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Abstract. We investigate the cost of Grover’s quantum search algo-
rithm when used in the context of pre-image attacks on the SHA-2 and
SHA-3 families of hash functions. Our cost model assumes that the at-
tack is run on a surface code based fault-tolerant quantum computer.
Our estimates rely on a time-area metric that costs the number of logi-
cal qubits times the depth of the circuit in units of surface code cycles.
As a surface code cycle involves a significant classical processing stage,
our cost estimates allow for crude, but direct, comparisons of classical
and quantum algorithms.
We exhibit a circuit for a pre-image attack on SHA-256 that is approxi-
mately 2153.8 surface code cycles deep and requires approximately 212.6

logical qubits. This yields an overall cost of 2166.4 logical-qubit-cycles.
Likewise we exhibit a SHA3-256 circuit that is approximately 2146.5 sur-
face code cycles deep and requires approximately 220 logical qubits for
a total cost of, again, 2166.5 logical-qubit-cycles. Both attacks require on
the order of 2128 queries in a quantum black-box model, hence our results
suggest that executing these attacks may be as much as 275 billion times
more expensive than one would expect from the simple query analysis.

Keywords: Post-quantum cryptography, hash functions, pre-image attacks, sym-
metric cryptographic primitives

1 Introduction

Two quantum algorithms threaten to dramatically reduce the security of cur-
rently deployed cryptosystems: Shor’s algorithm solves the abelian hidden sub-
group problem in polynomial time [1,2], and Grover’s algorithm provides a
quadratic improvement in the number of queries needed to solve black-box search
problems [3,4,5].

Efficient quantum algorithms for integer factorization, finite field discrete
logarithms, and elliptic curve discrete logarithms can all be constructed by re-
duction to the abelian hidden subgroup problem. As such, cryptosystems based
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on these problems can not be considered secure in a post-quantum environment.
Diffie-Hellman key exchange, RSA encryption, and RSA signatures will all need
to be replaced before quantum computers are available. Some standards bodies
have already begun discussions about transitioning to new public key crypto-
graphic primitives [6,7].

The situation is less dire for hash functions and symmetric ciphers. In a
pre-quantum setting, a cryptographic primitive that relies on the hardness of
inverting a one-way function is said to offer k-bit security if inverting the function
is expected to take N = 2k evaluations of the function. An exhaustive search
that is expected to take O(N) queries with classical hardware can be performed
with Θ(

√
N) queries using Grover’s algorithm on quantum hardware. Hence,

Grover’s algorithm could be said to reduce the bit-security of such primitives
by half; one might say that a 128-bit pre-quantum primitive offers only 64-bit
security in a post-quantum setting.

A conservative defense against quantum search is to double the security pa-
rameter (e.g. the key length of a cipher, or the output length of a hash function).
However, this does not mean that the true cost of Grover’s algorithm should be
ignored. A cryptanalyst may want to know the cost of an attack even if it is
clearly infeasible, and users of cryptosystems may want to know the minimal
security parameter that provides “adequate protection” in the sense of [8,9,10].

In the context of pre-image search on a hash function, the cost of a pre-
quantum attack is given as a number of invocations of the hash function. If
one assumes that quantum queries have the same cost as classical queries, then
the query model provides a reasonable comparison between quantum and clas-
sical search. However, realistic designs for large quantum computers call this
assumption into question.

The main difficulty is that the coherence time of physical qubits is finite.
Noise in the physical system will eventually corrupt the state of any long com-
putation. If the physical error rate can be suppressed below some threshold, then
logical qubits with arbitrarily long coherence times can be created using quan-
tum error correcting codes. Preserving the state of a logical qubit is an active
process that requires periodic evaluation of an error detection and correction
routine. This is true even if no logical gates are performed on the logical qubit.
Hence the classical processing required to evaluate a quantum circuit will grow
in proportion to both the depth of the circuit and the number of logical qubits
on which it acts.

We suggest that a cost model that facilitates direct comparisons of clas-
sical and quantum algorithms should take the classical computation required
for quantum error correction into consideration. Clearly such estimates will be
architecture dependent, and advances in quantum computing could invalidate
architectural assumptions.

To better understand the impact of costing quantum error correction, we
present an estimate of the cost of pre-image attacks on SHA-2 and SHA-3 assum-
ing a quantum architecture based on the surface code with a logical Clifford+T
gate set. We execute the following procedure for each hash function. First, we
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implement the function as a reversible circuit1 over the Clifford+T gate set. We
use a quantum circuit optimization tool, “T -par” [11], to minimize the circuit’s
T -count and T -depth2. With the optimized circuit in hand we estimate the ad-
ditional overhead of fault tolerant computation. In particular, we estimate the
size of the circuits needed to produce the ancillary states that are consumed by
T -gates.

Grassl et al. presented a logical-layer quantum circuit for applying Grover’s
algorithm to AES key recovery [12]. Separately, Fowler et al. have estimated
the physical resources required to implement Shor’s factoring algorithm on a
surface code based quantum computer [13]. Our resource estimates combine
elements of both of these analyses. We focus on the number of logical qubits in
the fault-tolerant circuit and the overall depth of the circuit in units of surface
code cycles. While our cost model ties us to a particular quantum architecture,
we segment our analysis into several layers so that the impact of a different
assumptions at any particular level can be readily evaluated. We illustrate our
method schematically in Fig. 2.

