The structure (and story) of ω-complete effect monoids

Abraham Westerbaan
Bas Westerbaan
John van de Wetering

Dalhousie (AW), PQShield (BW), Radboud University \& Oxford (JvdW)

March 30, 2021

This talk

1. What are effect monoids? and why would you want to consider the ω-complete ones.
2. Origin of effect monoids: the scalars of an effectus
3. Representation theory for ω-complete effect monoids
4. Duality for directed complete effect monoids

Effect monoids

Examples:

B, Boolean algebra;
$[0,1]_{\mathscr{A}}=\{a \in \mathscr{A}: 0 \leqslant a \leqslant 1\}$,
\mathscr{A} commutative unital C^{*}-algebra
That is: $C(X,\{0,1\}) ; \quad C(X,[0,1]), X$ compact Hausdorff
Definition: An effect monoid is a set M with a

1. partial addition \otimes,

$$
\begin{array}{ll}
a \otimes b:=a \vee b, & a \otimes b:=a+b, \\
\text { when } a \wedge b=0 & \text { when } a+b \leqslant 1
\end{array}
$$

2. a complement operation $(\cdot)^{\perp}$, $a^{\perp}:=\neg a \quad a^{\perp}:=1-a$
3. a zero (and one) element 0 (and $1:=0^{\perp}$),
4. and a multiplication -

$$
a \cdot b:=a \wedge b \quad \text { regular multiplication }
$$

obeying certain axioms (next slide).

Effect monoid axioms

$$
\begin{array}{ll}
\text { 1. } a \otimes b=b \boxtimes a & \text { 6. } a \otimes b=0 \text { implies } \\
& a=b=0 \\
\text { 2. }(a \otimes b) \boxtimes c=a \otimes(b \boxtimes c) & \text { 7. } 1 \cdot a=a=a \cdot 1 \\
\text { 3. } a \otimes 0=a & \text { 8. }(a b) c=a(b c) \\
\text { 4. } a \otimes a^{\perp}=1 & \text { 9. } a(b \otimes c)=a b \boxtimes a c \& \\
\text { 5. } a \otimes b_{1}=a \otimes b_{2} \text { implies } & (b \otimes c) a \rightleftharpoons b a \boxtimes c a
\end{array}
$$

$A \rightleftharpoons B$ means "when A is defined, so is B, and they're equal." $\frac{1}{2} \cdot \frac{2}{3} \otimes \frac{1}{2} \cdot \frac{2}{3}$ makes sense in $[0,1]$, but $\frac{1}{2}\left(\frac{2}{3} \otimes \frac{2}{3}\right)$ doesn't.

Dropping axioms 7-9 and \cdot we get an effect algebra.

Examples of effect monoids

1. Boolean algebras
2. $[0,1]_{\mathscr{A}}$, where \mathscr{A} is a commutative unital C^{*}-algebra. (Commutative, because $a b \geqslant 0$ for $a, b \geqslant 0$ implies $a b=(a b)^{*}=b^{*} a^{*}=b a$.
For non-commutative C^{*}-algebras, the 'sequential product' $a \& b:=\sqrt{a} b \sqrt{a}$ can be restricted to $[0,1]_{\mathscr{A}}$, leading to Gudder's 'sequential effect algebras'.)
3. $[0,1]_{R}$, where R is a partially ordered (not necessarily commutative) unital ring R.
(A Boolean algebra B seen as ring with 'xor'
$a \oplus b:=(a \vee b) \wedge \neg(a \wedge b)$ as addition is not partially orderable, since $a \oplus a=0$.)

A non-commutative effect monoid ${ }^{1}$

$[0,1]_{R}$, where R is the totally ordered unital ring on the vector space \mathbb{R}^{5}, ordered lexicographically, i.e.

$$
v<w \Longleftrightarrow \exists N<5\left[v_{N}<w_{N} \wedge \forall n<N\left[v_{n}=w_{n}\right]\right],
$$

with multiplication given on basis vectors $e_{1}=(1,0,0,0,0), \ldots, e_{5}=(0,0,0,0,1)$ by:

\cdot	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}
e_{1}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}
e_{2}	e_{2}	e_{4}	e_{5}	0	0
e_{3}	e_{3}	0	0	0	0
e_{4}	e_{4}	0	0	0	0
e_{5}	e_{5}	0	0	0	0

(Totally ordered non-commutative rings can not be Archimedean.)
${ }^{1}$ From Bas Westerbaan's master's thesis.

