The structure (and story) of ω -complete effect monoids

<u>Abraham Westerbaan</u> Bas Westerbaan John van de Wetering

Dalhousie (AW), PQShield (BW), Radboud University & Oxford (JvdW)

March 30, 2021

This talk

- 1. What are effect monoids? and why would you want to consider the ω -complete ones.
- 2. Origin of effect monoids: the scalars of an effectus
- 3. Representation theory for ω -complete effect monoids
- 4. Duality for directed complete effect monoids

Effect monoids

Examples:

B, Boolean algebra;

 $[0,1]_{\mathscr{A}} = \{ a \in \mathscr{A} : 0 \leq a \leq 1 \},\$ \mathscr{A} commutative unital C^* -algebra That is: $C(X, \{0, 1\})$; C(X, [0, 1]), X compact Hausdorff

Definition: An **effect monoid** is a set M with a

- **1.** partial addition \otimes . $a \otimes b := a \vee b$, $a \otimes b := a + b$, when $a + b \le 1$ when $a \wedge b = 0$
- 2. a **complement** operation $(\cdot)^{\perp}$, $a^{\perp} := \neg a$ $a^{\perp} = 1 - a$
- 3. a zero (and one) element 0 (and $1 := 0^{\perp}$),
- 4. and a **multiplication** \cdot ,

 $a \cdot b := a \wedge b$ regular multiplication obeying certain axioms (next slide).

Effect monoid axioms

- 1. $a \oslash b = b \oslash a$ 2. $(a \oslash b) \oslash c = a \oslash (b \oslash c)$ 3. $a \oslash 0 = a$ 4. $a \oslash a^{\perp} = 1$ 5. $a \oslash b_1 = a \oslash b_2$ implies $b_1 = b_2$
- 6. $a \odot b = 0$ implies a = b = 0

7.
$$1 \cdot a = a = a \cdot 1$$

8.
$$(ab)c = a(bc)$$

 $A \Longrightarrow B$ means "when A is defined, so is B, and they're equal." $\frac{1}{2} \cdot \frac{2}{3} \odot \frac{1}{2} \cdot \frac{2}{3}$ makes sense in [0, 1], but $\frac{1}{2}(\frac{2}{3} \odot \frac{2}{3})$ doesn't.

Dropping axioms 7–9 and \cdot we get an effect algebra.

Examples of effect monoids

1. Boolean algebras

 [0,1] A, where A is a commutative unital C*-algebra. (Commutative, because ab ≥ 0 for a, b ≥ 0 implies ab = (ab)* = b*a* = ba.

For non-commutative C^* -algebras, the 'sequential product' $a\&b := \sqrt{a}b\sqrt{a}$ can be restricted to $[0,1]_{\mathscr{A}}$, leading to Gudder's 'sequential effect algebras'.)

3. [0,1]_R, where R is a partially ordered (not necessarily commutative) unital ring R.
(A Boolean algebra B seen as ring with 'xor' a ⊕ b := (a ∨ b) ∧ ¬(a ∧ b) as addition is not partially orderable, since a ⊕ a = 0.)

A non-commutative effect monoid¹

 $[0,1]_R$, where *R* is the totally ordered unital ring on the vector space \mathbb{R}^5 , ordered lexicographically, i.e.

 $v < w \iff \exists N < 5 [v_N < w_N \land \forall n < N [v_n = w_n]],$

with multiplication given on basis vectors $e_1 = (1,0,0,0,0), \ldots, e_5 = (0,0,0,0,1)$ by:

·	e_1	e_2	e ₃	e_4	e_5
e_1	e_1	e ₂	e ₃	e_4	<i>e</i> 5
e ₂	e_2	e_4	e_5	0	0
e ₃	e ₃	0	0	0	0
e_4	e_4	0	0	0	0
e_5	e_5	0	0	0	0

(Totally ordered non-commutative rings can not be Archimedean.)

¹From Bas Westerbaan's master's thesis.

Effect monoids are terrible structures

- 1. Only trivial things can be proven about them,
- 2. and obvious propositions seem to be false, (e.g. that $aa^{\perp} \otimes aa^{\perp} \otimes aa^{\perp}$ exists.)
- 3. though counterexamples are difficult to obtain,
- 4. but give no deep insight when found.

The situation is completely different for ω -complete effect monoids!