The structure of this article reflects our workflow. In Section 2 we state the
problem of pre-image search using Grover’s algorithm. Section 3 introduces our
framework for computing costs, and Section 4 applies these principles to com-
pute the intrinsic cost of performing Grover search. Sections 5 and 6 detail our
procedure for generating reversible circuits for SHA-256 and SHA3-256 respec-
tively. In Section 7 we embed these reversible implementations into a surface
code, and estimate the required physical resources. We summarize our results
and propose avenues of future research in Section 8.

2 Pre-image search via Grover’s algorithm

Let f : {0, 1}k → {0, 1}k be an efficiently function. For a fixed y ∈ {0, 1}k, the
value x such that f(x) = y is called a pre-image of y. In the worst case, the
only way to compute a pre-image of y is to systematically search the space of all
inputs to f . A function that must be searched in this way is known as a one-way
function. A one-way function that is bijective is a one-way permutation3.

Given a one-way permutation f , one might ask for the most cost effective way
of computing pre-images. With a classical computer one must query f on the
order of 2k times before finding a pre-image. By contrast, a quantum computer
can perform the same search with 2k/2 queries to f by using Grover’s algorithm
[3]. Of course, counting only the queries to f neglects the potentially significant
overhead involved in executing f on a quantum computer.

1 Reversibility is necessary for the hash function to be useful as a subroutine in Grover
search.

2 The logical T gate is significantly more expensive than Clifford group gates on the
surface code.

3 A hash function that has been restricted to length k inputs is expected to behave
roughly like a one-way permutation. The degree to which it fails to be injective should
not significantly affect the expected probability of success for Grover’s algorithm.
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Fig. 1. Grover searching with an oracle for
f : {0, 1}k → {0, 1}k.

Run Grover's algorithm

Generate and optimize reversible circuits

Classical query model

Logical layer

Embed reversible circuits into error

correcting codes; estimate resources.

Fault tolerant layer

Determine physical resources (time, 

qubits, code cycles).

Physical layer

Fig. 2. Analyzing Grover’s algorithm.

Figure 1 gives a high-level description of Grover’s algorithm. The algorithm
makes bπ4 2k/2c calls to G, the Grover iteration. The Grover iteration has two
subroutines. The first, Ug, implements the predicate g : {0, 1}k → {0, 1} that
maps x to 1 if and only if f(x) = y. Each call to Ug involves two calls to a
reversible implementation of f and one call to a comparison circuit that checks
whether f(x) = y.

The second subroutine in G implements the transformation 2|0〉〈0|−I and is
called the diffusion operator. The diffusion operator is responsible for amplifying
the probability that a measurement of the output register would yield x such
that f(x) = y. As it involves only single-qubit gates and a one k-fold controlled-
NOT, the cost of the diffusion operator is expected to be small compared with
that of Ug.

3 A cost metric for quantum computation

Without significant future effort, the classical processing will almost cer-
tainly limit the speed of any quantum computer, particularly one with
intrinsically fast quantum gates.

Fowler–Whiteside–Hollenberg [14]

The majority of the overhead for quantum computation, under realistic as-
sumptions about quantum computing architectures, comes from error detection
and correction. There are a number of error correction methods in the literature,
however the most promising, from the perspective of experimental realizability,
is the surface code [15].
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The surface code allows for the detection and correction of errors on a two-
dimensional array of nearest-neighbor coupled physical qubits. A distance d sur-
face code encodes a single logical qubit into an n × n array of physical qubits
(n = 2d− 1). A classical error detection algorithm must be run at regular inter-
vals in order to track the propagation of physical qubit errors and, ultimately, to
prevent logical errors. Every surface code cycle involves some number of one- and
two-qubit physical quantum gates, physical qubit measurements, and classical
processing to detect and correct errors.

The need for classical processing allows us to make a partial comparison be-
tween the cost of classical and quantum algorithms for any classical cost metric.
The fact that quantum system engineers consider classical processing to be a
bottleneck for quantum computation [14] suggests that an analysis of the classi-
cal processing may serve as a good proxy for an analysis of the cost of quantum
computation itself.

Performing this analysis requires that we make a number of assumptions
about how quantum computers will be built, not least of which is the assumption
that quantum computers will require error correcting codes, and that the surface
code will be the code of choice.

Assumption 1 The resources required for any large quantum computation are
well approximated by the resources required for that computation on a surface
code based quantum computer.

Fowler et al. [16] give an algorithm for the classical processing required by
the surface code. A timing analysis of this algorithm was given in [14], and a
parallel variant was presented in [17]. Under a number of physically motivated
assumptions, the algorithm of [17] runs in constant time per round of error
detection. It assumes a quantum computer architecture consisting of an L × L
grid of logical qubits overlaid by a constant density mesh of classical computing
units. More specifically, the proposed design involves one ASIC (application-
specific integrated circuit) for each block of Ca×Ca physical qubits. These ASICs
are capable of nearest-neighbor communication, and the number of rounds of
communication between neighbors is bounded with respect to the error model.
The number of ASICs scales linearly with the number of logical qubits, but the
constant Ca, and the amount of computation each ASIC performs per time step,
is independent of the number of logical qubits.

Each logical qubit is a square grid of n× n physical qubits where n depends
on the length of the computation and the required level of error suppression.
We are able to estimate n directly (Section 7). Following [14] we will assume
that Ca = n. The number of classical computing units we estimate is therefore
equal to the number of logical qubits in the circuit. Note that assuming Ca = n
introduces a dependence between Ca and the length of the computation, but
we will ignore this detail. Since error correction must be performed on the time
scale of hundreds of nanoseconds (200ns in [15]), we do not expect it to be
practical to make Ca much larger than n. Furthermore, while n depends on the
length of the computation it will always lie in a fairly narrow range. A value
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of n < 100 is sufficient even for the extremely long computations we consider.
The comparatively short modular exponentiation computations in [15] require
n > 31. As long as it is not practical to take Ca much larger than 100, the
assumption that Ca = n will introduce only a small error in our analysis.

