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Kliuchnikov, Maslov, and Mosca proved in 2012 that a 2 × 2 unitary matrix V can be
exactly represented by a single-qubit Clifford+T circuit if and only if the entries of V belong
to the ring Z[1/

√
2, i]. Later that year, Giles and Selinger showed that the same restriction

applies to matrices that can be exactly represented by a multi-qubit Clifford+T circuit. These
number-theoretic characterizations shed new light upon the structure of Clifford+T circuits
and led to remarkable developments in the field of quantum compiling. In the present paper,
we provide number-theoretic characterizations for certain restricted Clifford+T circuits by
considering unitary matrices over subrings of Z[1/

√
2, i]. We focus on the subrings Z[1/2],

Z[1/
√

2], Z[1/i
√

2], and Z[1/2, i], and we prove that unitary matrices with entries in these
rings correspond to circuits over well-known universal gate sets. In each case, the desired
gate set is obtained by extending the set of classical reversible gates {X,CX,CCX} with an
analogue of the Hadamard gate and an optional phase gate.

1 Introduction
Kliuchnikov, Maslov, and Mosca showed in [26] that a 2-dimensional unitary matrix V can be exactly
represented by a single-qubit Clifford+T circuit if and only if the entries of V belong to the ring Z[1/

√
2, i].

This result gives a number-theoretic characterization of single-qubit Clifford+T circuits. In [17], Giles
and Selinger extended the characterization of Kliuchnikov et al. to multi-qubit Clifford+T circuits by
proving that a 2n-dimensional unitary matrix can be exactly represented by an n-qubit Clifford+T circuit
if and only if its entries belong to Z[1/

√
2, i].

These number-theoretic characterizations provide great insight into the structure of Clifford+T cir-
cuits. As a result, single-qubit Clifford+T circuits are now very well understood [13, 18, 28, 29, 34], and
some of these results have even been extended to single-qubit circuits beyond the Clifford+T gate set
[12, 16, 25, 27, 32, 33]. In contrast, our understanding of multi-qubit Clifford+T circuits remains more
limited, despite interesting results [11, 15, 19, 20, 39]. One of the reasons for this limitation is that large
unitary matrices over Z[1/

√
2, i] are hard to analyze. In order to circumvent the difficulties associated

with multi-qubit Clifford+T circuits, restricted gate sets have been considered in the literature. This led
to important developments in the study of multi-qubit Clifford, CNOT+T , and CNOT-dihedral circuits
[3–6, 23, 30, 36]. Unfortunately, the simpler structure of these restricted gate sets comes at a cost: they
are not universal for quantum computing.

In the present paper, our goal is to address both of these limitations by considering restrictions
of the Clifford+T gate set which are nevertheless universal for quantum computing. To this end, we
study circuits corresponding to unitary matrices over proper subrings of Z[1/

√
2, i], focusing on Z[1/2],

Z[1/
√

2], Z[1/i
√

2], and Z[1/2, i]. For each subring, we find a set of quantum gates G with the property
that circuits over G correspond to unitary matrices over the given ring. Writing U2n(R) for the group
of 2n × 2n unitary matrices over a ring R, our main results can then be summarized in the following
theorem.
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Theorem. A 2n × 2n unitary matrix V can be exactly represented by an n-qubit circuit over

(i) {X,CX,CCX,H ⊗H} if and only if V ∈ U2n(Z[1/2]),

(ii) {X,CX,CCX,H,CH} if and only if V ∈ U2n(Z[1/
√

2]),

(iii) {X,CX,CCX,F} if and only if V ∈ U2n(Z[1/i
√

2]), and

(iv) {X,CX,CCX,ωH, S} if and only if V ∈ U2n(Z[1/2, i]),

where ω = eiπ/4 and F ∝
√
H. Moreover, in (i)-(iv), a single ancilla is sufficient.

The gate sets in items (i)–(iv) of the above theorem are all universal for quantum computing [2,
37], and we sometimes refer to circuits over these gate sets as integral, real, imaginary, and Gaussian
Clifford+T circuits, respectively. As a corollary to the above theorem, we also obtain two additional
characterizations of universal gate sets.