Effect monoids are terrible structures

1. Only trivial things can be proven about them,
2. and obvious propositions seem to be false, (e.g. that $a a^{\perp} \otimes a a^{\perp} \otimes a a^{\perp}$ exists.)
3. though counterexamples are difficult to obtain,
4. but give no deep insight when found.

The situation is completely different for ω-complete effect monoids!

ω-completeness

In an effect monoid (or effect algebra) M we define:

$$
a \leqslant b \Longleftrightarrow \exists d \in M . b=a \oplus d
$$

(By the way, such a d is unique when it exists, and written $b \ominus a$.)
An effect monoid is ω-complete when every ascending sequence $a_{1} \leqslant a_{2} \leqslant \cdots$ has a supremum $\bigvee_{n} a_{n}$.
(We do not require \otimes and • to preserve these suprema.)

Examples of ω-complete effect monoids (ω-EMs)

1. ω-complete Boolean algebra, such as a σ-algebra.
2. $[0,1]$-valued measurable functions on a σ-algebra.
3. $[0,1]_{\mathscr{A}}$, where \mathscr{A} is a ' ω-complete' commutative unital C^{*}-algebra (such as a commutative von Neumann algebra.)
4. $C(X,[0,1])$ where X is a compact Hausdorff is ω-complete iff X is basically disconnected, that is, $\overline{X \backslash f^{-1}(0)}$ is open for every $f \in C(X,[0,1])$.
5. The clopens $C(X,\{0,1\})$ of a basically disconnected compact Hausdorff space X.

ω-complete effect monoids are great structures!

Given an ω-EM M.

1. One easily sees that M has no infinitesimals: if na exists for all n, then $a \oslash \bigotimes_{n=0}^{\infty} a=\bigotimes_{n=0}^{\infty} a$, so $a=0$.
2. Harder: M can be represented by continuous functions, that is, is isomorphic to a subalgebra of $C(X,[0,1])$ for some basically disconnected compact Hausdorff space X.
3. In particular, M is commutative.
4. Lattice: binary infima $a \wedge b$ and suprema $a \vee b$ exist.
5. Above each $a \in M$ there is a least idempotent $\lceil a\rceil$.
6. division: For all $a \leqslant b$ we can define $a / b \in M$ with $a=(a / b) b$.
7. Multiplication preserves all existing suprema (not just countable directed ones.)

Directed complete effect monoid

A directed complete effect monoid (dcEM) is isomorphic to

$$
C(X,[0,1]) \oplus C(Y,\{0,1\})
$$

for extremally disconnected (the closures of opens are open) compact Hausdorff spaces X and Y.

So a directed complete effect monoids splits into Boolean and convex parts.
(This can be turned into a categorical duality, as we'll see later.)

Counterexample

ω-EMs don't split in Boolean and convex parts:
Consider, given an uncountably infinite set X, the ω-EM

$$
M:=\left\{f: X \rightarrow[0,1]:\left[\begin{array}{l}
\text { either } f^{-1}(0) \text { is cocountable } \\
\text { or } f^{-1}(1) \text { is cocountable }
\end{array}\right\}\right.
$$

(So each $f \in M$ is either mostly equal to 0 , or mostly equal to 1 .)
Note that M has no Boolean idempotents, no half, but does have
a maximal set of orthogonal halvable idempotents.

This talk

1. What are effect monoids? and why would you want to consider the ω-complete ones.
2. Origin of effect monoids: the scalars of an effectus
3. Representation theory for ω-complete effect monoids
4. Duality for directed complete effect monoids

Origin of effect monoids: effectuses

An effectus is a category E with finite coproducts, final object 1 , such that

are pullbacks, and

$$
I V, X: 1+1+1 \longrightarrow 1+1
$$

are jointly monic.