Assumption 2 The classical error correction routine for the surface code on
an L×L grid of logical qubits requires an L×L mesh of classical processors (i.e.
Ca = n).

The algorithm that each ASIC performs is non-trivial and estimating its ex-
act runtime depends on the physical qubit error model. In [14] evidence was
presented that the error correction algorithm requires O(C2

a) operations, on av-
erage, under a reasonable error model. This work considered a single qubit in
isolation, and some additional overhead would be incurred by communication
between ASICs. A heuristic argument is given in [17] that the communication
overhead is also independent of L, i.e. that the radius of communication for each
processor depends on the noise model but not on the number of logical qubits
in the circuit.

Assumption 3 Each ASIC performs a constant number of operations per sur-
face code cycle.

Finally we (arbitrarily) peg the cost of a surface code cycle to the cost of
a hash function invocation. If we assume, as in [15], that a surface code cycle
time on the order of 100ns is achievable, then we are assuming that each logical
qubit is equipped with an ASIC capable of performing several million hashes per
second. This would be on the very low end of what is commercially available for
Bitcoin mining today [18], however the ASICs used for Bitcoin have very large
circuit footprints. One could alternatively justify this assumption by noting that
typical hash functions require ≈ 10 cycles per byte on commercial desktop CPUs
[19]. This translates to approximately ≈ 1000 cycles per hash function invoca-
tion. Since commercial CPUs operate at around 4 GHz, this again translates to
a few million hashes per second.

Assumption 4 The temporal cost of one surface code cycle is equal to the tem-
poral cost of one hash function invocation.

Combining Assumptions 1, 2, and 4 we arrive at the following metric for
comparing the costs of classical and quantum computations.

Cost Metric 1 The cost of a quantum computation involving ` logical qubits for
a duration of σ surface code cycles is equal to the cost of classically evaluating
a hash function ` · σ times. Equivalently we will say that one logical qubit cycle
is equivalent to one hash function invocation.

We will use the term “cost” to refer either to logical qubit cycles or to hash
function invocations.



7

4 Intrinsic cost of Grover search

Suppose there is polynomial overhead per Grover iteration, i.e. Θ(2k/2) Grover
iterations cost ≈ kv2k/2 logical qubit cycles for some real v independent of k.
Then an adversary who is willing to execute an algorithm of cost 2C can use
Grover’s algorithm to search a space of k bits provided that

k/2 + v log2(k) ≤ C. (1)

We define the overhead of the circuit as v and the advantage of the circuit
as k/C. Note that if we view k as a function of v and C then for any fixed v
we have limC→∞ k(v, C)/C = 2, i.e. asymptotically, Grover’s algorithm provides
a quadratic advantage over classical search. However, here we are interested in
non-asymptotic advantages.

When costing error correction, we must have v ≥ 1 purely from the space
required to represent the input. However, we should not expect the temporal cost
to be independent of k. Even if the temporal cost is dominated by the k-fold
controlled-NOT gate, the Clifford+T depth of the circuit will be at least log2(k)
[20]. Hence, v ≥ 1.375 for k ≤ 256. This still neglects some spatial overhead
required for magic state distillation, but v = 1.375 may be used to derive strict
upper bounds, in our cost model, for the advantage of Grover search.

In practice the overhead will be much greater. The AES-256 circuit from
[12] has depth 130929 and requires 1336 logical qubits. This yields overhead of
v ≈ 3.423 from the reversible layer alone.

Substituting z = k ln 2
2v , the case of equality in Equation 1 is

zez =
2C/v ln 2

2v
=⇒ k(v, C) =

2v

ln(2)
·W

(
2C/v ln 2

2v

)
(2)

where W is the Lambert W-function. Table 4 in Appendix A gives the advantage
of quantum search as a function of its cost C and overhead v; k is computed
using Equation 2.

5 Reversible implementation of a SHA-256 oracle

The Secure Hash Algorithm 2 (SHA-2) [21] is a family of collision resistant cryp-
tographic hash functions. There are a total of six functions in the SHA-2 family:
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. There
are currently no known classical pre-image attacks against any of the SHA-2 algo-
rithms which are faster then brute force. We will focus on SHA-256, a commonly
used variant, and will assume a message size of one block (512 bits).

First the message block is stretched using Algorithm 2 and the result is stored
in W. The internal state is then initialized using a set of constants. The round
function is then run 64 times, each run using a single entry of W to modify the
internal state. The round function for SHA-256 is shown in Algorithm 1.



8

Algorithm 1 SHA-256. All variables are 32-bit words.

1: for i=0 to 63 do
2: Σ1 ← (E ≫ 6)⊕ (E ≫ 11)⊕ (E ≫ 25)
3: Ch← (E ∧ F)⊕ (¬E ∧G)
4: t1 ← H +Σ1 + Ch + K[i] + W[i]
5: Σ0 ← (A ≫ 2)⊕ (A ≫ 13)⊕ (A ≫ 22)
6: Maj← (A ∧B)⊕ (A ∧C)⊕ (B ∧C)
7: t2 ← Σ0 + Maj
8: H← G
9: G← F

10: F← E
11: E← D + t1
12: D← C
13: C← B
14: B← A
15: A← t1 + t2
16: end for

Algorithm 2 SHA-256 Stretch. All variables are 32-bit words.