Corollary. A 2n × 2n unitary matrix V can be exactly represented by an n-qubit circuit over

(i) {X,CX,CCX,H} if and only if V = W/
√

2q for some matrix W over Z and some q ∈ N, and

(ii) {X,CX,CCX,H, S} if and only if V = W/
√

2q for some matrix W over Z [i] and some q ∈ N.

Moreover, in (i) and (ii), a single ancilla is sufficient.

As a final corollary to the theorem above, we refine the characterizations (iii) and (iv) by showing that
in these cases a matrix can be represented by an ancilla-free circuit if and only if it has determinant 1.

Corollary. Let n ≥ 4. A 2n× 2n unitary matrix V can be exactly represented by an n-qubit ancilla-free
circuit over

(i) {X,CX,CCX,F} if and only if V ∈ U2n(Z[1/i
√

2]) and detV = 1, and

(ii) {X,CX,CCX,ωH, S} if and only if V ∈ U2n(Z[1/2, i]) and detV = 1.

In (i) and (ii), the requirement that detV = 1 can be dropped for n < 4.

The characterization of ancilla-free real and integral Clifford+T circuits remains an open question
but we conjecture that they correspond to a strict subgroup of the group of unitaries with determinant 1.

Restrictions similar to the ones considered here were previously studied in the context of founda-
tions [35], randomized benchmarking [22], and graphical languages for quantum computing [8, 24, 38].
Furthermore, our study fits within a larger program, initiated by Aaronson and others, which aims at
classifying quantum operations. Such classifications exist for classical reversible operations [1], for stabi-
lizer operations [21], and for beam-splitter interactions [14], but no classification is known for a universal
family of quantum operations suited for fault-tolerant quantum computing. In this context, our work
can be seen as a partial classification of the universal extensions of the set of classical reversible gates
{X,CX,CCX}. This perspective is illustrated in Figure 1, which depicts a fragment of the lattice of
subgroups of Un(Z[1/

√
2, i]) where, for conciseness, we wrote D for the ring Z[1/2] so that the rings

Z[1/
√

2], Z[1/i
√

2], Z[1/2, i] and Z[1/
√

2, i] are denoted by D
[√

2
]
, D
[
i
√

2
]
, D[i], and D [ω], respectively.

The rest of the paper is organized as follows. In Section 2, we give an overview of our methods. In
Section 3, we introduce the rings and matrices which will be used throughout the paper. In Section 4, we
show that certain useful matrices can be exactly represented by restricted Clifford+T circuits. Section 5
contains the proofs of our various number-theoretic characterizations. We conclude in Section 6.

2 Overview
Unrestricted Clifford+T circuits are generated by

H = 1√
2

[
1 1
1 −1

]
, CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , and T =
[
1 0
0 ω

]
.
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Figure 1: Some subgroups of Un(D [ω]). To the left of the cube, in yellow, the symmetric group Sn corresponds
to circuits over the gate set {X, CX, CCX}. On the bottom face of the cube, in blue, are generalized symmetric
groups, and on the top face of the cube, in red, are universal subgroups of Un(D [ω]). The edges of the lattice denote
inclusion. The gates labeling the edges are sufficient to extend the expressive power of a gate set from one subgroup
to the next (and no further). For example, the edge labeled Z going from Sn to Un(Z) indicates that adding the
Z gate to {X, CX, CCX} produces a gate set expressive enough to represent every matrix in Un(Z) (but not every
matrix in Un(Z [i])).

Since ω = (1+ i)/
√

2, the entries of all the generators belong to the ring Z[1/
√

2, ω] = Z[1/
√

2, i] = D[ω].
Hence, if a matrix V can be represented exactly by an n-qubit Clifford+T circuit, then V ∈ U2n(D [ω]),
the group of 2n × 2n unitary matrices with entries in D [ω]. Showing that the ring D [ω] characterizes
Clifford+T circuits thus amounts to proving the converse implication. An algorithm establishing that
every element of U2n(D [ω]) can be exactly represented by a Clifford+T circuit is known as an exact
synthesis algorithm.