ω -completeness

In an effect monoid (or effect algebra) M we define:

$$a \leqslant b \iff \exists d \in M. \ b = a \odot d.$$

(By the way, such a *d* is unique when it exists, and written $b \ominus a$.)

An effect monoid is ω -complete when every ascending sequence $a_1 \leq a_2 \leq \cdots$ has a supremum $\bigvee_n a_n$. (We do not require \otimes and \cdot to preserve these suprema.)

Examples of ω -complete effect monoids (ω -EMs)

- 1. ω -complete Boolean algebra, such as a σ -algebra.
- 2. [0,1]-valued measurable functions on a σ -algebra.
- 3. $[0,1]_{\mathscr{A}}$, where \mathscr{A} is a ' ω -complete' commutative unital C^* -algebra (such as a commutative von Neumann algebra.)
- 4. C(X, [0, 1]) where X is a compact Hausdorff is ω -complete iff X is **basically disconnected**, that is, $\overline{X \setminus f^{-1}(0)}$ is open for every $f \in C(X, [0, 1])$.
- 5. The clopens $C(X, \{0, 1\})$ of a basically disconnected compact Hausdorff space X.

 ω -complete effect monoids are great structures!

Given an ω -EM M.

- 1. One easily sees that *M* has **no infinitesimals**: if *na* exists for all *n*, then $a \otimes \bigotimes_{n=0}^{\infty} a = \bigotimes_{n=0}^{\infty} a$, so a = 0.
- 2. Harder: M can be represented by continuous functions, that is, is isomorphic to a subalgebra of C(X, [0, 1]) for some basically disconnected compact Hausdorff space X.
- 3. In particular, *M* is **commutative**.
- 4. Lattice: binary infima $a \wedge b$ and suprema $a \vee b$ exist.
- 5. Above each $a \in M$ there is a least **idempotent** [a].
- 6. division: For all $a \le b$ we can define $a/b \in M$ with a = (a/b)b.
- 7. Multiplication **preserves all existing suprema** (not just countable directed ones.)

Directed complete effect monoid

A directed complete effect monoid (dcEM) is isomorphic to

 $C(X, [0,1]) \oplus C(Y, \{0,1\})$

for extremally disconnected (the closures of opens are open) compact Hausdorff spaces X and Y.

So a directed complete effect monoids splits into **Boolean** and **convex** parts.

(This can be turned into a categorical duality, as we'll see later.)

$\omega\text{-}\mathsf{EMs}$ don't split in Boolean and convex parts:

Consider, given an uncountably infinite set X, the ω -EM

$$M := \left\{ f : X \to [0,1] : \left[\begin{array}{c} \text{either } f^{-1}(0) \text{ is cocountable} \\ \text{or } f^{-1}(1) \text{ is cocountable} \end{array} \right] \right\}$$

(So each $f \in M$ is either mostly equal to 0, or mostly equal to 1.)

Note that M has no Boolean idempotents, no half, but does have a maximal set of orthogonal halvable idempotents.

This talk

- 1. What are effect monoids? and why would you want to consider the ω -complete ones.
- 2. Origin of effect monoids: the scalars of an effectus
- 3. Representation theory for ω -complete effect monoids
- 4. Duality for directed complete effect monoids

Origin of effect monoids: effectuses

An **effectus** is a category E with finite coproducts, final object 1, such that

are pullbacks, and

$$W, W: 1 + 1 + 1 \longrightarrow 1 + 1$$

are jointly monic.

States and predicates

Origin of effect monoids: effectuses

An effectus is intended to reason about states $s: 1 \rightarrow X$, predicates $p: X \rightarrow 1+1$, (and partial maps $f: X \rightarrow Y+1$.) The composition $p \circ s$ is a morphism $1 \rightarrow 1+1$ (called a scalar)

that represents the probability that predicate p holds in state s.

It's the morphisms $1 \rightarrow 1 + 1$ that form an effect monoid.

Addition of predicates

Origin of effect monoids: effectuses

Predicates $p, q: X \rightarrow 1 + 1$ (in particular, scalars $1 \rightarrow 1 + 1$) in an effectus are **summable** when there is a $b: X \rightarrow 1 + 1 + 1$ with

in which case we define $p \oslash q := \mathcal{U} \circ b$.

(Note that b is unique by joint monicity of \mathcal{X} and \mathcal{W} .)

