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Abstract—In this paper, we study the close relationship be-
tween Reed-Muller codes and single-qubit phase gates from the
perspective of T -count optimization. We prove that minimizing
the number of T gates in an n-qubit quantum circuit over CNOT
and T , together with the Clifford group powers of T , corresponds
to finding a minimum distance decoding of a length 2n−1 binary
vector in the order n−4 punctured Reed-Muller code. Moreover,
we show that the problems are polynomially equivalent in the
length of the code. As a consequence, we derive an algorithm for
the optimization of T -count in quantum circuits based on Reed-
Muller decoders, along with a new upper bound of O(n2) on the
number of T gates required to implement an n-qubit unitary over
CNOT and T gates. We further generalize this result to show that
minimizing small angle rotations corresponds to decoding lower
order binary Reed-Muller codes. In particular, we show that
minimizing the number of RZ(2π/m) gates for any integer m is
equivalent to minimum distance decoding in RM(n−k−1, n)∗,
where k is the highest power of 2 dividing m.

Index Terms—Quantum circuits, Reed-Muller codes, minimum
distance decoding, circuit optimization.

I. INTRODUCTION

The synthesis and optimization of quantum circuits has
generated a great deal of interest in recent years. As qubit
technologies become more stable and experimentalists increase
the size of their systems, actually running algorithms on these
machines becomes a practical concern. Moreover, we want
to know how to efficiently run these algorithms on the given
systems, or conversely how big and stable of a system we
need to run a particular algorithm. Given the prevalence of
the circuit model within quantum computing, quantum circuit
optimization is an important tool in answering these questions.

Due to the great affect of noise on quantum computations,
much research has shifted its focus from optimizing physi-
cal circuits to logical ones with respect to a fault-tolerance
schemes meant to mitigate the errors due to this noise. These
schemes usually have striking differences from physical gates
in terms of resource costs. In particular, most of the common
schemes implement Clifford group gates transversally – that
is, by performing one physical gate on each physical qubit
or group of qubits. This allows the logical operation to be
performed precisely and with time proportional to the physical
gate time. The additional operation needed to make a universal
gate set is then typically implemented probabilistically with
state distillation and gate teleportation, a less accurate proce-
dure which requires both additional time and space compared
to a single physical gate. The two qubit controlled-NOT

(CNOT) gate, as an element of the Clifford group, is hence
a relatively cheap operation in this paradigm, compared to
the T = diag(1, ei

π
4 ) gate which is commonly chosen as

the non-Clifford gate. This is a reversal of the computational
costs inherent in most physical implementations, where en-
tangling gates are typically more difficult to implement than
single qubit rotations, and hence requires different circuit op-
timizations. While alternative fault-tolerance methods such as
Paetznick and Reichardt’s completely transversal Clifford+T
scheme [1] and anyonic quantum computing [2] are gaining
in popularity, minimization of the number of T gates – called
the T -count – in quantum circuits remains an important and
widely studied goal.

We build on previous work by Amy, Maslov and Mosca
on the reduction of T gates in quantum circuits. In [3] it
was shown that unitaries implementable over CNOT and T
gates may be described as a (linear) permutation together
with a phase rotation that is an 8th root of unity given by a
pseudo-Boolean function of the input bits in the computational
basis. This function, called the circuit’s phase polynomial, was
shown to be expressible as a weighted sum of linear Boolean
functions, each function corresponding to the application of
a T gate to a power given by its weight. This idea was
later used in [4] to optimize both T -count and T -depth – the
minimal number of stages of parallel T -gates in a circuit – by
computing a circuit’s phase polynomial, simplifying it, then
synthesizing a new circuit from the polynomial with maxi-
mally parallelized T gates. While their benchmarks showed
significant reduction of T gates, it was noted that this approach
was not optimal, as it was shown that there exist distinct phase
polynomials that give rise to the same unitary. In particular, it
was observed that for all x1, x2, x3, x4 ∈ Z2,

e
iπ4

∑
f∈Z42→Z2

f(x1,x2,x3,x4)
= 1 = e0,

where Zn
2 → Z2 is the space of all n-bit linear Boolean

functions. It was left as an open question as to whether there
exist other such identities, and whether such identities can be
used to further reduce instances of T gates.

In this paper we fully characterize the set of identities
between phase polynomials on n qubits. In doing so, we find
that the set of identities on n qubits that are useful for reducing
a circuit’s T -count correspond exactly to the code-words of
the length 2n−1 punctured Reed-Muller code of order n−4.
This allows us to derive a new T -count optimization algorithm
based on Reed-Muller decoding which is optimal for CNOT
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and T gate circuits when a minimum distance decoder is
used. We implemented this optimization algorithm as a module
in the quantum circuit optimizer T -par [5] and tested it on
general Clifford+T circuits with two different Reed-Muller
decoders. The results show modest reductions in T -count
while still remaining tractable for circuits of non-trivial size,
further confirming the efficacy of the (polynomial-time) T -
par algorithm [4] in terms of T -count optimization. Our result
further provides a new quadratic upper bound on the number
of T gates required to implement a circuit over {CNOT, T},
along with evidence towards the intractability of exact T -
count minimization via a polynomial-time equivalence to the
minimum distance decoding problem for the punctured Reed-
Muller code.

Our proof naturally generalizes to the case when the T gate
is replaced with a Z rotation by any angle of the form 2π/2k.
These gate sets are closely related to the Clifford-cyclotomic
gate sets studied in [6], and are widely used in quantum
algorithms including Shor’s algorithm [7]. We show that
minimizing the number of 2π/2k rotation gates for each value
of k corresponds to decoding punctured Reed-Muller codes of
order n−k−1, opening up the possibility of optimizing such
circuits at the high level before decomposing them into a lower
level gate set such as Clifford+T . We further show that these
are the only non-trivial identities between phase polynomials
over arbitrary angles – in particular, minimizing rotation gates
of any finite order m reduces to the case of order 2π/2k,
where k is the largest integer such that 2k | m.

A. Related work

Much work has gone into T -count and depth reduction in
recent years. Amy et al. [3] identified the T -count and T -
depth as important quantities in the efficiency of a logical
quantum circuit, and gave new implementations of 2–4 bit
quantum operations reducing T -count and depth from the
previously best known. Their search-based algorithm was later
extended by Gosset et al. [8] to directly optimize T -depth,
leading to proofs of T -depth minimality for various 2–4 bit
circuits. Selinger [9] showed that the Toffoli gate, as well
as a general class of Clifford+T circuits, can be parallelized
to T -depth 1 with sufficiently many ancillas. Constructions
for adding controls to quantum gates were also given which
lowered the T -count and depth compared to best known
practices using Toffoli gates. Amy, Maslov and Mosca later
used similar ideas to create an automated, polynomial-time
tool for reducing and parallelizing T gates called T -par, which
uses matroid partitioning to parallelize the T gates. More
recently, Abdessaied, Soeken and Drechsler [10] studied the
effect of Hadamard gates on T -count and depth reductions,
developing a tool that reduces Hadamard gates in quantum
circuits leading to further T gate optimizations. Maslov [11]
examined Toffoli gate implementations up to relative phase
and used them to develop new designs for multiple control
Toffolis using fewer ancillas, CNOT, and in some cases T
gates, than standard designs.

A great deal of work optimizing T -count and depth in single
qubit circuits has also been done recently, with series of works

on exact [12] and approximate [13]–[15] minimal synthesis,
as well as repeat-until-success circuits [16], [17]. While we
instead focus on multi-qubit circuit optimization, the single-
and multi-qubit approaches are complementary as circuits may
be first optimized at the level of abstract, small angle rotations
before optimally decomposing such gates into sequences of T
and Clifford group gates.

The relationship between Reed-Muller codes and T gates
has previously been studied from the perspective of fault-
tolerance, with applications to the construction of quantum
error correcting codes with transversal roots of Z [18]–
[20] or otherwise implementing such gates with magic state
distillation [21]–[23]. Our work differs from the work done
in the fault-tolerance community in that we are interested in
the optimization of quantum circuits, rather than implementing
phase gates fault-tolerantly – hence we establish completeness
results in addition to the existence results found in fault-
tolerance research.

B. Overview

The rest of the paper is organized as follows. Section II gives
definitions and notation that will be used throughout the paper.
Section III defines the linear phase operators, details their
representation as weighted sums of linear Boolean functions
and synthesis. Section IV defines an additive subgroup of
Z2n−1
8 whose cosets correspond to the unique linear phase

operators, then characterizes its binary residue as a Reed-
Muller code and gives applications. Section V generalizes
the result to circuits over CNOT gates and phase rotations
with angles of the form 2π/m, and Section VI details the
experimental evaluation of our technique.