States and predicates

Origin of effect monoids: effectuses

An effectus is intended to reason about states $s: 1 \rightarrow X$, predicates $p: X \rightarrow 1+1$, (and partial maps $f: X \rightarrow Y+1$.)

The composition $p \circ s$ is a morphism $1 \rightarrow 1+1$ (called a scalar) that represents the probability that predicate p holds in state s.

It's the morphisms $1 \rightarrow 1+1$ that form an effect monoid.

Addition of predicates

Origin of effect monoids: effectuses

Predicates $p, q: X \rightarrow 1+1$ (in particular, scalars $1 \rightarrow 1+1$) in an effectus are summable when there is a $b: X \rightarrow 1+1+1$ with

in which case we define $p \boxtimes q:=V \circ b$.
(Note that b is unique by joint monicity of X and $I V$.)

Predicates form an effect algebra

Origin of effect monoids: effectuses

The predicates $X \rightarrow 1+1$ form an effect algebra with:

$$
\begin{aligned}
1 & :=\left(X \longrightarrow!\rightarrow 1-\kappa_{1} \rightarrow 1+1\right) \\
0 & :=\left(X \longrightarrow!\rightarrow 1-\kappa_{2} \rightarrow 1+1\right) \\
p^{\perp} & :=(X \longrightarrow p \rightarrow 1+1-X \rightarrow 1+1)
\end{aligned}
$$

For example, $p \boxtimes p^{\perp}=1$, because

$$
b:=(X-p \rightarrow 1+1-\mathrm{Il} . \rightarrow 1+1+1)
$$

satisfies $\quad l V \circ b=p, \quad W \circ b=p^{\perp}, \quad V \circ b=1$.

Multiplication of scalars

Origin of effect monoids: effectuses

The scalars $1 \rightarrow 1+1$ form an effect monoid with multiplication:

$$
s \cdot t:=(1 \longrightarrow s \longrightarrow 1+1-t+1>1+1+1 \longrightarrow \mathrm{l} V \rightarrow 1+1)
$$

(Which is, if you like, the Kleisli composition of s and t with respect to the monad $(\cdot)+1$ that has unit $X-\kappa_{1} \rightarrow X+1$ and multiplication $X+1+1-\mathrm{IV} \rightarrow X+1$.)

Note that there is no reason to expect that this multiplication is commutative. In fact, any effect monoid M occurs as the scalars of some effectus (for example, the effectus of 'effect modules' over M.)

This talk

1. What are effect monoids? and why would you want to consider the ω-complete ones.
2. Origin of effect monoids: the scalars of an effectus
3. Representation theory for ω-complete effect monoids
4. Duality for directed complete effect monoids

Idempotents

An element p of an effect monoid M is an idempotent when $p^{2}=p$, that is, $p p^{\perp}=0$.

Given $a \in M$, we have:

1. $a \leqslant p \Longleftrightarrow a p^{\perp}=0 \Longleftrightarrow a p=a$.
2. $a p=p a p=p a$
(So all idempotents are 'central'.)
Corollary: $p M$ is an effect monoid called (with unit p) called a corner, and $M \cong p M \oplus p^{\perp} M$ via $a \mapsto\left(p a, p^{\perp} a\right)$.

Boolean and halvable idempotents

An idempotent p of an effect monoid M is

1. Boolean when all $a \leqslant p$ are idempotents;
2. halvable when there is $a \in M$ with $a \otimes a=p$.

We say that M is Boolean/halvable when 1_{M} is Boolean/halvable.
It turns out that:

1. An effect monoid is Boolean iff M is a Boolean algebra (easy, because the idempotents form a Boolean algebra).
2. An ω-EM M is halvable iff $M \cong C(X,[0,1])$ for some basically disconnected compact Hausdorff space X (hard-we'll get back to this.)

How to get (Boolean and halvable) idempotents?