The original insight of Kliuchnikov, Maslov and Mosca in the single-qubit Clifford+T case was to
reduce the problem of exact synthesis to the problem of state preparation. The latter problem is to find,
given a target vector v ∈ D [ω]n, a sequence G1, . . . , G` of Clifford+T gates such that G` · · ·G1e1 = v or,

equivalently, such that G†1 · · ·G
†
`v = e1. Kliuchnikov et al. realized that this sequence of gates can be

found by first writing v as v = u/
√

2q for some u ∈ Z [ω] and then iteratively reducing the exponent q.
This basic premise was extended by Giles and Selinger to the multi-qubit context by adding an outer

induction over the columns of an n-qubit unitary. This method amounts to performing a constrained
Gaussian elimination where the row operations are restricted to a few basic moves. The Giles-Selinger
algorithm proceeds by reducing the leftmost column of an n×n unitary matrix to the first standard basis
vector by applying a sequence of one- and two-level matrices, which act non-trivially on at most two
components of a vector, before recursively dealing with the remaining submatrix. If the target unitary
is V =

[
v V ′

]
, then the Giles-Selinger algorithm first constructs a sequence of matrices G1, . . . , G`

such that G1 · · ·G`v = e1. Left-multiplying V by this sequence of matrices then yields

G1 · · ·G`

 v V ′

 =


1 0 · · · 0
0
... V ′′

0
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where V ′′ is unitary. The fact that the matrices used in this reduction act non-trivially on no more
than two rows of the matrix ensures that when the algorithm recursively reduces the columns of V ′′ it
does so without perturbing the previously fixed columns. The Giles-Selinger algorithm thus relies on the
following two facts.

1. A unit vector in D [ω]n can be reduced to a standard basis vector by using one- and two-level
matrices and

2. the required one- and two-level matrices can be exactly represented by Clifford+T circuits.

While there are subtle differences between the various cases discussed below, our method in characterizing
restricted Clifford+T circuits follows this general structure.

3 Rings and Matrices
In this section, we discuss the rings and matrices that will be used throughout the paper. For further
details, the reader is encouraged to consult [7].

3.1 Rings
We write N for the set of nonnegative integers and if n ∈ N we write [n] for the set {1, . . . , n}. We use Z
to denote the ring of integers and i to denote the imaginary unit. We define ω as ω = eiπ/4 = (1+ i)/

√
2.

Note that i is a 4-th root of unity and that ω is an 8-th root of unity.
We will use the extensions of Z defined below.

Definition 3.1. Let

• Z
[√

2
]

=
{
x0 + x1

√
2 | x0, x1 ∈ Z

}
,

• Z
[
i
√

2
]

=
{
x0 + x1i

√
2 | x0, x1 ∈ Z

}
,

• Z [i] = {x0 + x1i | x0, x1 ∈ Z}, and

• Z [ω] =
{
x0 + x1ω + x2ω

2 + x3ω
3 | x0, x1, x2, x3 ∈ Z

}
.

The rings Z
[√

2
]
, Z
[
i
√

2
]
, Z [i], and Z [ω] are known as the ring of quadratic integers with radicand 2,

the ring of quadratic integers with radicand -2, the ring of Gaussian integers, and the ring of cyclotomic
integers of degree 8, respectively. All of these rings are distinct subrings of Z [ω] and we have the inclusions
depicted in the lattice of subrings below.

Z

Z
[
i
√

2
]

Z [i] Z
[√

2
]

Z [ω]

Further to the rings introduced in Definition 3.1, we will consider extensions of the ring of dyadic
fractions, i.e., fractions whose denominator is a power of 2.

Definition 3.2. The ring of dyadic fractions D is defined as D =
{
u
2q | u ∈ Z, q ∈ N

}
.

Definition 3.3. Let

• D
[√

2
]

=
{
x0 + x1

√
2 | x0, x1 ∈ D

}
,

• D
[
i
√

2
]

=
{
x0 + x1i

√
2 | x0, x1 ∈ D

}
,

• D[i] = {x0 + x1i | x0, x1 ∈ D}, and

• D [ω] =
{
x0 + x1ω + x2ω

2 + x3ω
3 | x0, x1, x2, x3 ∈ D

}
.
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If v ∈ D
[√

2
]
, then v can be written as v = u/2q for some q ∈ N and some u ∈ Z

[√
2
]
. A similar

property holds for elements of D
[
i
√

2
]
, D[i], and D [ω].

If R is a ring and r ∈ R we write R/(r) for the quotient of the ring R by the ideal generated by
the element r. Two elements s and s′ of R are congruent modulo r if s− s′ belongs to the ideal (r), in
which case we write s ≡ s′ (mod r). We sometimes refer to the elements of the ring R/(r) as residues.
Some quotient rings are well-known. For example, Z/(2) = {0, 1} and Z/(4) = {0, 1, 2, 3}. The following
proposition gives an explicit description of certain lesser-known rings of residues which will be useful in
what follows.