Predicates form an effect algebra

Origin of effect monoids: effectuses

The predicates $X \rightarrow 1 + 1$ form an effect algebra with:

$$1 := (X \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 + 1)$$

$$0 := (X \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 + 1)$$

$$p^{\perp} := (X \longrightarrow 1 + 1 \longrightarrow 1 + 1)$$

For example, $p \otimes p^{\perp} = 1$, because

$$b := (X \longrightarrow 1 + 1 - 1 \implies 1 + 1 + 1)$$

satisfies $\mathcal{W} \circ b = p$, $\mathcal{W} \circ b = p^{\perp}$, $\mathcal{W} \circ b = 1$.

Multiplication of scalars

Origin of effect monoids: effectuses

The scalars $1 \rightarrow 1 + 1$ form an effect monoid with multiplication:

 $s \cdot t := (1 \longrightarrow 1 + 1 \longrightarrow 1 + 1 + 1 \longrightarrow 1 + 1)$

(Which is, if you like, the Kleisli composition of *s* and *t* with respect to the monad $(\cdot) + 1$ that has unit $X - \kappa_1 \Rightarrow X + 1$ and multiplication $X + 1 + 1 - W \Rightarrow X + 1$.)

Note that there is no reason to expect that this multiplication is commutative. In fact, any effect monoid M occurs as the scalars of some effectus (for example, the effectus of 'effect modules' over M.)

This talk

- 1. What are effect monoids? and why would you want to consider the ω -complete ones.
- 2. Origin of effect monoids: the scalars of an effectus
- 3. Representation theory for ω -complete effect monoids
- 4. Duality for directed complete effect monoids

Idempotents

An element p of an effect monoid M is an **idempotent** when $p^2 = p$, that is, $pp^{\perp} = 0$.

Given $a \in M$, we have: 1. $a \leq p \iff ap^{\perp} = 0 \iff ap = a$. 2. ap = pap = pa(So all idempotents are 'central'.)

Corollary: pM is an effect monoid called (with unit p) called a **corner**, and $M \cong pM \oplus p^{\perp}M$ via $a \mapsto (pa, p^{\perp}a)$.

Boolean and halvable idempotents

An idempotent p of an effect monoid M is

- 1. **Boolean** when all $a \leq p$ are idempotents;
- 2. halvable when there is $a \in M$ with $a \otimes a = p$.

We say that M is Boolean/halvable when 1_M is Boolean/halvable.

It turns out that:

- 1. An effect monoid is Boolean iff M is a Boolean algebra (easy, because the idempotents form a Boolean algebra).
- An ω-EM M is halvable iff M ≃ C(X, [0,1]) for some basically disconnected compact Hausdorff space X (hard—we'll get back to this.)

How to get (Boolean and halvable) idempotents?

Given an element a of an effect monoid M we have

$$1 = a \otimes a^{\perp} = a \otimes (a \otimes a^{\perp})a^{\perp} = a \otimes aa^{\perp} \otimes (a^{\perp})^2 = \cdots$$

Going on like that, we get:

$$1 = \bigotimes_{n < N} a(a^{\perp})^n \oslash (a^{\perp})^N.$$

So when M is ω -complete, we can define

$$[\mathbf{a}] := \bigotimes_{n < N} a(a^{\perp})^n$$
 and $[\mathbf{a}] := \bigwedge_n a^n$.

Then [a] is the greatest idempotent below a (intuitively, because c^n converges to 0 when $c \in [0, 1)$) and [a] is the least idempotent above a.

Non-trivial property of ceiling

Proposition: $ab = 0 \implies a[b] = 0$.

Proof: One hopes that $a[b] \equiv a \bigotimes_{n} b(b^{\perp})^{n} \stackrel{?}{=} \bigotimes_{n} (ab)(b^{\perp})^{n} = 0$, but does $a(\cdot)$ preserve suprema? (We only automatically have \geq .) Writing $s_{N} := \bigotimes_{n=0}^{N} b(b^{\perp})^{n}$, we have $as_{N} = 0$, so $a^{\perp}s_{N} = s_{N}$, so $[b] = \bigvee_{N} s_{N} = \bigvee_{N} a^{\perp}s_{N} \leq a^{\perp}\bigvee_{N} s_{N} \equiv a^{\perp}[b] \leq [b]$ Thus $a^{\perp}[b] = [b]$, so a[b] = 0.