Given an element a of an effect monoid M we have

$$
1=a \otimes a^{\perp}=a \otimes\left(a \otimes a^{\perp}\right) a^{\perp}=a \otimes a a^{\perp} \otimes\left(a^{\perp}\right)^{2}=\cdots .
$$

Going on like that, we get:

$$
1=\bigotimes_{n<N} a\left(a^{\perp}\right)^{n} \otimes\left(a^{\perp}\right)^{N} .
$$

So when M is ω-complete, we can define

$$
\lceil a\rceil:=\bigotimes_{n<N} a\left(a^{\perp}\right)^{n} \quad \text { and } \quad\lfloor a\rfloor:=\bigwedge_{n} a^{n} .
$$

Then $\lfloor a\rfloor$ is the greatest idempotent below a (intuitively, because c^{n} converges to 0 when $c \in[0,1)$) and $\lceil a\rceil$ is the least idempotent above a.

Non-trivial property of ceiling

Proposition: $a b=0 \Longrightarrow a\lceil b\rceil=0$.
Proof: One hopes that $a\lceil b\rceil \equiv a \mathbb{Q}_{n} b\left(b^{\perp}\right)^{n} \stackrel{?}{=} \mathbb{Q}_{n}(a b)\left(b^{\perp}\right)^{n}=0$, but does $a(\cdot)$ preserve suprema? (We only automatically have \geqslant.)
Writing $s_{N}:=\bigotimes_{n=0}^{N} b\left(b^{\perp}\right)^{n}$, we have $a s_{N}=0$, so $a^{\perp} s_{N}=s_{N}$, so

$$
\lceil b\rceil=\bigvee_{N} s_{N}=\bigvee_{N} a^{\perp} s_{N} \leqslant a^{\perp} \bigvee_{N} s_{N} \equiv a^{\perp}\lceil b\rceil \leqslant\lceil b\rceil
$$

Thus $a^{\perp}\lceil b\rceil=\lceil b\rceil$, so $a\lceil b\rceil=0$.

How to get halvable idempotents

When $b \equiv a \otimes a$, then $\lceil b\rceil=\left(\emptyset_{n} a\left(b^{\perp}\right)^{n}\right) \otimes\left(\emptyset_{n} a\left(b^{\perp}\right)^{n}\right)$ is an halvable idempotent.

How to get halvable elements? Given a, we have $a a^{\perp}=a^{\perp} a$, because adding a^{2} to either side gives a.
Now, $1=\left(a \otimes a^{\perp}\right)^{2}=a^{2} \otimes 2 a a^{\perp} \otimes\left(a^{\perp}\right)^{2}$, so $2 a a^{\perp}$ exists.
Whence $\left\lceil 2 a a^{\perp}\right\rceil$ is a halvable idempotent (but might be zero.) If $\left\lceil 2 a a^{\perp}\right\rceil=0$, then $a a^{\perp} \leqslant\left\lceil 2 a a^{\perp}\right\rceil=0$, so a is an idempotent.

Moral: When the halveable idempotents/elements of an ω-EM are exhausted, only (Boolean) idempotents are left.

Crux of the representation theorem

Using Boolean and halvable idempotents: Let E be a maximal set of orthogonal idempotents of an ω-EM M such that each $p \in E$ is either Boolean or halvable, then it turns out (we'll get back to this) that the map

$$
\varrho: a \mapsto(p a)_{p \in E}: M \longrightarrow \bigoplus_{p \in E} p M
$$

is an isomorphism onto its image.
(We cannot always expect surjectivity.)
Each pM, being Boolean or halvable, will turn out to be
isomorphic to either a
some basically disconnected compact Hausdorff space X.

Counterexample

ω-EMs don't split in Boolean and convex parts:
Consider, given an uncountably infinite set X, the ω-EM

$$
M:=\left\{f: X \rightarrow[0,1]:\left[\begin{array}{l}
\text { either } f^{-1}(0) \text { is cocountable } \\
\text { or } f^{-1}(1) \text { is cocountable }
\end{array}\right\}\right.
$$

(So each $f \in M$ is either mostly equal to 0 , or mostly equal to 1 .)
Note that M has no Boolean idempotents, no half, but does have a maximal set of orthogonal halvable idempotents.