Proposition 3.4. We have

• Z
[√

2
]
/(2) =

{
0, 1,
√

2, 1 +
√

2
}

,

• Z
[
i
√

2
]
/(2) =

{
0, 1, i

√
2, 1 + i

√
2
}

,

• Z
[
i
√

2
]
/(2i
√

2) =
{

0, 1, 2, 3, i
√

2, 1 + i
√

2, 2 + i
√

2, 3 + i
√

2
}

, and

• Z [i] /(2) = {0, 1, i, 1 + i}.

Proof. To see, for example, that Z
[√

2
]
/(2) =

{
0, 1,
√

2, 1 +
√

2
}

, note that u = x0 + x1
√

2 and u′ =
x′0 +x′1

√
2 are congruent modulo 2 if there exists an element t = y0 +y1

√
2 such that u−u′ = 2t. This is

the case if and only if (x0 − x′0) + (x1 − x′1)
√

2 = 2y0 + 2y1
√

2 which in turn holds if and only if x0 ≡ x′0
(mod 2) and x1 ≡ x′1 (mod 2).

We will often take advantage of properties of residues. Some of these properties are generic. For
example, if u and v are two elements of a ring R and u ≡ v (mod 2), then u ± v ≡ 0 (mod 2). Other
properties of residues are specific to a particular ring. For example, an integer u ∈ Z is odd if and
only if u2 ≡ 1 (mod 4). Similarly, for an integer u ∈ Z, we have u ≡ 3 (mod 4) if and only if −u ≡ 1
(mod 4). We now state important properties of residues in Z

[
i
√

2
]

and Z [i] for future reference. They
can be established by reasoning using residue tables in the relevant quotient rings. In the following, we
denote the complex conjugate of an element u by u†. For uniformity, we sometimes write u† even when
u belongs to a real subring of D [ω]. In this case, u† = u.

Proposition 3.5. The following statements hold.

• In Z
[
i
√

2
]
/(2), u†u ≡ 0 or 1.

• If u†u ≡ 1 in Z
[
i
√

2
]
/(2), then u ≡ 1, 3, 1 + i

√
2, or 3 + i

√
2 in Z

[
i
√

2
]
/(2i
√

2).

• In Z
[
i
√

2
]
/(2i
√

2), u ≡ 3 if and only if −u ≡ 1 and u ≡ 3 + i
√

2 if and only if −u ≡ 1 + i
√

2.

Proposition 3.6. The following statements hold.

• In Z [i] /(2), if u2 ≡ 1, then u ≡ 1 or i.

• In Z [i] /(2), u ≡ i if and only if iu ≡ 1.

3.2 Matrices
We write ej for the j-th standard basis vector and M† for the conjugate transpose of the matrix M . If

R is a ring, we sometimes write Rn×n
′

for the collection of n × n′ matrices over R. We will use one-,
two-, and four-level matrices which act non-trivially on only one, two, or four of the components of their
input. These matrices will be defined using basic matrices. The construction is best explained with an
example. If

V =
[
v1,1 v1,2
v2,1 v2,2

]
is a 2-dimensional unitary matrix, then in 3 dimensions the two-level operator of type V , denoted by
V[1,3], is the matrix given below.

V[1,3] =

v1,1 0 v1,2
0 1 0
v2,1 0 v2,2
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Definition 3.7. Let W be an n × n unitary matrix, let n ≤ n′, and let a1, . . . , an ∈ [n′]. The n-level
matrix of type W is the n′ × n′ unitary matrix W[a1,...,an] defined by

W[a1,...,an]j,k =
{
Wj′,k′ if j = aj′ and k = ak′

Ij,k otherwise.

Let R be one of Z, Z
[√

2
]
, Z

[
i
√

2
]
, Z [i] or Z [ω] and let p be an element of Z [ω]. We will be

interested in matrices of the form

V = 1
pq
W (1)

where W is a matrix over R and q ∈ N.