1: for i = 16 to 63 do
2: σ0 ← (Wi−15 ≫ 7)⊕ (Wi−15 ≫ 18)⊕ (Wi−15 � 3)
3: σ1 ← (Wi−2 ≫ 17)⊕ (Wi−2 ≫ 19)⊕ (Wi−2 � 10)
4: w[i]←Wi−16 + σ0 + Wi−7 + σ1

5: end for
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Fig. 3. SHA-256 round.
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5.1 Reversible implementation

Our implementation of the SHA-256 algorithm as a reversible circuit is simi-
lar to the one presented in [22] (with the addition of the stretching function).
Each round can be performed fully reversibly (with access to the input) so no
additional space is accumulated as rounds are performed. The in-place adders
shown in the circuit are described in [23]. The adders perform the function
(a, b, 0) 7→ (a, a+ b, 0) where the 0 is a single ancilla bit used by the adder. Since
the Σ blocks use only rotate and XOR operations, they are constructed using
CNOT gates exclusively.

Maj is the bitwise majority function. The majority function is computed using
a CNOT gate and two Toffoli gates as show in Fig. 4.

a • • a

b • • a⊕ b
c • c

0 ab⊕ ac⊕ bc

Fig. 4. Majority circuit implementation.
The a ⊕ b line will be returned to b when
the inverse circuit is applied .

a • a
b • b
c • • b⊕ c
0 ab⊕ ¬ac

Fig. 5. Ch circuit implementation. This
circuit is applied bitwise to input of each
Ch block.

The Ch function is ab ⊕ ¬ac which can be rewritten as a(b ⊕ c) ⊕ c. This
requires a single Toffoli gate as shown in Fig. 5.

There are a few options for constructing the round circuit. For example if
space is available some of the additions can be performed in parallel, and the
cleanup of the Σ, Ch, and Maj functions can be neglected if it is desirable to
exchange space for a lower gate count. We select the round implementation
shown in Fig. 3.

5.2 Quantum implementation

For the quantum implementation we converted the Toffoli-CNOT-NOT circuit
(Fig. 3) discussed above into a Clifford+T circuit. To expand the Toffoli gates
we used the T -depth 3 Toffoli reported in [24]. T -par was then used to optimize
a single round. The results are shown in table 1. Due to the construction of
the adders every Toffoli gate shares two controls with another Toffoli gate. This
allows T -par to remove a large number of T -gates (see [20]).

Observing that the depth of the optimized SHA-256 circuit, 830720, is ap-
proximately 2562.458, and likewise that it requires 2402 ≈ 2561.404 logical qubits,
the overhead, from the reversible layer alone, is v ≈ 3.862.
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T/T † P/P † Z H CNOT T -Depth Depth

Round 5278 0 0 1508 6800 2262 8262
Round (Opt.) 3020 931 96 1192 63501 1100 12980
Stretch 1329 0 0 372 2064 558 2331
Stretch (Opt.) 744 279 0 372 3021 372 2907

SHA-256 401584 0 0 114368 534272 171552 528768
SHA-256 (Opt.) 228992 72976 6144 94144 4209072 70400 830720

Table 1. T -par optimization results for a single round of SHA-256, one iteration of the
stretch algorithm and full SHA-256. Note that 64 iterations of the round function and 48
iterations of the stretch function are needed. The stretch function does not contribute
to overall depth since it can be performed in parallel with the rounds function. No
X gates are used so an X column is not included. The circuit uses 2402 total logical
qubits.

6 Reversible implementation of a SHA3-256 oracle

The Secure Hash Algorithm 3 standard [25] defines six individual hash algo-
rithms, based on the length of their output in the case of SHA3-224, SHA3-256,
SHA3-384 and SHA3-512, or their security strength in the case of SHAKE-128
and SHAKE-256. In contrast to the SHA-2 standard, each of the SHA-3 algo-
rithms requires effectively the same resources to implement reversibly, owing to
their definition as cryptographic sponge functions [26]. Analogous to a sponge,
the sponge construction first pads the input to a multiple of the given rate
constant then absorbs the padded message in chunks, applying a permutation to
the state after each chunk, before “squeezing” out a hash value of desired length.
Each of the SHA-3 algorithms use the same underlying permutation, but vary
the chunk size, padding and output lengths.

The full SHA-3 algorithm is given in pseudocode in Algorithm 3. Each in-
stance results from the sponge construction with permutation Keccak-p[1600, 24]
described below, padding function pad10∗1(x,m) which produces a length −m
mod x string of the form (as a regular expression) 10∗1, and rate 1600−2k. The
algorithm first pads the input message M with the string 0110∗1 to a total length
some multiple of 1600 − 2k. It then splits up this string into length 1600 − 2k
segments and absorbs each of these segments into the current hash value S then
applies the Keccak-p[1600, 24] permutation. Finally the hash value is truncated
to a length k string.

The SHAKE algorithms are obtained by padding the input M with a string
of the form 111110∗1, but otherwise proceed identically to SHA-3
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Algorithm 3 SHA3-k(M).

1: P ←M01(pad10∗1(1600− 2k, |M |)
2: Divide P into length 1600− 2k strings P1, P2, . . . , Pn

3: S ← 01600

4: for i=1 to n do
5: S ←Keccak-p[1600, 24](S ⊕ (Pi0

2k))
6: end for
7: return S[0, c− 1]

Assuming the pre-image has length k, the padded message P has length
exactly 1600− 2k and hence n = 1 for every value of k, so Algorithm 3 reduces
to one application of Keccak-p[1600, 24].