Crux of the representation theorem

Using Boolean and halvable idempotents: Let E be a maximal set of orthogonal idempotents of an ω-EM M such that each $p \in E$ is either Boolean or halvable, then it turns out (we'll get back to this) that the map

$$
\varrho: a \mapsto(p a)_{p \in E}: M \longrightarrow \bigoplus_{p \in E} p M
$$

is an isomorphism onto its image.
(We cannot always expect surjectivity.)
Each $p M$, being Boolean or halvable, will turn out to be isomorphic to either a $C(X,\{0,1\})$ or a $C(X,[0,1])$ for some basically disconnected compact Hausdorff space X.

From halvable ω-EM to $C(X,[0,1])$, I

Given a halvable ω-EM M and $h \in M$ with $h \otimes h=1$, we can define a scalar multiplication $[0,1] \times M \rightarrow M$ first on the dyadics by $\frac{m}{2^{n}} \cdot a=m h^{n} a$, and then extend it to all $[0,1]$ by
ω-completeness, such that:

$$
\begin{array}{ll}
\text { 1. } \lambda(\mu a)=(\lambda \mu) a & \text { 3. } \lambda(a \otimes b) \rightleftharpoons \lambda a \oslash \lambda b \\
\text { 2. }(\lambda \otimes \mu) a \rightleftharpoons \lambda a \boxtimes \mu a & \text { 4. } 1 \cdot a=a
\end{array}
$$

That is, M is a 'convex effect algebra'.

From halvable ω-EM to $C(X,[0,1])$, II

Such a convex effect algebra is, by a theorem of Gudder and Pulmannová's, isomorphic to $[0,1]_{V}$ for some order unit space V (i.e. partially ordered real vector space with a positive element 1 such that for each $a \in V$ there is n with $-n \leqslant a \leqslant n$.)

However: to see that $V \cong C(X)$ we need additional structure:

- either extend multiplication to V (and use Kadison's representation theory for ordered algebras);
- or show M (and thus V) is a lattice (and use Yosida's representation theorem for vector lattices.)

We'll go for the lattice structure.

Lattice structure, I

$$
\uparrow\left\{\begin{array}{l}
A+B=A \backslash B+A \wedge B \\
A \wedge B \leq C \leq A \vee B
\end{array}\right.
$$

Idea: approximate $a \wedge b$ using multiplication.
First approximation: $a b$.
Note in $[0,1]$ (and so in $C(X,[0,1])$ too)

$$
a \wedge b \ominus a b=(a \ominus a b) \wedge(b \ominus a b)
$$

Second approximation: $a b \otimes(a \ominus a b)(b \ominus a b))$.
Going on like this...

Lattice structure, II

Given elements a and b of an ω-complete effect monoid M, define

$$
a \wedge b:=\bigotimes_{n=0}^{\infty} a_{n} b_{n} \quad \text { where } \quad\left[\begin{array}{l}
a_{N}:=a \ominus \bigotimes_{n<N} a_{n} b_{n} \\
b_{N}:=b \ominus \bigotimes_{n<N} a_{n} b_{n}
\end{array}\right.
$$

Then $a \wedge b$ is the infimum of a and b.
(Note that $a_{N} b_{N}$ is summable with $\mathbb{Q}_{n<N} a_{n} b_{n}$, because $a_{N} \geqslant a_{N} b_{N}$ is, by definition; moreover, $a_{N} \boxtimes \bigotimes_{n<N} a_{n} b_{n}=a$, implies $Q_{n \leqslant N} a_{n} b_{n} \leqslant a$.)
We also get:

$$
\bigwedge_{n} a_{n}:=a \ominus a \wedge b \quad \text { and } \quad \bigwedge_{n} b_{n}:=b \ominus a \wedge b
$$