II. PRELIMINARIES

We assume some knowledge of quantum computing and
coding theory, but provide the basic necessary definitions from
both. For a complete introduction to quantum computing,
the reader is referred to Nielsen & Chuang [24], and for
background on coding theory see MacWilliams & Sloane [25].

A. Quantum circuits

We work in the circuit model of quantum computation [24].
The state of an n-qubit quantum system is modelled as a
unit vector in a dimension 2n complex vector space. As is
standard we denote the 2n basis vectors of the computational
basis by |x〉 for bit strings x = x1x2 · · ·xn ∈ Zn

2 – these
are called the classical states. We denote binary vectors by
boldface letters and use them interchangeably as bit strings.
A general quantum state may be written as a superposition of
classical states

|ψ〉 =
∑
x∈Zn2

αx|x〉,

for complex αx and having unit norm.
Quantum gates, analogous to classical gates, correspond

to unitary matrices on some 2m dimensional complex vector
space. An m-qubit gate may be lifted to a gate on some m-
qubit subset of an n-qubit system by taking its tensor product
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with the identity matrix on the unaffected qubits. By a quantum
circuit over a particular set of gates we mean a sequential list
of gates taken from the set, each with a list of qubits the
gate is to be applied to. Such a circuit implements a unitary
operator on n qubits, defined as the (sequential) product of
each gate appropriately lifted to n qubits. In this way, two
distinct circuits may implement the same unitary matrix – we
call such circuits equivalent.

In this paper we will primarily be interested in two gates:
the controlled-NOT (CNOT : |x〉|y〉 7→ |x〉|x ⊕ y〉 where ⊕
denotes addition in Z2) and the T -gate (T : |x〉 7→ ei

π
4 x|x〉).

These two gates, together with S := T 2 and Z := T 4 gates,
comprise what we refer to for brevity as the {CNOT, T} gate
set. We include the S and Z gates in this set to distinguish
them from sequences of T gates which are generally much
more expensive to implement in most fault-tolerance schemes.
Given any power k ∈ Z8 of the T gate, we define a minimal
T -gate expansion by

T k := Zk2Sk1T k0

where k2k1k0 is the binary expansion of k. Note that T 8 = I
so T k = T k mod 8 for all integers k.

The problem of optimizing quantum circuits is to find,
given a circuit, an equivalent circuit minimizing some cost
function. In cases where the cost function assigns some non-
zero cost to a particular gate U while all other gates are free
we refer to the resulting optimization problem as the U -gate
minimization problem. In this work we primarily consider the
problem of T -gate minimization over the {CNOT, T} gate
set. It should be noted that, while the {CNOT, T} gate set is
not universal in the sense that not every n-qubit unitary can
be implemented to arbitrary accuracy with a polylogarithmic
number of CNOT and T gates, the addition of the Hadamard
gate (H : |x〉 7→ 1√

2

∑
x′∈Z2

(−1)xx′ |x′〉) gives a universal set
known as Clifford+T .

B. Coding theory
A length n binary linear code is a subspace C of Zn

2 ,
where Z2 is the unique 2-element field ({0, 1},⊕, ·) with
addition (⊕) and multiplication (·) modulo 2. The elements
of C are called the codewords of C. Note that Z2 is the set
of Boolean values with addition corresponding to exclusive-
OR and multiplication corresponding to AND. Addition and
multiplication are extended to vectors component-wise – that
is, xy is the component-wise multiple of vectors x and y, as
opposed to matrix multiplication.

We denote binary vectors by boldface letters e.g., x =
x1x2 · · ·xn ∈ Zn

2 , and use them interchangeably as bit
strings. In particular, we denote the n-qubit computational
basis vectors by |x〉 where x is a binary vector/bit string. The
(Hamming) weight of a binary vector, denoted |x|,x ∈ Zn

2 , is
defined as the number of non-zero entries it contains, and the
(Hamming) distance between two binary vectors x,y ∈ Zn

2 is
the weight of their sum:

δ(x,y) := |x⊕ y|.

Given a received vector x ⊕ e where x ∈ C and e ∈ Zn
2

is some error vector, we wish to find x – this process is

known as decoding. In this work, we are only concerned with
minimum distance decoding, as it relates directly to T -count
optimization.

Definition 1. Given a binary linear code C and vector x ∈ Zn
2 ,

a minimum distance decoding of x in C is a codeword y ∈ C
such that for all z ∈ C, δ(x,y) ≤ δ(x, z).

The problem of finding a minimum distance decoding is
closely related to the more general closest vector problem
over a lattice, and in fact coincides with the closest vector
problem over the lattice C with the Hamming weight as the
norm. Minimum distance decoding is commonly studied as it
reasonably approximates maximum likelihood decoding when
bit flip errors are independent of one another.

We give one more definition from coding theory which will
be relevant to our work: the maximum distance of any vector
from a codeword, called the covering radius.

Definition 2. The covering radius of a length n binary code
C is

ρ(C) = max
x∈Zn2

min
y∈C

δ(x,y).

C. Reed-Muller codes

Many different presentations of the binary Reed-Muller
codes ([26], [27]) are known; we use a presentation based on
multivariate polynomials as it will provide a convenient setting
for our work. For more details the reader is referred to [25].

Let Z2[X1, X2, . . . , Xn] be the ring of polynomials in
n variables over Z2. We use the symbols X1, X2, . . . , Xn

to denote formal variables so as to differentiate them from
elements of binary vectors. Given f ∈ Z2[X1, X2, . . . , Xn]
we define the evaluation vector of f , when viewed as an n-
ary function, to be the length 2n − 1 vector consisting of the
evaluation of f at all non-zero inputs ordered lexicographically
– i.e.

(f(10 · · · 0), f(01 · · · 0), . . . , f(11 · · · 1)).

We denote the evaluation vector of a polynomial function f
by f . Since X2 = X for all X ∈ Z2, we work in the quotient
ring f ∈ Z2[X1, X2, . . . , Xn]/〈X2

1 − X1, . . . , X
2
n − X〉 and

assume polynomials are in reduced form with exponents 0
or 1. Identifying the variable Xi with the Boolean function
f(X1, X2, . . . , Xn) = Xi, we denote the evaluation vector
of Xi by Xi. It can be easily verified that for any Boolean
polynomial f =

⊕
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n , the evaluation

vector of f is equal to
⊕

y∈Zn2
Xy1

1 Xy2

2 · · ·Xyn
n – again,

exponentiation of a Boolean vector is defined as component-
wise exponentiation.

We define the total degree of a monomial Xy1

1 Xy2

2 · · ·Xyn
n

to be the sum of its exponents:

deg(Xy1

1 Xy2

2 · · ·Xyn
n ) =

n∑
i=1

yi = |y|.

The degree of a polynomial function f ∈ Z2[X1, X2, · · ·Xn],
denoted deg(f), is defined as the maximum total degree of
each monomial. Table I illustrates the evaluation vectors of
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TABLE I
EVALUATION VECTORS FOR MONOMIALS OVER 3 BOOLEAN VARIABLES.

100 010 110 001 101 011 111
1 1 1 1 1 1 1 1
X1 1 0 1 0 1 0 1
X2 0 1 1 0 0 1 1

X1X2 0 0 1 0 0 0 1
X3 0 0 0 1 1 1 1

X1X3 0 0 0 0 1 0 1
X2X3 0 0 0 0 0 1 1

X1X2X3 0 0 0 0 0 0 1

the 23 monomials on 3 variables. Note that the set of non-
constant monomial evaluation vectors are linearly independent
and form a basis for the space Z2n−1

2 .

Definition 3. The punctured Reed-Muller code of order r and
length 2n − 1, denoted RM(r, n)∗, is the set of evaluation
vectors for polynomials f ∈ Z2[X1, X2, . . . , Xn] of degree at
most r.

The non-punctured, length 2n Reed-Muller code or order
r is defined in a similar fashion, using evaluation vectors
consisting of all 2n distinct evaluations for a given polynomial
function instead.

III. LINEAR PHASE OPERATORS

In this section we introduce linear phase operators as
the subset of unitaries implementable by {CNOT, T} which
require T gates. We review their representation as pseudo-
Boolean functions and define the canonical T -count for a
particular polynomial. Finally we show that a minimal T -count
implementation of a linear phase operator corresponds to a
minimal weight vector of a vector space coset.

We define P8(n) to be the set of diagonal 2n×2n unitaries
implementable over {CNOT, T} – we restrict our attention
to this subset as any circuit over {CNOT, T} may be de-
composed into a diagonal unitary followed by a permutation
implementable using only CNOT gates. Amy et al. [3, Lemma
2] showed that each such unitary U ∈ P8(n) has the effect
of applying a pseudo-Boolean function P to a computational
basis state |x〉, viewed as a vector x = x1x2 · · ·xn ∈ Zn

2 , and
kicking the result into the phase:

U : |x〉 7→ ei
π
4 P (x)|x〉.