The Keccak permutation The permutation underlying the sponge construc-
tion in each SHA-3 variant is an instance of a family of functions, denoted
Keccak-p[b, r]. The Keccak permutation accepts a 5 by 5 array of lanes, bit-
strings of length w = 2l for some l where b = 25w, and performs r rounds of an
invertible operation on this array. In particular, round i is defined, for 12+2l−r
up to 12 + 2l − 1, as Ri = ιi ◦ χ ◦ π ◦ ρ ◦ θ, where the component functions
are described in Figure 7. Note that array indices are taken mod 5 and A,A′

denote the input and output arrays, respectively. The rotation array c and round
constants RC(i) are pre-computed values.

The Keccak-p[b, r] permutation itself is defined as the composition of all
r rounds, indexed from 12 + 2l − r to 12 + 2l − 1.While any parameters could
potentially be used to define a hash function, only Keccak-p[1600, 24] is used
in the SHA-3 standard. Note that the lane size w in this case is 64 bits.

θ : A′[x][y][z] ←A[x][y][z]⊕

 ⊕
y′∈Z4

A[x− 1][y′][z]⊕A[x+ 1][y′][z − 1]

 (3)

ρ : A′[x][y][z] ←A[x][y][z + c(x, y)] (4)

π : A′[y][2x+ 3y][z] ←A[x][y][z] (5)

χ : A′[x][y][z] ←A[x][y][z]⊕A[x+ 2][y][z]⊕A[x+ 1][y][z])A[x+ 2][y][z] (6)

ιi : A′[x][y][z] ←A[x][y][z]⊕RC(i)[x][y][z] (7)

Fig. 6. The component functions of Ri
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6.1 Reversible implementation

Given the large size of the input register for the instance used in SHA3-256
(1600 bits), we sought a space-efficient implementation as opposed to a more
straightforward implementation using Bennett’s method [27] which would add
an extra 1600 bits per round, to a total of 38400 bits. While this space usage could
be reduced by using pebble games [28], the number of iterations of Keccak-p
would drastically increase. Instead, we chose to perform each round in place by
utilizing the fact that each component function (θ, ρ, π, χ, ιi) is invertible. The
resulting circuit requires only a single temporary register the size of the input,
which is returned to the all-zero state at the end of each round.

A /
25w

θ

A

θ−1

| |
χ

χ ◦ π ◦ ρ ◦ θ(A)

χ−1

ιi Ri(A)

| /
25w θ(A)

π ◦ ρ
π ◦ ρ ◦ θ(A)

|

Fig. 7. Reversible circuit implementation for round i of Keccak-p.

Fig. 7 shows our circuit layout for a given round of Keccak-p[b, r]. We com-
pute θ(A) into the ancilla register by a straightforward implementation of (3),
as binary addition (⊕) is implemented reversibly by the CNOT gate. The imple-
mentation of θ−1 : |ψ〉|θ(A)〉 7→ |ψ ⊕A〉|θ(A) is much less obvious – we adapted
our implementation from the C++ library Keccak tools [29] with minor mod-
ifications to remove temporary registers. To reduce the number of unnecessary
gates, we perform the ρ and π operations “in software” rather than physically
swapping bits. The χ and χ−1 operations are again straightforward implemen-
tations of (6) and the inverse operation from Keccak tools, respectively, using
Toffoli gates to implement the binary multiplications. Finally the addition of the
round constant (ιi) is a sequence of at most 5 NOT gates, precomputed for each
of the 24 individual rounds.

As a function of the lane width w, θ comprises 275w CNOT gates. The inverse
of θ is more difficult to assign a formula to, as it depends on some precomputed
constants – in particular, θ−1 is implemented using 125w·j CNOT gates, where j
is 170 for b = 1600. As ρ and π are implemented simply by re-indexing, they have
no logical cost. We implement χ using 50w additions and 25w multiplications,
giving 50w CNOT gates and 25w Toffoli gates in 5 parallel stages. Finally χ−1

requires 25w CNOT gates to copy the output back into the initial register,
then 60w CNOT and 30w Toffoli gates in 6 parallel stages. As the cost of ιi is
dependent on the round, we don’t give its per-round resources.

The final circuit comprises 3200 qubits, 85 NOT gates, 33269760 CNOT
gates and 84480 Toffoli gates. Additionally, the Toffoli gates are arranged in 264
parallel stages.
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6.2 Quantum implementation

As with the Clifford+T implementation of SHA-256, we used the T -depth 3
Toffoli reported in [24] to expand each Toffoli gate. Since the χ (and χ−1) trans-
formation is the only non-linear operation of Keccak-p[1600, 24], we applied
T -par just to the χ/χ−1 subcircuit to optimize T -count and depth. We used the
formally verified reversible circuit compiler ReVerC [30] to generate a machine
readable initial circuit for χ/χ−1 – while the ReVerC compiler performs some
space optimization [31], the straightforward manner in which we implemented
the circuit meant the compiled circuit coincided exactly with our analysis above.
The optimized results are reported in Table 2. Note that each algorithm in the
SHA-3 family corresponds to one application of Keccak-p[1600, 24] for our pur-
poses, so the resources are identical for any output size.

X P/P † T/T † H CNOT T -depth Depth

θ 0 0 0 0 17600 0 275
θ−1 0 0 0 0 1360000 0 25
χ 0 0 11200 3200 14400 15 55
χ−1 0 0 13440 3840 18880 18 66
ι 85 0 0 0 0 0 24

SHA3-256 85 0 591360 168960 33269760 792 10128
SHA3-256 (Opt.) 85 46080 499200 168960 34260480 432 11040

Table 2. Clifford+T resource counts for the Keccak-p[1600, 24] components, as well
as for the full oracle implementation of SHA3-256. ι gives the combined resource counts
for all 24 rounds of ιi. The circuit uses 3200 total logical qubits.