Lattice structure, III

So why is $a \wedge b$ the infimum? Clearly, $a \wedge b \leqslant a, b$.
So let $\ell \leqslant a, b$ be given; we must show that $a \wedge b \geqslant \ell$.
Note that $\left(\bigwedge_{n} a_{n}\right)\left(\bigwedge_{n} b_{n}\right) \leqslant \bigwedge_{n} a_{n} b_{n}=0$, because $N \bigwedge a_{n} b_{n}$ exists for all N, because $\bigotimes_{N} a_{n} b_{n}$ exists.
Writing $\boldsymbol{p}:=\left\lceil\bigwedge_{\boldsymbol{n}} \boldsymbol{b}_{\boldsymbol{n}}\right\rceil$, we have:

$$
\left(\bigwedge_{n} a_{n}\right) p=0 \quad \text { and } \quad\left(\bigwedge_{n} b_{n}\right) p^{\perp}=0
$$

Thus, as $a \wedge b \otimes \bigwedge_{n} b_{n}=b$,

$$
b p^{\perp}=(a \wedge b) p^{\perp} \quad \text { and similarly } \quad a p=(a \wedge b) p
$$

Now, $\ell=\ell p^{\perp} \otimes \ell p \leqslant b p^{\perp} \otimes a p=(a \wedge b) p^{\perp} \otimes(a \wedge b) p=a \wedge b$.
Whence: $a \wedge b$ is the greatest lower bound of a and b.

From halvable ω-EM to $C(X,[0,1])$, III

Getting back to our halvable ω-EM M that is isomorphic to $[0,1]_{V}$ for some order unit space V :

- Since M is a lattice, so is V;
- Since M is ω-complete, so is V, for bounded sequences.

Whence V is a ' σ-Dedekind complete Riesz space', and thus, by Yosida's representation theorem, isomorphic to $C(X)$ for some basically disconnected compact Hausdorff space.
(As a result, $M \cong C(X,[0,1])$.)

From halvable ω-EM to $C(X,[0,1])$, IV

In more detail: We have a Riesz space isomorphism (linear, unital, and \wedge-preserving)

$$
a \mapsto(\varphi \mapsto \varphi(a)): V \longrightarrow C(\operatorname{Spec}(V)),
$$

where $\operatorname{Spec}(V)$ is the basically disconnected compact Hausdorff subspace of \mathbb{R}^{V} consisting of the Riesz homomorphisms $\varphi: V \rightarrow \mathbb{R}$.

This map restricts to an isomorphism $M \rightarrow C(\operatorname{Spec}(V),[0,1])$, of lattice effect algebras.

But does this isomorphism preserve multiplication?

From halvable ω-EM to $C(X,[0,1])$, V

For $a \mapsto(\varphi \mapsto \varphi(a)): M \longrightarrow C(\operatorname{Spec}(V),[0,1])$ to preserve multiplication, it suffices to show that $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in M$ and $\varphi \in \operatorname{Spec}(V)$.

Proof: define $d(a, b):=a \vee b \ominus a \wedge b$. Then:

1. $d(a b, a c) \leqslant a d(b, c) \leqslant d(b, c)$, since $a b \vee a c \leqslant a(b \vee c)$ and $a b \wedge a c \geqslant a(b \wedge c)$.
2. $d(a, b)=0 \Longrightarrow a=b$,
since a and b are squeezed between $a \wedge b$ and $a \vee b$.
3. $\varphi(d(a, b))=d(\varphi(a), \varphi(b))$, since φ preserves \wedge, \vee and \ominus.

Now: $d(\varphi(a b), \varphi(a) \varphi(b))=\varphi(d(a b, a \varphi(b))) \leqslant$ $\varphi(d(b, \varphi(b) 1))=d(\varphi(b), \varphi(b))=0$, thus $\varphi(a b)=\varphi(a) \varphi(b)$.

So indeed, halvable ω-EMs are $C(X,[0,1])$-es!