Moreover, it was shown that the phase polynomial P : Zn
2 →

Z8 necessarily has a presentation as a weighted sum of (non-
zero) linear Boolean functions:

P (x) =
∑

y∈Zn2 \{0}

ay(y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn),

where the coefficients ay are integers modulo 8. We call the
tuple a = (a1, a2, . . . , a2n−1) ∈ Z2n−1

8 an implementation of
P , and conversely denote the phase polynomial defined by an
element a of Z2n−1

8 by Pa. As the function P involves both Z2

and Z8 arithmetic, we implicitly use the natural inclusion of Z2

in Z8 to lift the binary valued result of y1x1⊕y2x2⊕· · ·⊕ynxn
into an integer.

We call unitaries in P8(n) π/4 linear phase operators, as
they may be expressed as a sequence of π/4 phase rotations

conditioned on linear Boolean functions of the input basis
state. We drop the π/4 until Section V when we generalize
the result to 2π/2k linear phase operators. Given a particular
phase polynomial P , we denote the linear phase operator with
phase polynomial P by UP .

Example 1. The doubly-controlled Z gate is a π/4 linear
phase operator with phase function P (x1, x2, x3) = 4x1x2x3.
Using the identity 2 · xy = x+ y + 7(x⊕ y) mod 8 [9], the
phase function may be given as the following weighted sum
of linear Boolean functions:

P (x1, x2, x3) = x1 + x2 + 7(x1 ⊕ x2) + x3 + 7(x1 ⊕ x3)
+ 7(x2 ⊕ x3) + (x1 ⊕ x2 ⊕ x3).

Writing the coefficients above as a 7-tuple over Z8 we get
(1, 1, 7, 1, 7, 7, 1). Note that this implementation corresponds
to the following circuit, taken from [4]. The state of each qubit
after an update is shown to illustrate the relation between the
state of a qubit as a Boolean function of the inputs and the
application of phase gates.

x1 T
x1⊕x3

T †
x1⊕x2⊕x3

T
x1⊕x2

T †
x1

x1

x2 T • • • • x2

x3 •
x2⊕x3

T †
x3

• T x3

Amy, Maslov and Mosca [4] showed that a linear phase
operator UP can be synthesized over {CNOT, T} given an
implementation a ∈ Z2n−1

8 of P in time polynomial in the
number of non-zero entries of a – moreover, this number
is linear in the size of the circuit. Their procedure applies
each (non-trivial) phase shift ei

π
4 ay(y1x1⊕y2x2⊕···⊕ynxn) by

first computing the linear sum y1x1⊕y2x2⊕· · ·⊕ynxn, then
applying T ay and uncomputing y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn.
Recall that

T k := Zk2P k1T k0

where k2k1k0 is the binary expansion of k. Since each
y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn is a linear function of the basis
state x1x2 · · ·xn, each value y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn may
be computed solely with CNOT gates, giving a total T -count
equal to the number of odd elements of a – we call this the
T -count of an implementation. While in this work we are
only concerned with the T -count of the synthesized circuit,
T -depth can be minimized while keeping T -count the same
by parallelizing this process through matroid partitioning [4].

The authors used this synthesis algorithm to optimize T -
count in {CNOT, T} circuits by first computing a set of
coefficients for the associated linear phase operator UP from
the circuit in polynomial time, then synthesizing an equivalent
circuit. The remaining linear permutation is also computed and
synthesized separately in polynomial time. This procedure has
the crucial property that the element a of Z2n−1

8 computed
has T -count at most the T -count of the original circuit –
often much lower due to coefficients in the phase polynomial
adding and reducing modulo 8 – hence the resulting circuit has
equal or lesser T -count. In particular, we have the following
proposition, which relates the T -count of a {CNOT, T} circuit
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to the T -count of an implementation of the associated phase
operator.

Proposition 1. Let UP be a linear phase operator in P8(n).
There exists a circuit over {CNOT, T} implementing UP with
T -count k if and only if there exists a ∈ Z2n−1

8 such that
P (x) = Pa(x) for all x ∈ Zn

2 , and a has at most k odd
entries.

IV. DECODING-BASED T -COUNT OPTIMIZATION

While effective at reducing T -count, it was noted that the
procedure in [4] does not always find the minimal T -count, as
the phase polynomial P in question may have many different
representations as a weighted sum of linear Boolean functions.
For instance,

4 · x1 + 4 · x2 + 4 · (x1 ⊕ x2) = 0 mod 8

for all values of x1, x2 ∈ Z2, so P (x1, x2) = 4 · x1 + 4 ·
x2 + 4 · (x1 ⊕ x2) is an alternative presentation of the zero-
everywhere (π/4) phase polynomial. This implies that further
T -count optimization may be possible by first finding an
implementation of the target phase polynomial with a minimal
number of odd coefficients, then synthesizing a circuit. By
Proposition 1, this in fact gives a minimal T -count circuit. In
this section we reduce this problem to a minimum-distance
decoding problem and give a T -count optimization algorithm
based on this decoding.

Given an element a of Z2n−1
8 , let [a] be the equivalence

class of implementations of Pa – i.e., b ∈ [a] if and only if
Pa(x) = Pb(x) for all x ∈ Zn

2 (hence UPa = UPb
). We define

Cn to be the subset of Z2n−1
8 giving the zero-everywhere phase

polynomial. Note that for any a,b ∈ Z2n−1
8 and x ∈ Zn

2 ,

Pa(x) + Pb(x) = Pa+b(x),

so Cn is in fact a subgroup of Z2n−1
8 and moreover, [a] =

a + Cn. As a result we see that the problem of finding an
implementation of Pa minimizing T count is equivalent to
finding an element c ∈ Cn minimizing the number of odd
entries in a+ c.

In order to find such elements of the coset a+ Cn, we first
need a characterization of the subgroup Cn. The following
lemma gives an explicit set of generators for Cn as scaled
monomial evaluation vectors of particular degrees, giving a
type of generalized Reed-Muller code. As the proof is quite
technical we give it in Appendix A

Lemma 1. Cn is generated by

{2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| − i ≤ n− 4}.

Lemma 1 gives an exact definition of Cn as

Cn =
〈
2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| − i ≤ n− 4
〉
.

With the above characterization, optimization can be per-
formed directly over Cn, though the particular metric of T -
count optimality makes such optimization unnatural. As the
number of odd entries in an element of Z2n−1

8 does not define a
norm, there does not appear to be a natural reduction to lattice

problems. Likewise, the number of odd coefficients does not
make a natural distance metric for (ring) linear codes.

We can instead reduce the optimization problem to a de-
coding problem over a binary code where minimum-distance
decoding corresponds exactly to T -count optimization. Defin-
ing Res2 : Z → Z2 as the function taking the binary residue
of an integer and extending this component-wise to tuples, we
see that the number of odd entries in a ∈ Z2n−1

8 is equal to
the weight of the binary residue vector, i.e. |Res2(a)|. We can
further see that

|Res2(a+ c)| = δ(Res2(a),Res2(c)),

that, is the T -count of Pa+c is the Hamming distance from
Res2(a) to Res2(c).

Hence, optimizing the number of odd entries in a+c over all
c ∈ Cn is exactly the problem of minimum distance decoding
Res2(a) over Res2(Cn), the set of binary residue vectors of
Cn. We further note that Res2(Cn) is a binary linear code,
since Res2(a) ⊕ Res2(b) = Res2(a + b) ∈ Res2(Cn) for
any a,b ∈ Cn, and as a direct consequence of Lemma 1 this
code is exactly the (n − 4)th order, length 2n − 1 punctured
Reed-Muller code.

Theorem 1. Res2(Cn) = RM(n− 4, n)∗

The remainder of this section discusses some consequences
of Theorem 1.

A. Upper bounds

As a consequence of Proposition 1 and Theorem 1, the
covering radius of Res2(Cn) = RM(n− 4, n)∗ gives a tight
upper bound on the number of T gates required to implement
a linear phase operator over {CNOT, T}. Here we mean
tight in the sense that there exists a linear phase operator
which requires a minimum of ρ(RM(n− 4, n)∗) T gates to
implement over {CNOT, T}. While to the best of the authors’
knowledge no analytic formula has been found for the covering
radius of higher-order Reed-Muller codes, some asymptotic
upper bounds are known. In particular, Cohen and Litsyn [28]
showed that for large n and orders r where n− r ≥ 3,

ρ(RM(r, n)) ≤ nn−r−2

(n− r − 2)!
.

