)



Representation theorem, for ω-EMs

All in all, given an ω-EM M we get an embedding

M ÝÑ
à

pPE

pM – C pX , r0, 1sq ‘ C pY , t0, 1uq,

(by aggregating the Boolean and halvable factors) where X and Y
are basically disconnected compact Hausdorff spaces.

In particular, M is commutative.
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Representation theory, for dcEMs

A directed complete effect monoid (dcEM) M properly splits in
‘discrete’ and ‘continuous’ parts:

M – eM ‘ eKM – C pX , r0, 1sq ‘ C pY , t0, 1uq,

where X and Y are extremally disconnected compact Hausdorff
spaces.
(Indeed, in M there will by directed completeness be a greatest
halvable idempotent e, and eK will necessarily be Boolean.)



Spectrum of effect monoids

To turn this into a duality, define the spectrum of a dcEM M by:

SpecpMq :“ tϕ : M Ñ r0, 1s preserving >, 1, ¨ u.

The discrete part of the spectrum is defined to be:

DM :“ tϕ P SpecpMq : ϕpMq Ď t0, 1u u.

Then DM is an clopen of the extremally disconnected compact
Hausdorff space SpecpMq.

Conversely, given a clopen C of a extremally disconnected compact
Hausdorff space X we get a directed complete effect monoid

C pX ,Dq :“ t f : X Ñ r0, 1s continuous with f pDq Ď t0, 1u u.



Duality

The operations give a duality between:

§ the category of directed complete effect monoids
with effect monoid homomorphisms (that preserve >, 1, ¨, but
not necessarily arbitrary suprema); and

§ the category with clopen subsets of extremally disconnected
compact Hausdorff spaces,
with as morphisms from D1 Ď X1 to D2 Ď X2 the continuous
maps f : X1 Ñ X2 with f pD1q Ď D2.



That’s it!

Questions?

Some applications:

1. Study of convexity in sequential effect algebras
(JvdW, BW, AW, arXiv:2004.12749v2)

2. ‘ω-complete’ effectuses
(Kenta Cho, JvdW, BW, arXiv:2003.10245)

3. Reconstructing quantum theory without positing real
probabilities (Part A of JvdW’s thesis, arXiv:2101.03608)