How to get halvable idempotents

When $b \equiv a \otimes a$, then $[b] = (\bigotimes_n a(b^{\perp})^n) \otimes (\bigotimes_n a(b^{\perp})^n)$ is an halvable idempotent.

How to get halvable elements? Given *a*, we have $aa^{\perp} = a^{\perp}a$, because adding a^2 to either side gives *a*. Now, $1 = (a \odot a^{\perp})^2 = a^2 \odot 2aa^{\perp} \odot (a^{\perp})^2$, so $2aa^{\perp}$ exists.

Whence $\lceil 2aa^{\perp} \rceil$ is a halvable idempotent (but might be zero.) If $\lceil 2aa^{\perp} \rceil = 0$, then $aa^{\perp} \leq \lceil 2aa^{\perp} \rceil = 0$, so *a* is an idempotent.

Moral: When the halveable idempotents/elements of an ω -EM are exhausted, only (Boolean) idempotents are left.

Crux of the representation theorem

Using Boolean and halvable idempotents: Let E be a maximal set of orthogonal idempotents of an ω -EM M such that each $p \in E$ is either Boolean or halvable, then it turns out (we'll get back to this) that the map

$$\varrho \colon a \mapsto (pa)_{p \in E} \colon M \longrightarrow \bigoplus_{p \in E} pM$$

is an isomorphism onto its image. (We cannot always expect surjectivity.)

Each pM, being Boolean or halvable, will turn out to be isomorphic to either a $C(X, \{0, 1\})$ or a C(X, [0, 1]) for some basically disconnected compact Hausdorff space X. ω -EMs don't split in Boolean and convex parts:

Consider, given an uncountably infinite set X, the ω -EM

$$M := \left\{ f : X \to [0,1] : \left[\begin{array}{c} \text{either } f^{-1}(0) \text{ is cocountable} \\ \text{or } f^{-1}(1) \text{ is cocountable} \end{array} \right] \right\}$$

(So each $f \in M$ is either mostly equal to 0, or mostly equal to 1.)

Note that M has no Boolean idempotents, no half, but does have a maximal set of orthogonal halvable idempotents.

Crux of the representation theorem

Using Boolean and halvable idempotents: Let E be a maximal set of orthogonal idempotents of an ω -EM M such that each $p \in E$ is either Boolean or halvable, then it turns out (we'll get back to this) that the map

$$\varrho \colon a \mapsto (pa)_{p \in E} \colon M \longrightarrow \bigoplus_{p \in E} pM$$

is an isomorphism onto its image. (We cannot always expect surjectivity.)

Each pM, being Boolean or halvable, will turn out to be isomorphic to either a $C(X, \{0, 1\})$ or a C(X, [0, 1]) for some basically disconnected compact Hausdorff space X.

From halvable ω -EM to C(X, [0, 1]), I

Given a halvable ω -EM M and $h \in M$ with $h \otimes h = 1$, we can define a **scalar multiplication** $[0,1] \times M \to M$ first on the dyadics by $\frac{m}{2^n} \cdot a = mh^n a$, and then extend it to all [0,1] by ω -completeness, such that:

1.
$$\lambda(\mu a) = (\lambda \mu)a$$

2. $(\lambda \otimes \mu)a \Longrightarrow \lambda a \otimes \mu a$
3. $\lambda(a \otimes b) \Longrightarrow \lambda a \otimes \lambda b$
4. $1 \cdot a = a$

That is, *M* is a 'convex effect algebra'.

From halvable ω -EM to C(X, [0, 1]), II

Such a convex effect algebra is, by a theorem of Gudder and Pulmannová's, isomorphic to $[0,1]_V$ for some order unit space V (i.e. partially ordered real vector space with a positive element 1 such that for each $a \in V$ there is n with $-n \leq a \leq n$.)

However: to see that $V \cong C(X)$ we need additional structure:

- either extend multiplication to V (and use Kadison's representation theory for ordered algebras);
- or show *M* (and thus *V*) is a lattice (and use Yosida's representation theorem for vector lattices.)

We'll go for the lattice structure.

Lattice structure, I

 $A+B=A\vee B + A\wedge B$ $A\wedge B \le C \le A\vee B$

Idea: approximate $a \land b$ using multiplication.

First approximation: ab.

Note in [0,1] (and so in C(X, [0,1]) too)

$$a \wedge b \ominus ab = (a \ominus ab) \wedge (b \ominus ab).$$

Second approximation: $ab \otimes (a \ominus ab)(b \ominus ab))$.