Since the covering radius ofRM(r, n)∗ is trivially bounded
above by ρ(RM(r, n)), we see that for sufficiently large
n, ρ(RM(n − 4, n)∗) ≤ n2

2 − 1. As a result we obtain a
new asymptotic bound on the number of T gates required to
implement a circuit over {CNOT, T}.

Theorem 2. Any linear phase operator Up ∈ P8(n) can be
implemented with O(n2) T -gates.

B. T -count optimization

While the minimal T -count of a given phase polynomial Pa

can be obtained by finding a minimum distance decoding of
Res2(a) in RM(n− 4, n)∗, the decoding itself is not enough
to synthesize a minimal T -count circuit. In particular, decoding
the binary residue Res2(a) of a target tuple a ∈ Z2n−1

8 over
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RM(n− 4, n)∗ produces a minimal residue w = Res2(c) of
a codeword c in Cn. To actually produce a minimal T -count
implementation we need to compute c ∈ Cn from Res2(c) and
then synthesize a+c. We can achieve this using the following
fact:

Proposition 2. For all y ∈ Zn
2 with |y| ≤ n− 4,

Xy1

1 Xy2

2 · · ·Xyn
n ∈ Cn.

The above proposition, which follows directly from
Lemma 1, together with the fact that the monomials of degree
at most n− 4,

B = {Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| ≤ n− 4},

generate Res2(Cn) = RM(n − 4, n)∗ allows us to write a
decoded word w as a Boolean polynomial, then reinterpret
the sum over Z8 to give a preimage of w = Res2(c) in
Cn. Specifically, if w = b1 ⊕ b2 ⊕ · · · ⊕ bk for some
b1,b2, . . . ,bk ∈ B, then we define c = b1 + b2 + · · ·+ bk,
which by Proposition 2 is in Cn, and further note that

Res2(c) = Res2(b1 + b2 + · · ·+ bk)

= Res2(b1)⊕ Res2(b2)⊕ · · · ⊕ Res2(bk)

= w

Using this fact we develop an algorithm for the optimization
of T -count based on Reed-Muller decoding.

Algorithm 1 T -optimize(C)

1: Compute coefficients a ∈ Z2n−1
8 from C

2: w←RM-DECODE(n− 4, n, Res2(a))
3: Write w over basis B: w = b1 ⊕ b2 ⊕ · · · ⊕ bk

4: c← b1 + b2 + · · ·+ bk (mod 8)
5: SYNTHESIZE(a+ c)

Algorithm 1 summarizes our algorithm for T -count opti-
mization in {CNOT, T} circuits. For simplicity the algorithm
assumes the input circuit implements a linear phase operator –
for more general {CNOT, T} circuits the extra linear permu-
tation is synthesized and appended to the end. The algorithm
works by computing a set of coefficients implementing the
linear phase operator UP computed by the circuit. The vector
of residues modulo 2 is then decoded as w in RM(n−4, n)∗

using the procedure RM-DECODE(n − 4, n, Res2(a)). A
vector c ∈ Cn with binary residue equal to w is then computed
and added to the original set of coefficients, and a circuit is
synthesized for the new implementation of P . In particular,
the procedure SYNTHESIZE takes a set of coefficients a and
synthesizes a circuit over {CNOT, T} implementing UPa .

The T -optimize algorithm is parametric in both the decoder
and the synthesis procedure, meaning any variable order Reed-
Muller decoder may be used to implement RM-DECODE. If
a minimum distance decoder is used, Algorithm 1 synthesizes
a minimal T -count circuit. Likewise, any synthesis procedure
may be used to implement SYNTHESIZE – for instance, the
T -depth minimizing T -par algorithm [4] can be used.

Example 2. Consider the circuit in Figure 1. By iterating
through the circuit and updating the qubit states (see, e.g.,
[4]), we compute the phase polynomial for this operator as

P (x) = 2x1 + 6x2 + 6(x1 ⊕ x2) + x3 + 7(x1 ⊕ x3)
+ 7(x2 ⊕ x3) + (x1 ⊕ x2 ⊕ x3) + 3x4

+ 7(x1 ⊕ x4) + 7(x2 ⊕ x4) + (x1 ⊕ x2 ⊕ x4).

Writing the coefficients of P as a 2n − 1-tuple a we get

a = (2, 6, 6, 1, 7, 7, 1, 3, 7, 7, 1, 0, 0, 0, 0),

which has a canonical T -count of 8 – a reduction of 6 T gates.
Now we optimize the implementation of P further by

decoding

Res2(a) = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)

in the code RM(0, 4)∗. As RM(0, 4)∗ is the set of evaluation
vectors for degree 0 binary polynomials, there are exactly
two vectors to choose from, corresponding to the zero (zero-
everywhere) and constant (one-everywhere) functions. Since
the all 1 vector achieves the minimum distance of 7 from
Res2(a), we choose w to be the all 1 vector. By Proposition 2,
w = 1 (mod 2) is already in the space of zero-everywhere
polynomials Cn, so steps 3 & 4 are trivial and we set
c = 1 (mod 8). Finally we synthesize a circuit for the tuple
a+c = (3, 7, 7, 2, 0, 0, 2, 4, 0, 0, 2, 1, 1, 1, 1), corresponding to
the phase polynomial

P ′(x) = 3x1 + 7x2 + 7(x1 ⊕ x2) + 2x3 + 2(x1 ⊕ x2 ⊕ x3)
+ 4x4 + 2(x1 ⊕ x2 ⊕ x4) + (x3 ⊕ x4)
+ (x1 ⊕ x3 ⊕ x4) + (x2 ⊕ x3 ⊕ x4)
+ (x1 ⊕ x2 ⊕ x3 ⊕ x4).

A possible circuit implementing P ′ is shown below:
x1 T S • T T • x1

x2 T † • T † • • • • • x2

x3 S • S • x3

x4 Z • T T • S x4

Note that this decoding reduces the T -count from 14 (or 8,
as T -par type optimizations would obtain) to 7. Moreover, the
number of T gates is equal to the distance from Res2(a) to
the decoded word w.

It is interesting to note that the minimal T -depth of UP ′

above without additional ancillas is 3, while the minimal
ancilla-free T -depth of UP is 2, even though the number
of T gates is reduced. Clearly Algorithm 1, when combined
with a T -depth optimal synthesis method such as matroid
partitioning, does not necessarily obtain the minimal T -depth
for a given circuit. It remains an open question to determine
an efficient method of optimizing T -depth over all implemen-
tations of a linear phase operator.

C. Complexity

It may be noted that Algorithm 1 gives a polynomial-time
(in 2n) reduction from T -count optimization over {CNOT, T}
to minimum-distance decoding in RM(n − 4, n)∗. We may
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x1 • • x1

x2 • Z • x2

x3 • x3

x4 • S x4

=

x1 T • T † • • T • T † • • x1

x2 T • T † T † • Z T • T † T † • x2

x3 T • T • x3

x4 T • T • S x4

Fig. 1. Implementation of a linear phase operator over Clifford+T .

likewise reduce the minimum-distance decoding problem for
RM(n−4, n)∗ to T -count optimization: given a binary vector
w ∈ Z2n−1

2 , synthesize UPw over {CNOT, T} then optimize
the circuit and compute the coefficients a ∈ Z2n−1

8 for the
optimized circuit. As a consequence of Theorem 1, the vector
w⊕Res2(a) is a minimum distance decoding of w. Assuming
the optimized circuit does not have exponentially more gates
than a canonical circuit,1 this reduction is also polynomial in
the word length 2n, so we see that the problems are in fact
polynomial-time equivalent.

Theorem 3. The problems of T -count optimization over
{CNOT, T} and minimum-distance decoding in RM(n −
4, n)∗ are polynomial-time equivalent in the word length 2n.

This equivalence lends evidence to the difficulty of T -
count optimization, even in the restricted setting of circuits
over CNOT and T gates. In particular, as the equivalence
is with respect to the number of coefficients in the phase
polynomial (2n−1) any algorithm for exact optimization of T -
count over n-qubit {CNOT, T} circuits that is sub-exponential
in n induces a polynomial-time minimum-distance decoding
algorithm for RM(n− 4, n)∗. This can be further reduced to
a linear-time algorithm by noting that the unitary UPw above
can be implemented with O(2n) gates using one ancilla and
the Gray code to cycle through each of the 2n binary sums of
n variables with one CNOT gate each.