Definition 3.8. Fix R ∈
{
Z,Z

[√
2
]
,Z
[
i
√

2
]
,Z [i] ,Z [ω]

}
. If V is a matrix of the form (1) and q′ ∈ N,

then we say that q′ is a p-denominator exponent of V if

pq
′
V ∈ Rm×n.

The smallest such q′ is the least p-denominator exponent of V , denoted ldep(V ).

We sometimes omit p when the base of the exponent is clear from the context. Note that the notion
of denominator exponent applies to matrices of any dimension and we can therefore talk about the
denominator exponent of a vector or scalar.

4 Circuits
In this section, we review basic circuit constructions which will be useful below. A more detailed discus-
sion of quantum circuits can be found in Chapter 4 of [31].

Let ζ be an m-th root of unity. We sometimes call ζ a global phase of order m. We think of these
global phases as gates acting on 0 qubits and in what follows we will be especially interested in the global
phases of order 2, 4, and 8, which we denote −1, i, and ω, respectively. The single-qubit phase gate of
order m is defined as

Pζ =
[
1 0
0 ζ

]
.

We will be particularly interested in phase gates of order 2, 4, and 8 which we call the Z, S, and T gates,
respectively. Hence

Z =
[
1 0
0 −1

]
, S =

[
1 0
0 i

]
, and T =

[
1 0
0 ω

]
.

In addition to phase gates, we will also use the single-qubit gates H and X defined by

H = 1√
2

[
1 1
1 −1

]
and X =

[
0 1
1 0

]
.

The H gate is the Hadamard gate and the X gate is the NOT gate. The last single-qubit gate we will
use is the F gate defined below.

F = 1
2

[
1 + i

√
2 1

1 −1 + i
√

2

]
.

The F gate is not as common as the other single-qubit gates introduced above. We note that F 2 = iH
and that F can be expressed as a product of better-known gates in Matsumoto-Amano normal form [29],

F = SHTSHTSHSω−1.

We will also make use of the two-qubit H ⊗H gate as well as the controlled gates defined below.

CH = I2 ⊕H, CX = I2 ⊕X, and CCX = I6 ⊕X.
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We will refer to these gates as the controlled -H gate, controlled -X or CNOT gate, and the doubly-
controlled -X or Toffoli gate, respectively. In general, ifG is a gate, then we write CnG for the n-control -G
gate.

As usual, circuits are built from gates through composition and tensor product. An ancilla is a qubit
used locally within a circuit but on which the global action of the circuit is trivial. We say that a 2n×2n
unitary matrix W is exactly represented by a circuit D using m clean ancillas if for any n-qubit state
|ψ〉,

D |ψ〉 |0〉⊗m = (W |ψ〉) |0〉⊗m .
If the circuit is independent of the initial state of the ancilla, it is said to accept a dirty ancilla. In
particular, we say that a 2n × 2n unitary matrix W is exactly represented by a circuit D using m dirty
ancillas if for any n-qubit state |ψ〉 and any m-qubit state |φ〉,

D |ψ〉 |φ〉 = (W |ψ〉) |φ〉 .

Note that a clean ancilla can always be used in place of a dirty ancilla.
In order to characterize restricted Clifford+T circuits, it is helpful to establish some basic facts about

the construction of multi-level matrices over gate sets including the Toffoli gate.

Proposition 4.1. Any 2n × 2n permutation matrix V can be exactly represented by a circuit over the
gate set {X,CX,CCX} with at most one dirty ancilla.

Proof. By the Giles-Selinger algorithm [17] restricted to permutation matrices, V can be represented by
a circuit over two-level X gates. Likewise, each two-level X gate can be implemented over fully-controlled
X and single-qubit gates by using a Gray code (see, e.g., [31, Sec. 4.5.2]). Each fully-controlled X gate
can be implemented with one dirty ancilla by [9], which completes the proof.

Proposition 4.2. Let W be a 2m× 2m unitary matrix and let G be a set of gates. If CW can be exactly
represented over {X,CX,CCX}∪G using at most one dirty ancilla, then, for any n ≥ 1, CnW can also
be exactly represented over {X,CX,CCX} ∪ G. Moreover, a single clean ancilla suffices.

Proof. This follows from standard techniques, e.g. [9]. If n = 1, then CW can be implemented with a
single dirty ancilla and thus also with a clean one. If n > 1, then the CnW gate can be implemented as
follows, where each gate on the right has at least one dirty ancilla available for use.