Going on like this...

Lattice structure, II

Given elements a and b of an ω -complete effect monoid M, define

$$a \wedge b := \bigotimes_{n=0}^{\infty} a_n b_n$$
 where $\begin{bmatrix} a_N := a \ominus \bigotimes_{n < N} a_n b_n \\ b_N := b \ominus \bigotimes_{n < N} a_n b_n \end{bmatrix}$

Then $a \wedge b$ is the infimum of a and b.

(Note that $a_N b_N$ is summable with $\bigotimes_{n < N} a_n b_n$, because $a_N \ge a_N b_N$ is, by definition; moreover, $a_N \otimes \bigotimes_{n < N} a_n b_n = a$, implies $\bigotimes_{n \le N} a_n b_n \le a$.)

We also get:

$$\bigwedge_n a_n := a \ominus a \wedge b$$
 and $\bigwedge_n b_n := b \ominus a \wedge b$.

Lattice structure, III

So why is $a \land b$ **the infimum?** Clearly, $a \land b \leq a, b$. So let $\ell \leq a, b$ be given; we must show that $a \land b \geq \ell$.

Note that $(\bigwedge_n a_n)(\bigwedge_n b_n) \leq \bigwedge_n a_n b_n = 0$, because $N \bigwedge a_n b_n$ exists for all N, because $\bigotimes_N a_n b_n$ exists. Writing $\boldsymbol{p} := [\bigwedge_n \boldsymbol{b_n}]$, we have:

$$(\bigwedge_n a_n)p = 0$$
 and $(\bigwedge_n b_n)p^{\perp} = 0.$

Thus, as $a \wedge b \otimes \bigwedge_n b_n = b$,

 $bp^{\perp} = (a \wedge b)p^{\perp}$ and similarly $ap = (a \wedge b)p$.

Now, $\ell = \ell p^{\perp} \odot \ell p \leq b p^{\perp} \odot a p = (a \land b) p^{\perp} \odot (a \land b) p = a \land b$. Whence: $a \land b$ is the greatest lower bound of a and b.

From halvable ω -EM to C(X, [0, 1]), III

Getting back to our halvable ω -EM M that is isomorphic to $[0,1]_V$ for some order unit space V:

- Since *M* is a lattice, so is *V*;
- Since *M* is ω -complete, so is *V*, for bounded sequences.

Whence V is a ' σ -**Dedekind complete Riesz space**', and thus, by Yosida's representation theorem, isomorphic to C(X) for some basically disconnected compact Hausdorff space.

(As a result, $M \cong C(X, [0, 1])$.)

From halvable ω -EM to C(X, [0, 1]), IV

In more detail: We have a *Riesz space isomorphism* (linear, unital, and *^*-preserving)

$$a \mapsto (\varphi \mapsto \varphi(a)) \colon V \longrightarrow C(\operatorname{Spec}(V)),$$

where $\operatorname{Spec}(V)$ is the basically disconnected compact Hausdorff subspace of \mathbb{R}^V consisting of the Riesz homomorphisms $\varphi \colon V \to \mathbb{R}$.

This map restricts to an isomorphism $M \to C(\text{Spec}(V), [0, 1])$, of lattice effect algebras.

But does this isomorphism preserve multiplication?

From halvable ω -EM to C(X, [0, 1]), V

For $a \mapsto (\varphi \mapsto \varphi(a)) \colon M \longrightarrow C(\operatorname{Spec}(V), [0, 1])$ to preserve **multiplication**, it suffices to show that $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in M$ and $\varphi \in \operatorname{Spec}(V)$.

Proof: define $d(a, b) := a \lor b \ominus a \land b$. Then:

1.
$$d(ab, ac) \leq a d(b, c) \leq d(b, c)$$
,
since $ab \lor ac \leq a(b \lor c)$ and $ab \land ac \geq a(b \land c)$.

2.
$$d(a, b) = 0 \implies a = b$$
,
since a and b are squeezed between $a \land b$ and $a \lor b$.

3. $\varphi(d(a, b)) = d(\varphi(a), \varphi(b))$, since φ preserves \land , \lor and \ominus .

Now: $d(\varphi(ab), \varphi(a)\varphi(b)) = \varphi(d(ab, a\varphi(b))) \leq \varphi(d(b, \varphi(b)1)) = d(\varphi(b), \varphi(b)) = 0$, thus $\varphi(ab) = \varphi(a)\varphi(b)$.