As an illustration of the overhead for SHA3-256, our reversible SHA3-256
circuit, having depth 11040 ≈ 2561.679 and a logical qubit count of 3200 ≈
2561.455 yields v ≈ 3.134 at the reversible layer.

7 Fault-tolerant cost

The T gate is the most expensive in terms of the resources needed for imple-
menting a circuit fault-tolerantly in a surface code. Most known schemes imple-
ment the T gate using an auxiliary resource called a magic state. The latter is
usually prepared in a faulty manner, and purified to the desired fidelity via a
procedure called magic state distillation. Fault-tolerant magic state distilleries
(circuits for performing magic state distillation) require a substantial number of
logical qubits. In this section we estimate the additional resources required by
distilleries in the particular case of SHA-256 and SHA3-256.

Let T cU denote the T -count of a circuit U (i.e., total number of logical T
gates), and let T dU be the T -depth of the circuit. We denote by TwU = T cU/T

d
U

the T -width of the circuit (i.e., the number of logical T gates that can be done
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in parallel on average for each layer of depth). Each T gate requires one logical
magic state of the form

|AL〉 :=
|0L〉+ eiπ/4 |1L〉√

2
(8)

for its implementation. For the entirety of U to run successfully, the magic states
|AL〉 have to be produced with an error rate no larger than pout = 1/T cU .

The magic state distillation procedure is based on the following scheme. The
procedure starts with a physical magic state prepared with some failure prob-
ability pin. This faulty state is then injected into an error correcting code, and
then by performing a suitable distillation procedure on the output carrier qubits
of the encoded state a magic state with a smaller failure probability is distilled.
If this failure probability is still larger than the desired pout, the scheme uses
another layer of distillation, i.e. concatenates the first layer of distillation with a
second layer of distillation, and so forth. The failure probability thus decreases
exponentially.

In our case, we use the Reed-Muller 15-to-1 distillation scheme introduced
in [32]. Given a state injection error rate pin, the output error rate after a layer
of distillation can be made arbitrarily close to the ideal pdist = 35p3in provided
we ignore the logical errors that may appear during the distillation procedure
(those can be ignored if the distillation code uses logical qubits with high enough
distance). As pointed out in [33] logical errors do not need to be fully eliminated.
We also assume that the physical error rate per gate in the surface code, pg, is
approximately 10 times smaller than pin, i.e. pg = pin/10, as during the state
injection approximately 10 gates have to perform without a fault before error
protection is available (see [13] for more details).

We define ε so that εpdist represents the amount of logical error introduced,
so pout = (1+ε)pdist. In the balanced case ε = 1 the logical circuit introduces the
same amount of errors as distillation eliminates. Algorithm 4 [33] summarizes
the procedure for estimating the number of rounds of state distillation needed to
achieve a given output error rate, as well as the required minimum code distances
at each round. Note that d1 represents the distance of the surface code used in
the top layer of distillation (where by top we mean the initial copy of the Reed-
Muller circuit), d2 the distance of the surface code used in the next layer, and
so forth.

7.1 SHA-256

The T -count of our SHA-256 circuit is T cSHA-256 = 228992 (see Table 1), and the
T -count of the k-fold controlled-NOT is T cCNOT-k = 32k − 84 [12]. With k = 256,
we have T cCNOT-256 = 8108 and the total T -count of the SHA-256 oracle Ug (of
Fig. 1) is

T cUg
= 2T cSHA-256 + T cCNOT-256 = 2× 228992 + 8108 = 466092. (9)
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Algorithm 4 Estimating the required number of rounds of magic state distil-
lation and the corresponding distances of the concatenated codes

1: Input: ε, pin, pout, pg(= pin/10)
2: d← empty list []
3: p← pout
4: i← 0
5: repeat
6: i← i+ 1
7: pi ← p

8: Find minimum di such that 192di(100pg)
di+1

2 < εpi
1+ε

9: p← 3
√
pi/(35(1 + ε))

10: d.append(di)
11: until p > pin
12: Output: d = [d1, . . . , di]

The diffusion operator consists of Clifford gates and a (k − 1)-fold controlled-
NOT, hence its T -count is T cCNOT-255 = 8076. The T -count of one Grover iteration
G is therefore

T cG = T cUg
+ T cCNOT-255 = 466092 + 8076 = 474168, (10)

and the T -count for the full Grover algorithm (let us call it GA) is

T cGA = bπ/4× 2128c × 474168 ≈ 1.27× 1044. (11)

For this T -count the output error rate for state distillation should be no greater
than pout = 1/T cGA ≈ 7.89× 10−45. Assuming a magic state injection error rate
pin = 10−4, a per-gate error rate pg = 10−5, and choosing ε = 1, Algorithm 4
suggests 3 layers of distillation, with distances d1 = 33, d2 = 13 and d3 = 7.

The bottom layer of distillation occupies the largest footprint in the surface
code. Three layers of distillation consume Ndist = 16 × 15 × 15 = 3600 input
states in the process of generating a single |AL〉 state. These input states are
encoded on a distance d3 = 7 code that uses 2.5 × 1.25 × d23 ≈ 154 physical
qubits per logical qubit. The total footprint of the distillation circuit is then
Ndist × 154 ≈ 5.54× 105 physical qubits. The round of distillation is completed
in 10d3 = 70 surface code cycles.