•
...

...

•

/ W /

=

• •
...

...

• •

|0〉 X • X |0〉

/ W /

Corollary 4.3. Let W be a 2m × 2m unitary matrix and let G be a set of gates. If CW can be exactly
represented over {X,CX,CCX} ∪ G with at most one dirty ancilla, then W[a1,a2...,a2m ] is representable
over {X,CX,CCX} ∪ G with at most one clean ancilla.

Proof. Follows from Propositions 4.1 and 4.2 by noting that there exists a 2n+m-dimensional permutation
matrix V such that

W[a1,a2...,a2m ] = V †(CnW )V.

We can now use Corollary 4.3 to give constructions of multi-level matrices of different types over
their uncontrolled versions in the presence of the Toffoli gate.

Proposition 4.4. The operators {
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d]

}
,

where a, b, c, and d are distinct elements of [n], can be exactly represented by quantum circuits over the
gate set {X,CX,CCX,H ⊗H} using at most one clean ancilla.

7



Proof. By Corollary 4.3 it suffices to give constructions for the singly-controlled Z and H ⊗ H gates
using at most a single dirty ancilla. We have

•

Z =

•

H ⊗H
X

H ⊗H

and it can be verified that the equality below holds.

•

H ⊗H =

• •
X • X X • X

H ⊗H
• X •

H ⊗H
• X •

Corollary 4.5. The operators{
(−1)[a], X[a,b], (H ⊗H)[a,b,c,d], I2n−1 ⊗H

}
,

where a, b, c, and d are distinct elements of [n], can be exactly represented by quantum circuits over the
gate set {X,CX,CCX,H} using at most one clean ancilla.

Proposition 4.6. The operators {
i[a], X[a,b], ωH[a,b]

}
,

where a and b are distinct elements of [n], can be exactly represented by quantum circuits over the gate
set {X,CX,CCX,ωH, S} using at most one clean ancilla.

Proof. Again, it suffices to give constructions for the singly-controlled S and ωH gates. In this case it
can be verified that both of the equalities below hold.

•

S =

• • •

• • •

S† X ωH X (ωH)† S X

•

ωH =

• • •

S ωH S (ωH)† S

Corollary 4.7. The operators {
i[a], X[a,b], ωH[a,b], ωIn

}
,

where a and b are distinct elements of [n], can be exactly represented by quantum circuits over the gate
set {X,CX,CCX,H, S} using at most one clean ancilla.

Proof. Follows from Proposition 4.6 and the fact that ω = SHSHSH.

Proposition 4.8. The operators {
(−1)[a], X[a,b], H[a,b]

}
,

where a and b are distinct elements of [n], can be exactly represented by quantum circuits over the gate
set {X,CX,CCX,H,CH} using at most one clean ancilla.

Proof. By Proposition 4.4, (−1)[a] can be represented by a quantum circuit over {X,CX,CCX,H ⊗H}
and hence also {X,CX,CCX,H,CH}. Since CH is already in the generating set the proof is complete.
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Proposition 4.9. The operators {
(−1)[a], X[a,b], F[a,b]

}
,

where a and b are distinct elements of [n], can be exactly represented by quantum circuits over the gate
set {X,CX,CCX,F} using at most one clean ancilla.

Proof. To show that CZ is representable over the gate set, it can be observed that the equality below
holds, since F 2 = iH and F 6 = −iH.

•

Z
=

•

F 2 X F 6

The construction of CF is somewhat more involved, but can be obtained from standard constructions
(e.g., [9]) by first noting that (ZXF )2 and X(ZXF )X(ZXF )X = ZXF . The CF gate can then be
constructed as below.

•

F
=

• • •

X Z X Z X F X Z X F X

5 Number-Theoretic Characterizations
5.1 The D case
We start by studying the group of n × n unitary matrices over D. Since X, CX, CCX, and H ⊗ H
have entries in D, any circuit over the gate set {X,CX,CCX,H ⊗H} must represent a unitary matrix
over D. Here, we show the converse: any unitary matrix over D can be represented by a circuit over
{X,CX,CCX,H ⊗H}. To prove this, it is sufficient to establish that every unitary over D can be
expressed as a product of the following generators{

(−1)[a], X[a,b], (H ⊗H)[a,b,c,d]
}
, (2)

where a, b, c, and d are distinct elements of [n]. Indeed, by Proposition 4.4, all of the above generators
can be exactly represented by quantum circuits over the gate set {X,CX,CCX,H ⊗H}.