Crux of the representation theorem, II

The key to proving that given an maximal orthogonal set of idempotents E of an ω-complete effect monoid M the map

$$
\varrho: a \mapsto(p a)_{p \in E}: M \longrightarrow \bigoplus_{p \in E} p M
$$

is an embedding is showing that ϱ reflects the order:

$$
a \leqslant b \quad \Longleftrightarrow p p \in[p a \leqslant p b] .
$$

For this, it suffices to show that $a=\bigvee_{p \in E} p a$.
We can get this using $\bigvee E=1$ (because E is maximal) if multiplication preserves arbitrary suprema:

$$
a=1 \cdot a=(\bigvee E) a=\bigvee_{p \in E} p a
$$

Preservation of suprema

How does one prove an operation preserves suprema?
Example: Given an element a of an ordered vector space V,

$$
a+(\cdot): V \rightarrow V \quad \text { is not only order preserving, }
$$

but also has an order preserving inverse $(\cdot)-a: V \rightarrow V$, so $a+(\cdot)$ is an order isomorphism, and therefore preserves suprema (and infima.)

Division

Similarly, multiplication in an ω-EM M preserves suprema, essentially because of the existence of a (partially defined) division:

Proposition: Given $a \leqslant b$ in M,

$$
a / b:=ब_{n=0}^{\infty} a\left(b^{\perp}\right)^{n}
$$

satisfies $(a / b) b=a$, and provides an order preserving inverse to the map $a \mapsto a b: M\lceil b\rceil \rightarrow M b$.
P.S. note that $a / a=\lceil a\rceil$. (So $0 / 0=0$ in this context.)

Representation theorem, for ω-EMs

All in all, given an ω-EM M we get an embedding

$$
M \longrightarrow \bigoplus_{p \in E} p M \cong C(X,[0,1]) \oplus C(Y,\{0,1\})
$$

(by aggregating the Boolean and halvable factors) where X and Y are basically disconnected compact Hausdorff spaces.

In particular, M is commutative.

This talk

1. What are effect monoids? and why would you want to consider the ω-complete ones.
2. Origin of effect monoids: the scalars of an effectus
3. Representation theory for ω-complete effect monoids
4. Duality for directed complete effect monoids

Representation theory, for dcEMs

A directed complete effect monoid (dcEM) M properly splits in 'discrete' and 'continuous' parts:

$$
M \cong e M \oplus e^{\perp} M \cong C(X,[0,1]) \oplus C(Y,\{0,1\})
$$

where X and Y are extremally disconnected compact Hausdorff spaces.
(Indeed, in M there will by directed completeness be a greatest halvable idempotent e, and e^{\perp} will necessarily be Boolean.)

Spectrum of effect monoids

To turn this into a duality, define the spectrum of a dcEM M by:

$$
\operatorname{Spec}(M):=\{\varphi: M \rightarrow[0,1] \text { preserving } \otimes, 1, \cdot\} .
$$

The discrete part of the spectrum is defined to be:

$$
D_{M}:=\{\varphi \in \operatorname{Spec}(M): \varphi(M) \subseteq\{0,1\}\}
$$

Then D_{M} is an clopen of the extremally disconnected compact Hausdorff space $\operatorname{Spec}(M)$.

Conversely, given a clopen C of a extremally disconnected compact Hausdorff space X we get a directed complete effect monoid

$$
C(X, D):=\{f: X \rightarrow[0,1] \text { continuous with } f(D) \subseteq\{0,1\}\}
$$

Duality

The operations give a duality between:

- the category of directed complete effect monoids with effect monoid homomorphisms (that preserve $\otimes, 1, \cdot$, but not necessarily arbitrary suprema); and
- the category with clopen subsets of extremally disconnected compact Hausdorff spaces, with as morphisms from $D_{1} \subseteq X_{1}$ to $D_{2} \subseteq X_{2}$ the continuous maps $f: X_{1} \rightarrow X_{2}$ with $f\left(D_{1}\right) \subseteq D_{2}$.

That's it!

Questions?

Some applications:

1. Study of convexity in sequential effect algebras (JvdW, BW, AW, arXiv:2004.12749v2)
2. ' ω-complete' effectuses (Kenta Cho, JvdW, BW, arXiv:2003.10245)
3. Reconstructing quantum theory without positing real probabilities (Part A of JvdW's thesis, arXiv:2101.03608)