In either case it appears very unlikely that an efficient
algorithm for minimum-distance decoding the order n − 4
punctured Reed-Muller code exists. No minimum distance
decoding algorithms in time polynomial in 2n or the Ham-
ming weight of the received word are currently known for
arbitrary order length 2n binary Reed-Muller codes. While
some particular orders of Reed-Muller codes have efficient
decoders, e.g., order 1, it was shown in [29] that minimum-
distance decoding for RM(n − 4, n)∗ is equivalent to the
problem of finding a minimal decomposition of a symmetric
3-tensor into symmetric tryads (rank 1 3-tensors), a known
hard problem [29].

V. ROTATIONS OF OTHER ORDERS

Having shown that minimizing the number of T gates
in {CNOT, T} circuits is equivalent to minimum distance
decoding in RM(n − 4, n)∗, we now turn our attention to
circuits with Z-basis rotations of other angles. Specifically,
we define the gate RZ(2π/m) for any non-zero integer m by

RZ(2π/m) : |x〉 7→ e
2πi
m x|x〉.

1The canonical circuit for any linear phase operator uses O(n2n−1) gates.

Such gates arise, e.g., in Shor’s algorithm [7] and the Clifford
hierarchy [30]. Moreover, researchers have recently developed
state distillation techniques for these gates, allowing them to
be performed fault tolerantly without approximating them over
another gate set [23], [31]. Here we develop methods for the
optimization of circuits over CNOT and RZ(2π/m) gates
to make use of this higher-level structure of many quantum
circuits, whether the rotations are then to be approximated
over another gate set or implemented directly.

We define Pm(n) to be the set of n-qubit 2π/m linear
phase operators – that is, n-qubit diagonal unitary matrices
implementable over {CNOT, RZ(2π/m)}. As in the case of
π/4 linear phase operators, such an operator applies to each
basis vector a phase rotation that is a m-th root of unity
determined by a linear combination of linear functions of its
bits. In particular, for any U ∈ Pm(n), U has the following
effect:

U : |x〉 7→ e
2πi
m P (x)|x〉,

P (x) =
∑

y∈Zn2 \{0}

ay(y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn)

for some coefficients a ∈ Z2n−1
m . As before we call the tuple

a an implementation of P and we denote the set of zero-
everywhere phase polynomial implementations Cmn , defined
below as

Cmn = {c ∈ Z2n−1
m |∀x ∈ Zn

2 , Pc(x) = 0 mod m}.

We first consider the case when m = 2k, which is a natural
generalization of Theorem 1. We then examine the case when
m is an odd prime power, and finally combine the two results
to get a characterization of Pm(n) for any non-zero integer
m.

A. Rotations of even-power order

Recall that Theorem 1 was proven by giving a set of
generators for Cn = C23n . We can use the same methods
to assign a set of generators to C2kn , and likewise derive a
generalization of Theorem 1. In particular, it turns out that
C2kn is generated by the set of scaled monomial vectors with
degree n− k − 1 + i and scalar 2i.

Lemma 2. C2kn is generated by

{2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| − i ≤ n− k − 1}.

Again the proof of Lemma 2 is left for Appendix A.
Further, as in the π/4 case, Lemma 2 implies the following
theorem stating that the binary residues of C2kn are exactly the
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codewords of the order n−k−1 punctured Reed-Muller code2

of length 2n − 1.

Theorem 4. RM(n− k − 1, n)∗ = Res2(C2
k

n )

As a consequence of Theorem 4, Algorithm 1 can be
adapted to optimize the number of RZ(2π/2

k) gates in a
linear phase circuit. Recall that the canonical circuit for an
implementation of a π/4 linear phase operator was defined by
computing y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn for each nonzero ay,
then applying a sequence of T , P and Z gates to achieve the
correct power of ei

π
4 . We may define the canonical circuit

for an implementation of any 2π/2k linear phase operator
in the same way: compute y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn then
apply RZ(2π/2

k)l to achieve the correct power of ei
π

2k . Under
the assumption that R(2π/2k) gates are more expensive than
R(2π/2k

′
) gates whenever k > k′, we define

RZ(2π/2
k)l := RZ(2π)

lk · · ·RZ(2π/2
l−1)l1RZ(2π/2

k)l0

where lk · · · l1l0 is the binary expansion of l. Denoting by a >
>> i the component-wise quotient of a divided by 2i, we find
that the number of RZ(2π/2

l) gates in the canonical circuit
is |Res2(a >>> (k − l))| – the number of components ay that
have a 1 in the (k − l)th digit of their binary expansion.

The number of rotation gates of any angle 2π/2l for l ≤ k
may then be reduced by decoding Res2(a >>> (k − l)) in the
code Res2(Cln) = RM(n− l− 1, n) and adding the decoded
tuple back into a (multiplied by the appropriate power of 2).
Such procedures may be a valuable tool for quantum circuits
utilizing progressively finer grain Z rotations, such as Shor’s
algorithm [7], either to be later approximated by Clifford+T
gates or to be performed directly using state distillation. One
potential issue with this method is reducing the number of
RZ(2π/2

l) may increase the number of RZ(2π/2
l′) gates

for any l′ < l, as seen in Example 2. In most cases smaller
angles of rotation are more costly so this is a reasonable trade
off, but we leave it as an open question to find a general
algorithm for optimizing the total cost of all rotation gates in
a {CNOT, RZ(2π/2

k)} circuit.

B. Rotations of odd order

A natural question is whether rotation gates of other prime
power orders admit similar relationships to known codes.
To the contrary, we show that for any odd prime p and
integer k, there are no non-trivial phase polynomials that are
zero-everywhere mod pk – equivalently, the set of diagonal
operators over {CNOT, RZ(2π/p

k)} is isomorphic to Z2n−1
pk

.

Lemma 3. For all odd primes p and non-negative integers k,
given any non-zero tuple a ∈ Z2n−1

pk
, there exists x ∈ Zn

2 such
that

Pa(x) 6= 0 mod pk.

To prove Lemma 3, we first introduce the multilinear
representation of a phase polynomial. In particular, given a

2Note that using Definition 3, the Reed-Muller code RM(r, n) is well
defined for r < 0. In particular, the code is the trivial code {0}, corresponding
to the fact that no non-trivial zero phase polynomials exist mod 2k when
k < n− 1.

tuple a ∈ Z2n−1
pk

the multilinear polynomial function defined
by a is given by

Qa(x) =
∑

y∈Zn2 \{0}

ay · xy1

1 x
y2

2 · · ·xynn .

The result then follows from two facts:
1) there are no non-trivial zero-everywhere multilinear poly-

nomials modulo Zpk , and
2) for every multilinear polynomial over Zpk , there exists a

unique equivalent phase polynomial over Zpk .
The first fact follows from the observation that the set of

all non-constant monomial evaluation vectors

{Xy1

1 Xy2

2 · · ·Xyn
n |y ∈ Zn

2 \ {0}}

is linearly independent over any integer ring. In particular,
for any y ∈ Zn

2 \ {0}, the vector Xy1

1 Xy2

2 · · ·Xyn
n contains a

leading 1 at the yth index (see e.g., Table I), and hence the
set of all such vectors is trivially linearly independent in any
integer ring.

Proposition 3. For all odd primes p and non-negative integers
k, given any non-zero tuple a ∈ Z2n−1

pk
, there exists x ∈ Zn

2

such that
Qa(x) 6= 0 mod pk.

For the second fact, recall the modular identity

2xy = x+ y − (x⊕ y) mod pk

for any x, y ∈ Z2. Since 2 is coprime with pk it has
a multiplicative inverse in Zpk , hence we can rewrite this
identity as

xy = 2−1x+ 2−1y − 2−1(x⊕ y) mod pk.

The equation above can be used to rewrite a monomial
xi1xi2 · · ·xim in the form of a phase polynomial:

(xi1xi2) · · ·xim = (2−1xi1 + 2−1xi2 − 2−1(xi1 ⊕ xi2)) · · ·xin mod pk

= 2−1xi1 · · ·xin + 2−1xi2 · · ·xin − 2−1(xi1 ⊕ xi2) · · ·xn mod pk

where each term in the second line has degree m − 1 and
hence the monomial can be recursively reduced to the form of
a phase polynomial. Uniqueness further follows from Propo-
sition 3, as if two distinct multilinear polynomials Qa and
Qb reduced to the same phase polynomial, we would have
Qa−b(x) = 0 mod pk for all x ∈ Zn

2 but a + b 6= 0, a
contradiction.

Proposition 4. For any odd prime p and positive integer k,
given a tuple a ∈ Z2n−1

pk
there exists some unique b ∈ Z2n−1

pk

such that for all x ∈ Zn
2 ,

Qa(x) = Pb(x) mod pk.

Note that Proposition 4 does not hold for even prime powers
pk, as it requires pk to be coprime with 2 in order to rewrite
a monomial as a weighted sum of parities.