The middle layer of distillation requires a d2 = 13 surface code, for which a
logical qubit takes 2.5 × 1.25 × d22 ≈ 529 physical qubits. The total number of
physical qubits required in the second round is therefore 16×15×529 ≈ 1.27×105

physical qubits, with the round of distillation completed in 10d2 = 130 surface
code cycles.

The top layer of state distillation requires a d1 = 33 surface code, for which
a logical qubit takes 2.5× 1.25×d21 ≈ 3404 physical qubits. The total number of
physical qubits required in the top layer is therefore 16× 3404 = 54464 physical
qubits, with the round of distillation completed in 10d1 = 330 surface code
cycles.
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Note that the physical qubits required in the bottom layer of state distillation
can be reused in the middle and top layers. Therefore the total number of physical
qubits required for successfully distilling one purified |AL〉 state is ndist = 5.54×
105. The concatenated distillation scheme is performed in σdist = 70+130+330 =
530 surface code cycles. Since the middle layer of distillation has smaller footprint
than the bottom layer, distillation can potentially be pipelined to produce φ =
(5.54×105)/(1.27×105) ≈ 4 magic states in parallel. Assuming, as in [13], a tsc =
200 ns time for a surface code cycle, a magic state distillery can therefore produce
4 |AL〉 states every σdist×tsc ≈ 106µs. Generating the requisite T cGA = 1.27×1044

magic states with a single distillery would take approximately tdist = 3.37×1039s
≈ 1.06× 1032 years.

We now compute the distance required to embed the entire algorithm in
a surface code. The number of Clifford gates in one iteration of G is roughly
8.76× 106, so the full attack circuit performs around 2.34× 1045 Clifford gates.
The overall error rate of the circuit should therefore be less than 4.27 × 10−46.
To compute the required distance, we seek the smallest d that satisfies the in-
equality [14] ( pin

0.0125

) d+1
2

< 4.27× 10−46, (12)

and find this to be dSHA-256 = 43. The total number of physical qubits in the
Grover portion of the circuit is then 2402× (2.5× 1.25× 432) = 1.39× 107.

We can further estimate the number of cycles required to run the entire
algorithm, σGA. Consider a single iteration of G from Fig. 1. The T -count is
T cGA = 1.27 × 1044 and the T -depth is T dGA = 4.79 × 1043 for one iteration of
SHA-256, yielding TwG = T cGA/T

d
GA ≈ 3.

Our SHA-256 circuit has NSHA-256 = 2402 logical qubits. Between sequential
T gates on any one qubit we will perform some number of Clifford operations.
These are mostly CNOT gates, which take 2 surface code cycles, and Hadamard
gates, which take a number of surface code cycles equal to the code distance [13].

Assuming the 8.76× 106 Clifford gates in one Grover iteration are uniformly
distributed among the 2402 logical qubits, then we expect to perform 8.76 ×
106/(2402 × T dG) ≈ 0.026 Clifford operations per qubit per layer of depth. As a
magic state distillery produces 4 magic states per 530 surface code cycles, we can
perform a single layer of T depth every 530 surface code cycles. We thus need only
a single distillery, Φ = 1. On average about 2% of the Cliffords are Hadamards,
and the remaining 98% are CNOTs. This implies that the expected number of
surface code cycles required to implement the 0.025 average number of Clifford
gates in a given layer of T depth is 2%× 0.025× 43 + 98%× 0.025× 2 = 0.071.
As this is significantly lower than 1, we conclude that performing the T gates
comprises the largest part of the implementation, while the qubits performing
the Clifford gates are idle most of the time. In conclusion, the total number of
cycles is determined solely by magic state production, i.e.

σGA = bπ/4× 2128c × 530× (2T dSHA-256) ≈ 2153.8.

As discussed in Sec. 3, the total cost of a quantum attack against SHA-256
equals the product of the total number of logical qubits (including the ones used
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for magic state distillation) and the number of code cycles, which in our case
results in

(NSHA-256 + ΦNdist)σGA = (2402 + 1× 3600)× 2153.8 ≈ 2166.4,

corresponding to an overhead factor of v = (166.4− 128)/ log2(256) = 4.8.

7.2 SHA3-256

We perform a similar analysis for SHA3-256. We have T cUg
= 2× 499200 + 32×

256− 84 = 1006508, and T cG = 1006508 + 32× 255− 84 = 1014584, and thus the
full Grover algorithm takes T -count T cGA = bπ/4×2128c×1014584 ≈ 2.71×1044.
If we choose, like in the case of SHA-256, pin = 10−4, pg = 10−5, and ε = 1,
Algorithm 4 yields 3 layers of distillation with distances d1 = 33, d2 = 13, and
d3 = 7; these are identical to those of SHA-256. Thus, the distillation code
requires takes 3600 logical qubits (and 5.54 × 105 physical qubits), and in 530
cycles is able to produce roughly 4 magic states.

We compute the distance required to embed the entire algorithm in a surface
code. The total number of Cliffords in one iteration of G is roughly 6.90× 107,
so the total number will be around 1.84 × 1046 operations. We thus need the
overall error rate to be less than 5.43× 10−47, which by Eq. 12 yields a distance
dSHA3-256 = 44. The number of physical qubits is then 1.94× 107.

Consider a single iteration of G from Fig. 1. T cG = 1014584 and T dSHA3-256 =
432, which yields TwG = 1014584/(2 × 432) = 1175. Above we figured we can
compute 4 magic states in 530 code cycles. Then, to compute 1175 magic states
in the same number of cycles we will need roughly Φ = 294 distillation factories
working in parallel to keep up. This will increase the number of physical qubits
required for state distillation to 1.63 × 108. If we assume tsc = 200ns cycle
time, generation of the full set of magic states will take 2.28 × 1037s, or about
tdist = 7.23× 1029 years.