So indeed, halvable ω -EMs are C(X, [0, 1])-es!

Crux of the representation theorem, II

The key to proving that given an maximal orthogonal set of idempotents E of an ω -complete effect monoid M the map

$$\varrho \colon a \mapsto (pa)_{p \in E} \colon M \longrightarrow \bigoplus_{p \in E} pM$$

is an embedding is showing that ϱ reflects the order:

$$a \leqslant b \quad \longleftarrow \quad \forall p \in E [pa \leqslant pb].$$

For this, it suffices to show that $a = \bigvee_{p \in E} pa$.

We can get this using $\bigvee E = 1$ (because *E* is maximal) if multiplication preserves arbitrary suprema:

$$a = 1 \cdot a = (\bigvee E)a = \bigvee_{p \in E} pa.$$

How does one prove an operation preserves suprema? **Example:** Given an element a of an ordered vector space V,

 $a + (\cdot): V \rightarrow V$ is not only order preserving,

but also has an order preserving inverse $(\cdot) - a: V \to V$, so $a + (\cdot)$ is an **order isomorphism**, and therefore preserves suprema (and infima.)

Division

Similarly, multiplication in an ω -EM M preserves suprema, essentially because of the existence of a (partially defined) **division**:

Proposition: Given $a \leq b$ in M,

$$a/b := \otimes_{n=0}^{\infty} a(b^{\perp})^n$$

satisfies (a/b)b = a, and provides an order preserving inverse to the map $a \mapsto ab$: $M[b] \to Mb$.

P.S. note that a/a = [a]. (So 0/0 = 0 in this context.)

Representation theorem, for ω -EMs

All in all, given an ω -EM M we get an embedding

$$M \longrightarrow \bigoplus_{p \in E} pM \cong C(X, [0, 1]) \oplus C(Y, \{0, 1\}),$$

(by aggregating the Boolean and halvable factors) where X and Y are basically disconnected compact Hausdorff spaces.

In particular, M is commutative.

This talk

- 1. What are effect monoids? and why would you want to consider the ω -complete ones.
- 2. Origin of effect monoids: the scalars of an effectus
- 3. Representation theory for ω -complete effect monoids
- 4. Duality for directed complete effect monoids

A directed complete effect monoid (dcEM) *M* properly splits in **'discrete'** and **'continuous'** parts:

 $M \cong eM \oplus e^{\perp}M \cong C(X, [0, 1]) \oplus C(Y, \{0, 1\}),$

where X and Y are extremally disconnected compact Hausdorff spaces.

(Indeed, in M there will by directed completeness be a greatest halvable idempotent e, and e^{\perp} will necessarily be Boolean.)

Spectrum of effect monoids

To turn this into a duality, define the **spectrum** of a dcEM M by:

$$\operatorname{Spec}(M) := \{ \varphi \colon M \to [0,1] \text{ preserving } \emptyset, 1, \cdot \}.$$

The discrete part of the spectrum is defined to be:

$$D_M := \{ \varphi \in \operatorname{Spec}(M) \colon \varphi(M) \subseteq \{0,1\} \}.$$

Then D_M is an clopen of the extremally disconnected compact Hausdorff space Spec(M).

Conversely, given a clopen C of a extremally disconnected compact Hausdorff space X we get a directed complete effect monoid

$$C(X,D) := \{ f : X \rightarrow [0,1] \text{ continuous with } f(D) \subseteq \{0,1\} \}.$$

Duality

The operations give a **duality** between:

- ► the category of directed complete effect monoids with effect monoid homomorphisms (that preserve ②, 1, ·, but not necessarily arbitrary suprema); and
- the category with clopen subsets of extremally disconnected compact Hausdorff spaces, with as morphisms from D₁ ⊆ X₁ to D₂ ⊆ X₂ the continuous maps f: X₁ → X₂ with f(D₁) ⊆ D₂.

That's it!

Questions?

Some applications:

- 1. Study of convexity in sequential effect algebras (JvdW, BW, AW, arXiv:2004.12749v2)
- 'ω-complete' effectuses (Kenta Cho, JvdW, BW, arXiv:2003.10245)
- Reconstructing quantum theory without positing real probabilities (Part A of JvdW's thesis, arXiv:2101.03608)