Propositions 3 and 4 together imply that there exists an
isomorphism between multilinear and phase polynomial rep-
resentations of pseudo-Boolean functions modulo powers of
odd primes, and moreover that there are no non-trivial zero-
everywhere multilinear polynomials and hence phase polyno-
mials. We formalize this intuition below.
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Proof of Lemma 3. Suppose a ∈ Zpk is non-zero for some
odd prime p and non-negative integer k. By Proposition 4
and the fact that there are the same number of multilinear
and phase polynomials over Zpk , there exists a unique tuple
b ∈ Z2n−1

pk
such that Pa(x) = Qb(x) for all x ∈ Zn

2 . Now
by Proposition 3, there exists x ∈ Zn

2 such that

Pa(x) = Qb(x) 6= 0 mod pk

as required.

From the perspective of optimizing phase gates, Lemma 3
asserts that each element of Z2n−1

pk
corresponds to a unique

n-qubit unitary implementable over CNOT and R(2π/pk).
Given such a circuit, an implementation minimizing the num-
ber of the minimal number of R(2π/pk) may then be obtained
by first computing the corresponding element of Z2n−1

pk
and

resynthesizing, which can be performed in polynomial time.

C. Rotations of arbitrary order

It is worth noting that Lemma 3 above is in a sense
the complement to Lemma 2. Together, they give a charac-
terization of the linear phase operators with rotation gates
that form arbitrary cyclic groups. In particular, the set of
phase polynomials which are zero-everywhere mod m for any
non-zero m ∈ Z is given by scaling the zero-everywhere
polynomials for the even-power part of m.

Theorem 5. Let m be any non-negative integer, and suppose
the prime factorization of m is 2m13m25m3 · · · . Then

Cmn = C2
m1

n · 3m25m3 · · · .

Proof. Th inclusion of C2m1

n · 3m25m3 · · · in Cmn is trivial, so
let a be some tuple in Z2n−1

m and suppose Pa(x) = 0 mod d
for all x ∈ Zn

2 .
Clearly Pa(x) = 0 mod d for all x ∈ Zn

2 if and only if
Pa(x) = 0 mod pmi

i for all x ∈ Zn
2 and prime power pmi

i in
the prime factor decomposition of m. However, by Lemma 3
for any p 6= 2, Pa(x) = 0 mod pmi

i if and only if a = 0
mod pmi

i , so a = a′ ·pmi
i where a′ ∈ Zm/p

mi
i

and Pa′(x) = 0

mod m/pmi
i . Repeating for all odd primes, we see that

a = a′ · 3m25m3 · · ·

for some a′ ∈ Z2m1 where Pa′(x) = 0 mod 2m1 for all
x ∈ Zn

2 . Hence a′ ∈ C2m1

n and so a ∈ C2m1

n · 3m25m3 · · · as
required.

VI. EXPERIMENTS

We implemented Algorithm 1 in T -par [5] as an optimiza-
tion pass in the resynthesis procedure. T -par optimizes circuits
over the Clifford+T gate set by computing a representation
using exponential sums, then resynthesizing. As our algorithm
presently applies to CNOT and phase gates, we break up the
input circuit into {CNOT, T} subcircuits, each of which is
then optimized individually.

We implemented and tested the algorithm with two Reed-
Muller decoders – a majority logic decoder due to Reed [27],
and a modern recursive decoder due to Dumer [32]. The

former has complexity in O(22n) for an n-qubit circuit while
the latter has a significantly lower complexity of O(2n). While
both of these algorithms are exponential in the number of
qubits n, we nonetheless obtain reasonable performance for
large circuits by storing and operating directly on compressed
vector representations. In order to optimize these large circuits
we chose relatively fast decoders over minimum-distance
decoders.

A. Evaluation

Algorithm 1 was evaluated on a suite of benchmark quantum
circuits, drawn from the literature and the Reversible Logic
Benchmarks page [33]. The majority of circuits tested are
reversible circuits, though some specifically quantum circuits
were also examined. Toffoli gates were replaced with a
Clifford+T implementation using 7 T -gates [3], and multiple
control Toffolis were expanded into two-control Toffoli gates
using one zero initialized ancilla (see, e.g., [24]).

Table II reports the T -count of circuits optimized with both
T -par alone, and with Algorithm 1 using either the majority
logic or recursive decoder applied to {CNOT, T} subcircuits.
All experiments were run on with a 2.4GHz quad-core Intel
Core i7 processor running Linux and 8GB of RAM. Each
benchmark had a timeout of 30 minutes – instances where
the algorithm failed to report a result within the timeout are
identified with a dash.

On average, Algorithm 1 reduced T -count by 6% for both
the majority logic decoder and the recursive decoder compared
to T -par. While the recursive decoder produced the best results
in some cases, notably the Galois field multipliers, and failed
less often, for many benchmarks it reported significantly in-
creased T -counts compared to T -par. Majority logic decoding
by comparison typically produced less T -reduction, though it
consistently resulted in circuits with equal or lesser T -count
than that reported by T -par. Counter-intuitively this appears
to result from the recursive decoder actually doing a better
job optimizing T -count – after the recursive decoder performs
significant rewrites on individual {CNOT, T} subcircuits, T -
par has less opportunity to optimize T -gates across subcircuit
boundaries. A natural direction of future research is to extend
decoding-based optimization to {H,CNOT, T} circuits in or-
der to make use of the additional T -count reductions possible
across subcircuit boundaries.

While the T -count reductions over T -par are minor com-
pared to the initial jump from the original T -count, the results
clearly demonstrate that further T -count optimization beyond
the T -par algorithm is possible. In the most significant case
a T -count reduction of 75% was reported for the benchmark
BCSD8 with both decoders, though as the benchmark performs
state distillation and relies on certain properties of the circuit
for fault tolerance, such an optimization is not likely useful.
Note that it may be possible to achieve better T -count with
other Reed-Muller decoders as well. We leave exploration of
effective decoders as an avenue for future work.

3Grover’s search is performed with 4 iterations using the oracle f(x) =
¬x1 ∧ ¬x2 ∧ x3 ∧ x4 ∧ ¬x5.
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TABLE II
T -COUNT OPTIMIZATION RESULTS. n REPORTS THE NUMBER OF QUBITS

IN THE CIRCUIT. T -COUNTS ARE RECORDED FOR THE ORIGINAL CIRCUIT,
AFTER OPTIMIZATION BY T -PAR, AND AFTER OPTIMIZATION BY

ALGORITHM 1 WITH EITHER THE MAJORITY LOGIC OR RECURSIVE
DECODER.

Benchmark n T -count

original T -par majority recursive
Grover5 [34]3 9 140 52 52 52
Mod 54 [33] 5 28 16 16 16
VBE-Adder3 [35] 10 70 24 24 24
CSLA-MUX3 [36] 15 70 62 62 58
CSUM-MUX9 [36] 30 196 140 84 76
QCLA-Com7 [37] 24 203 95 94 153
QCLA-Mod7 [37] 26 413 249 238 299
QCLA-Adder10 [37] 36 238 162 – 188
Adder8 [38] 24 399 215 213 249
RC-Adder6 [39] 14 77 63 47 47
Mod-Red21 [40] 11 119 73 73 73
Mod-Mult55 [40] 9 49 37 35 35
Mod-Adder1024 [33] 28 1995 1011 1011 1011
BCSD2 [41] 9 14 14 2 2
BCSD4 [41] 14 20 20 4 4
BCSD8 [41] 21 32 32 8 8
Cycle 17 3 [33] 35 4739 1945 1944 1982
HWB6 [33] 7 105 75 75 75
HWB8 [33] 12 5887 3551 3531 3531
nth-prime6 [33] 9 812 402 400 400
nth-prime8 [33] 12 6671 4047 4045 4045
GF(24)-Mult [42] 12 112 68 68 68
GF(25)-Mult [42] 15 175 111 111 101
GF(26)-Mult [42] 18 252 150 150 144
GF(27)-Mult [42] 21 343 217 217 208
GF(28)-Mult [42] 24 448 264 264 237
GF(29)-Mult [42] 27 567 351 – 301
GF(210)-Mult [42] 30 700 410 – 410
GF(216)-Mult [42] 48 1792 1040 – –
GF(232)-Mult [42] 96 7168 4128 – –
Hamming15 (low) [33] 17 161 97 97 97
Hamming15 (med) [33] 17 574 230 230 230
Hamming15 (high) [33] 20 2457 1019 1019 1019
QFT4 [24] 5 69 67 67 67
Λ3(X) – [43] 5 28 16 16 16

– [24] 5 21 15 15 15
Λ4(X) – [43] 7 56 28 28 28

– [24] 7 35 23 23 23
Λ5(X) – [43] 9 84 40 40 40

– [24] 9 49 31 31 31
Λ10(X) – [43] 19 224 100 100 100

– [24] 19 119 71 71 71

As an additional note, while we do not consider T -depth
optimization in this paper, reductions to T -count in some
benchmarks allow further reductions to T -depth using matroid
partitioning. In the extreme case, T -depth in CSUM-MUX9

was reduced from 11 to 6 using the recursive decoder, pro-
viding strong evidence that reducing T -count is an effective
means of optimizing T -depth.