Our SHA3-256 circuit uses NSHA3-256 = 3200 logical qubits. Assuming the
6.90 × 107 Clifford gates per Grover iteration are uniformly distributed among
the qubits, and between the 864 sequential T gates, we must be able to implement
6.90× 107/(3200× 864) ≈ 25 Clifford operations per qubit per layer of T -depth.
As the ratio of CNOTs to Hadamards is roughly 202 to 1, i.e. 99.5% of the
Cliffords are CNOTs and only 0.5% are Hadamards, the expected number of
surface code cycles required to implement the average of 25 Clifford gates in a
given layer of T depth is 25× (0.005× 44 + 0.995× 2) ≈ 55. We have used just
enough ancilla factories to implement a single layer of T -depth in 530 cycles,
meaning that once again the limiting step in implementing this circuit is the
production of magic states. Hence, we can compute the total number of surface
code cycles required to implement SHA3-256 using just the T -depth:

σGA = bπ/4× 2128c × 530× (2T dSHA3-256) ≈ 1.22× 1044 ≈ 2146.5.
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The total cost of a quantum attack against SHA3-256 is then

(NSHA3-256 + ΦNdist)σGA = (3200 + 294× 3600)× 2146.5 ≈ 2166.5,

or an overhead of v = (166.5− 128)/ log2(256) = 4.81.

SHA-256 SHA3-256
G

ro
v
er

T -count 1.27× 1044 2.71× 1044

T -depth 3.76× 1043 2.31× 1041

Logical qubits 2402 3200

Surface code distance 43 44

Physical qubits 1.39× 107 1.94× 107

D
is

ti
ll
er

ie
s Logical qubits per distillery 3600 3600

Number of distilleries 1 294

Surface code distances {33, 13, 7} {33, 13, 7}
Physical qubits 5.54× 105 1.63× 108

T
o
ta

l Logical qubits 212.6 220

Surface code cycles 2153.8 2146.5

Total cost 2166.4 2166.5

Table 3. Fault-tolerant resource counts for Grover search of SHA-256 and SHA3-256.

8 Conclusions and open questions

We estimated the cost of a quantum pre-image attack on SHA-256 and SHA3-
256 cryptographic hash functions via Grover’s quantum searching algorithm. We
constructed reversible implementations of both SHA-256 and SHA3-256 crypto-
graphic hash functions, for which we optimized their corresponding T -count and
depth. We then estimated the required physical resources needed to run a brute
force Grover search on a fault-tolerant surface code based architecture.

We showed that attacking SHA-256 requires approximately 2153.8 surface
code cycles and that attacking SHA3-256 requires approximately 2146.5 surface
code cycles. For both SHA-256 and SHA3-256 we found that the total cost
when including the classical processing increases to approximately 2166 basic
operations.

Our estimates are by no means a lower bound, as they are based on a series
of assumptions. First, we optimized our T -count by optimizing each component
of the SHA oracle individually, which of course is not optimal. Dedicated opti-
mization schemes may achieve better results. Second, we considered a surface
code fault-tolerant implementation, as such a scheme looks the most promising
at present. However it may be the case that other quantum error correcting
schemes perform better. Finally, we considered an optimistic per-gate error rate
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of about 10−5, which is the limit of current quantum hardware. This number will
probably be improved in the future. Improving any of the issues listed above will
certainly result in a better estimate and a lower number of operations, however
the decrease in the number of bits of security will likely be limited.
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A Tables

k(a,C)
C

C
16 32 48 64 80 96 112 128

a

0 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1 1.38 1.63 1.73 1.78 1.81 1.84 1.86 1.88
2 1.00 1.31 1.48 1.58 1.64 1.69 1.72 1.75
3 0.69 1.03 1.25 1.39 1.48 1.54 1.60 1.63
4 0.44 0.81 1.04 1.20 1.33 1.41 1.47 1.52
5 0.38 0.63 0.88 1.05 1.18 1.27 1.35 1.41

Table 4. The advantage, k/C, of a quantum pre-image search that can be performed
for cost 2C = ka2k/2. The entries less than 1 correspond to a regime where quantum
search is strictly worse than classical search.

a 1 2 3 4 5

k 5 16 30 44 59
Table 5. The k for which the classical and quantum search costs are equal after
accounting for the ka overhead for quantum search.

B Parallel quantum search

Classical search is easily parallelized by distributing the 2k bitstrings among 2t

processors. Each processor fixes the first t bits of its input to a unique string and
sequentially evaluates every setting of the remaining k − t bits. Since our cost
metric counts only the number of invocations of g, the cost of parallel classical
search is 2k for all t. If one is more concerned with time (i.e. the number of
sequential invocations) than with area, or vice versa, it may be more useful to
report the cost as (T,A). Or, in this case, (2k−t, 2t).

Quantum computation has a different time/area trade-off curve. In particu-
lar, parallel quantum strategies have strictly greater cost than sequential quan-
tum search. Consider sequential quantum search with cost C(1) = (CT , CA) =
(ka2k/2, kb). Parallelizing this algorithm across 2t quantum processors reduces
the temporal cost per processor by a factor of 2t/2 and increases the area by
a factor of 2t. Fixing t bits of the input does not change the overhead of the
Grover iteration, so the cost for parallel quantum search on 2t processors is
C(2t) = (2−t/2CT , 2

tCA) = (ka2(k−t)/2, kb2t).
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