VII. CONCLUSION

In this paper we have answered the question previously
posed in [4] of whether there exist identities which can
be used to reduce the T -cost of a phase polynomial over
CNOT and T gates. We gave a concrete set of generators
for the entire set of identities and have shown that, when
restricted to T -count optimization, these identities correspond
exactly to the punctured Reed-Muller code of length 2n − 1

and order n − 4. From this correspondence we developed
a T -count optimization procedure which uses Reed-Muller
decoders to reduce the T -cost of a phase polynomial and is
optimal when a minimum distance decoder is used, as well
as gave a new upper bound on the T -count of {CNOT, T}
circuits. We also looked at the question of optimizing phase
polynomials corresponding to other Z-basis rotation gates,
giving a concrete set of generators for the set of identities
over rotations of any finite order.

A natural continuation of this programme is to find methods
for minimizing the T -count of quantum circuits over a uni-
versal set of gates – for instance, the standard Clifford+T set
generated by {H,CNOT, T}. Our methods give both an upper
bound of O(k·n2) T -gates for a circuit containing k Hadamard
gates, as well as a concrete algorithm which achieves this
bound when using a minimum distance decoder. On the other
hand, the (n + k)-variate phase polynomial for an entire k-
Hadamard circuit over {H,CNOT, T} may be computed and
optimized directly [4], giving an upper bound of O((n+ k)2)
T gates with the caveat that the resulting operator may not be
implementable with only n qubits. In either case the minimal
T -count depends on the Hadamard cost of the circuit which
may itself be reduced, implying that unlike the {CNOT, T}
case, the minimal T -count of a Clifford+T circuit may not
be achievable simply by rewriting its phase polynomial. We
leave it as a question for future research to determine the
relationship between phase polynomials, Hadamard gates and
ancillas, as well as upper bounds and methods for finding the
exact minimal T -count of Clifford+T circuits.

APPENDIX

In this appendix we give an explicit set of generators for the
space of zero-everywhere phase polynomials modulo powers
of 2. In particular, we give proofs of Lemma 1 and the general
version, Lemma 2.

A. The monomial basis

Our proof relies on a connection between the binary eval-
uations of polynomials over Z8 and the module Z2n−1

8 . In
particular, consider the set of degree at most n− 1 monomial
(Boolean) evaluation vectors

{Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \ {1}}.

We show that this set of vectors, under the natural inclusion of
Z2 in Z8, forms a generating set for Z2n−1

8 – moreover, since
each such vector is linearly independent over Z2n−1

2 and hence
also linearly independent over Z2n−1

8 , this set is in fact a basis.
We call this basis the monomial basis of Z2n−1

8 .

Lemma 4. {Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \ {1}} is a basis of
Z2n−1
8

Proof. We first note that the set of all non-constant monomial
evaluation vectors, {Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \ {0}}, is a
basis for the module Z2n−1

8 . In particular, for any y ∈ Zn
2 \{0}

the vector Xy1

1 Xy2

2 · · ·Xyn
n contains a leading 1 at the yth

index (e.g., Table I), and hence any tuple of Z2n−1
8 may
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be written as a linear combination over this set. It there-
fore suffices to prove that X1X2 · · ·Xn is in the span of
{Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \ {1}}.
It may be observed that over Z2, the set of all monomial

evaluation vectors is linearly dependent, and in particular that⊕
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n = 0

since every input evaluates to 1 for an even number of
monomials. Further, as Res2 is homomorphic we have

⊕
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n = Res2

∑
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n

 = 0

and so
∑

y∈Zn2
Xy1

1 Xy2

2 · · ·Xyn
n = a for some a ∈ Z2n−1

8

such that Res2(a) = 0. If we write a over the basis
{Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \ {0}} and move all instances
of X1X2 · · ·Xn to the left we see

b ·X1X2 · · ·Xn = a′ −
∑

y∈Zn2 \{1}

Xy1

1 Xy2

2 · · ·Xyn
n

where a′ is in the span of {Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \{0,1}}
and b ∈ Z8.

Now suppose b is even. Then

(b− 1) ·X1X2 · · ·Xn = a′ −
∑
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n

Taking the binary residue of both sides we then find

X1X2 · · ·Xn = Res2(a
′) + Res2(

∑
y∈Zn2

Xy1

1 Xy2

2 · · ·Xyn
n )

= Res2(a
′).

Since a′ is in the span of {Xy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 \{0,1}}
over Z8, Res2(a

′) is in its span over Z2 and hence may
be written over this basis. However, the set of all monomial
evaluation vectors of degree at least 1 is linearly independent
over Z2, so we arrive at a contradiction.

Thus b is odd and as such has a multiplicative inverse in
Z8. Hence,

X1X2 · · ·Xn = b · b−1 ·X1X2 · · ·Xn

= b−1 ·

a′ −
∑

y∈Zn2 \{1}

Xy1

1 Xy2

2 · · ·Xyn
n

 .

Lemma 4 tells us that any element a of Z2n−1
8 is the vector

of evaluations for some pseudo-Boolean polynomial function
f : Zn

2 → Z8 where

f(X1, X2, . . . , Xn) =
∑

y∈Zn2 \{1}

byX
y1

1 Xy2

2 · · ·Xyn
n ,

and hence f = a =
∑

y∈Zn2 \{1}
byX

y1

1 Xy2

2 · · ·Xyn
n in the

monomial basis. Moreover, since

Res2(a) =
∑

y∈Zn2 \{1}

Res2(by)X
y1

1 Xy2

2 · · ·Xyn
n ,

Res2(a) is the evaluation vector of a Boolean polynomial
function with degree at most deg(f).

B. Evaluating Pa

The next step in our proof is to give an analytic formula
for the value of a phase function Pa applied to a vector
x ∈ Zn

2 as a function of the degree of the polynomial form
of a. Specifically, we show that Pa(x) is equal to a linear
combination of the Hamming weights – numbers of solutions –
of certain Boolean polynomials arising from the multiplication
of a monomial with a degree 1 polynomial.

Consider the value of a phase polynomial Pa at x ∈ Zn
2 :

Pa(x) =
∑

y∈Zn2 \{0}

ay(y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn).

We can view the above equation as an inner product, since the
value y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn is the yth component of the
evaluation vector x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn.

Formally, we define 〈a,b〉 for a,b ∈ Z2n−1
8 as

∑2n−1
i=1 aibi.

Note that
〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉

for any a,b, c ∈ Z2n−1
8 since the inner product is linear

in either argument over Z, and hence also Z8. Using this
observation, we give an explicit formula for Pa(x) as a
function of the basis vectors appearing in a:

Lemma 5. Let a ∈ Z2n

8 and suppose

a =
∑

y∈Zn2 \{1}

byX
y1

1 Xy2

2 · · ·Xyn
n

in the monomial basis. Then

Pa(x) =
∑

y∈Zn2 \{1}

by|(Xy1

1 Xy2

2 · · ·Xyn
n )(x1X1⊕x2X2⊕· · ·xnXn)|.

Proof. By direct calculation.

Pa(x) =
∑

y∈Zn2 \{0}

ay(y1x1 ⊕ y2x2 ⊕ · · · ⊕ ynxn)

=
∑

y∈Zn2 \{0}

ay(x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn)y

= 〈a, x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn〉

=
∑

y∈Zn2 \{1}

by〈Xy1

1 Xy2

2 · · ·Xyn
n , x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn〉

=
∑

y∈Zn2 \{1}

by|(Xy1

1 Xy2

2 · · ·Xyn
n )(x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn)|.

The value of

|(Xy1

1 Xy2

2 · · ·Xyn
n )(x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn)|

in Lemma 5 above may be restated as the number of solutions
to the equation

(Xy1

1 Xy2

2 · · ·Xyn
n )(x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn) = 1.

Fortunately, this number of a simple function of the degree of
the polynomial, as the following Lemma shows.

Lemma 6. Let

f = (Xy1

1 Xy2

2 · · ·Xyn
n )(x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn)

for some x,y ∈ Zn
2 – that is, f can be factored as the product

of a monomial and a linear Boolean polynomial. Then either
f = 0, or |f | = 2n−deg(f).
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Proof. Suppose f 6= 0. Since x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn

has degree 1, either deg(f) = |y| or deg(f) = |y| + 1. We
consider these two cases separately.

Consider the degree |y| case first. Clearly x ⊆ y – that is,
every variable Xi in the linear combination X1x1 ⊕X2x2 ⊕
· · · ⊕Xnxn is already in Xy1

1 Xy2

2 · · ·Xyn
n , hence the degree

remains unchanged. Then

f = |x|Xy1

1 Xy2

2 · · ·Xyn
n

=

{
0 if |x| = 0 mod 2

Xy1

1 Xy2

2 · · ·Xyn
n otherwise

.

Since f 6= 0, we have |x| = 1 mod 2. Moreover,
Xy1

1 Xy2

2 · · ·Xyn
n = 1 has exactly 2n−|y| solutions, corre-

sponding to the valuations where Xi = 1 whenever yi = 1.
Now consider the degree |y| + 1 case. We know x * y.

Without loss of generality we can assume x ∩ y = 0 – that
is, there are no variables that appear in both Xy1

1 Xy2

2 · · ·Xyn
n

and x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn – as any common variables
can be absorbed into the multiplicity of Xy1

1 Xy2

2 · · ·Xyn
n by

distributivity.
Recall that x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn = 1 for exactly

half of the values of all Xi such that xi = 1. Since
Xy1

1 Xy2

2 · · ·Xyn
n = 1 for the 2n−|y| valuations where Xi = 1

whenever yi = 1, and yi = 1 implies xi = 0, exactly
half of those solutions – 2n−|y|/2 = 2n−(|y|+1) – satisfy
x1X1 ⊕ x2X2 ⊕ · · · ⊕ xnXn = 1. Hence

|f | = 2n−deg(f)

as required.

In general, it is not the case that the number of solutions to
f(x) = 1 is 2n−deg(f) for an n-variate Boolean polynomial
function f . In particular, consider f = 1⊕X1X2 · · ·Xi. Since
X1X2 · · ·Xi = 1 has 2n−i solutions, the number of solutions
to f(x) = 1 is

2n − 2n−i 6= 2n−deg(f).

C. An explicit set of generators

From Lemma 6 it is immediate that if a ∈ Z2n−1
8 may be

written over the monomial basis with degree at most n − 4,
then Pa(x) = 0 mod 8 for any x and so a ∈ Cn. However, it
may be the case that a contains monomials with degree greater
than n− 4 and yet are still in Cn. For instance, let n = 4 and
consider a = 2 ·X1. Then for any x ∈ Z4

2,

Pa(x) = 2 · |X1(x1X1 ⊕ x2X2 ⊕ · · · ⊕ x4X4)|
= 2 · 24−deg(X1(x1X1⊕x2X2⊕···⊕x4X4)

= 0 mod 8.

In this case we have a ∈ Cn even though as a polynomial over
Z8, a has degree greater than 0. In particular, with regard to
Lemma 6 the term 2 ·X1 acts as if it were a term of degree
0, since for any x ∈ Z4

2,

2 · |X1(x1X1 ⊕ x2X2 ⊕ x3X3)| = 0, 23 or 24.

With this intuition we define the order of a term to be

ord (b ·Xy1

1 Xy2

2 · · ·Xyn
n ) = |y| − ν2(b)

where ν2(b) is the 2-adic order of b, i.e. the greatest k such that
2k | b. Moreover, we define the order of a polynomial to be the
maximum order of any term. As we show below, the phase
polynomial associated with a tuple a ∈ Z2n−1

8 necessarily
evaluates to a non-zero value mod 2k for some input if a =∑

y∈Zn2 \{1}
byX

y1

1 Xy2

2 · · ·Xyn
n has order at least n− k.

Lemma 7. Let a ∈ Z2n−1 have order m > n− k − 1 in the
monomial basis. Then there exists x ∈ Zn

2 such that

Pa(x) 6= 0 mod 2k.

Proof. Suppose to the contrary that Pa(x) = 0 mod 2k for
all x ∈ Zn

2 and let

a =
∑

y∈Zn2 \{1}

byX
y1

1 Xy2

2 · · ·Xyn
n .

Since Pa(x) = 0 mod 2k for all x ∈ Zn
2 we must also have

Pa(x) = 0 mod 2n−m−1, as n−m−1 < n−(n−k−1)−1 =
k. Note that if ord (byX

y1

1 Xy2

2 · · ·Xyn
n ) = i, by Lemmas 5 and

6,
PbyX

y1
1 X

y2
2 ···X

yn
n
(x) = 2n−i or 2n−i−1.

The latter case occurs exactly when x * y, and hence we
see that Pa(x) = 0 mod 2n−m−1 implies there are evenly
many terms byX

y1

1 Xy2

2 · · ·Xyn
n of maximum order m such that

x * y. Alternatively, for any x ∈ Zn
2

Pa(x) =
∑
y∈Zn2

PbyX
y1
1 X

y2
2 ···X

yn
n
(x)

=
∑

y∈Zn2 ,x*y

ord(byXy1
1 X

y2
2 ···X

yn
n )=m

2n−m−1 mod 2n−m,

since every other term evaluates either to 2n−m (i.e. if it has
order m and x ⊆ y), or to 2n−i or 2n−i−1 where i < m.
Moreover, we know at least one such term exists, since by
Lemma 4 a has degree at most n− 1

Our contradiction arises from the fact that there neces-
sarily exists x ∈ Zn

2 such that an odd number of terms
byX

y1

1 Xy2

2 · · ·Xyn
n with order m such that x * y. In par-

ticular, let

Si = {y ∈ Zn
2 | ord (byX

y1

1 Xy2

2 · · ·Xyn
n ) = m, yi = 0},

that is Si is the set of terms of maximum order which do not
contain Xi. Given some x ∈ Zn

2 ,
⋃

i|xi=1 Si gives the set of
terms of maximum order such that x * y, and hence since
Pa(x) = 0 mod 2n−m−1, it follows that

|∪i|xi=1Si| = 0 mod 2.

Now take y′ ∈ Zn
2 such that ord (byX

y1

1 Xy2

2 · · ·Xyn
n ) = m,

minimizing |y′| – that is, y′ is a term of maximum order
but with minimum degree. Since y′ has minimal weight, for
every other y such that ord (byX

y1

1 Xy2

2 · · ·Xyn
n ) = m, there

necessarily exists i such that yi = 1 but y′i = 0. Hence

∩i|y′
i=0Si = {y′}.
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By inclusion-exclusion, the cardinality of this set can be
written as a sum of cardinalities of unions of Si – in particular,

1 = |∩i|y′
i=0Si|

= |∪i|y′
i=0Si|

= 2n − |∪i|y′
i=0Si|

= 2n −
|y|∑
k=1

(−1)k+1

 ∑
i1,...,ik

|Si1 ∩ · · · ∩ Sik |


= 2n −

|y|∑
k=1

(−1)k+1

 ∑
i1,...,ik

2n − |Si1 ∪ · · · ∪ Sik |


However, since |∪i|xi=1Si| = 0 mod 2 for any x, we have
1 = 0 mod 2, hence we derive our contradiction.

Lemma 7 suffices to prove that C2kn is generated by the set
of scaled monomial vectors of order at most n − k − 1 – in
the case when k = 3, corresponding to T -count optimization,
we have that Cn = C8n is generated by terms of order n − 4.
As a consequence we obtain not only a T -count optimization
procedure for {CNOT, T} circuits, but also fully characterize
the set of diagonal unitaries implementable over {CNOT, T},
in the sense that

P8(n) ' Z2n−1
8 /Cn.

Lemma 2. C2kn is generated by

{2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| − i ≤ n− k − 1}.

Proof. Suppose c ∈ C2kn . Then Pc(x) = 0 mod 2k for all
x ∈ Zn

2 , hence by Lemma 7, c must have order at most n −
k − 1 and can be written as a sum of the above generators.

Now consider some generator c = 2iXy1

1 Xy2

2 · · ·Xyn
n

where |y| − i ≤ n− k − 1. By Lemmas 5 and 6,

Pc(x) = 2i+n−|y| or 2i+n−|y|−1

for any x ∈ Zn
2 . Since i + n − |y| > i + n − |y| − 1 ≥ k

we have Pc(x) = 0 mod 2k so c ∈ C2kn . Moreover since
C2kn is a group, every sum of terms 2iXy1

1 Xy2

2 · · ·Xyn
n where

|y|− i ≤ n−k−1 is contained in C2kn , hence C2kn is generated
by {2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 , |y| − i ≤ n− k − 1}.

As a corollary to the above we also obtain Lemma 1, namely
that Cn = C8n is generated by

{2iXy1

1 Xy2

2 · · ·Xyn
n | y ∈ Zn

2 |y| − i ≤ n− 4}.
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