If V is a matrix over D, then V can be written as

V = 1
2qW (3)

where q ∈ N and W is a matrix over Z. We will consider 2-denominator exponents of such matrices.
The following four lemmas are devoted to proving the analogue of Giles and Selinger’s Column Lemma

(Lemma 5 in [17]). Here, the goal is to establish that any unit vector over D can be reduced to a standard
basis vector by multiplying it on the left by an appropriately chosen sequence of generators. We consider
the case of vectors of dimension n < 4 first, before moving on to higher dimensions.

Lemma 5.1. Let n < 4 and let j ∈ [n]. If v is an n-dimensional unit vector over D, then there exist
generators G1, . . . , G` from (2) such that G1 · · ·G`v = ej.

Proof. Write v as v = u/2q with u ∈ Zn and q = lde2(v). Since v is a unit vector, we have v†v = 1
and thus 4q =

∑
u†kuk =

∑
u2
k. The square of any odd number is congruent to 1 modulo 4. Thus when

n < 4, we have
∑
u2
k ≡ 0 (mod 4) only if every uk is even. This implies that lde2(v) = 0 when n < 4

and therefore that v = ±ej′ for some j′ ∈ [n]. Hence one of

v = ej , (−1)[j]v = ej , X[j,j′]v = ej , or X[j,j′](−1)[j′]v = ej

must hold, which completes the proof.
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Because (H ⊗H)[a,b,c,d] is a four-level matrix, we consider its action on certain 4-dimensional vectors
in the lemma below. This is in contrast with Giles and Selinger’s algorithm, for which only one- and
two-level matrices are needed.

Lemma 5.2. If u1, . . . , u4 ∈ Z are such that u2
1 ≡ . . . ≡ u2

4 ≡ 1 (mod 4), then there exist m1, . . . ,m4
such that

(H ⊗H)(−1)m1
[1] (−1)m2

[2] (−1)m3
[3] (−1)m4

[4]


u1
u2
u3
u4

 =


u′1
u′2
u′3
u′4


for some u′1, . . . , u′4 ∈ Z such that u′1 ≡ . . . ≡ u′4 ≡ 0 (mod 2).

Proof. If u ∈ Z is such that u2 ≡ 1 (mod 4), then u ≡ 1 (mod 4) or u ≡ 3 (mod 4). Furthermore,
if u ≡ 3 (mod 4), then −u ≡ 1 (mod 4). Hence, given u1, . . . , u4 ∈ Z such that u2

1 ≡ . . . ≡ u2
4 ≡ 1

(mod 4), we can find m1, . . . ,m4 such that (−1)m1u1 ≡ . . . ≡ (−1)m4u4 ≡ 1 (mod 4). It can then be
verified that

(H ⊗H)


(−1)m1u1
(−1)m2u2
(−1)m3u3
(−1)m4u4

 =


u′1
u′2
u′3
u′4


for some u′1 ≡ . . . ≡ u′4 ≡ 0 (mod 2).

Lemma 5.3. Let n ≥ 4. If v is an n-dimensional unit vector over D and lde2(v) > 0, then there exist
generators G1, . . . , G` from (2) such that G1 · · ·G`v = v′ and lde2(v′) < lde2(v).

Proof. Write v as v = u/2q where u ∈ Zn and q > 1. Since v is a unit vector we have v†v = 1 and thus
4q =

∑
u†kuk =

∑
u2
k since u is real. The number of uk such that u2

k ≡ 1 (mod 4) is therefore congruent
to 0 modulo 4. Hence, we can group these entries in sets of size 4 and apply Lemma 5.2 to each such set
in order to reduce the 2-denominator exponent of the vector.

Lemma 5.4. Let j ∈ [n]. If v is an n-dimensional unit vector over D, then there exist generators
G1, . . . , G` from (2) such that G1 · · ·G`v = ej.

Proof. The case of vectors of dimension n < 4 was treated in Lemma 5.1 so we assume that n ≥ 4 and
we proceed by induction on the least 2-denominator exponent of v.

• If lde2(v) = 0, then v is a unit vector in Zn. Hence v = ±ej′ for some j′ ∈ [n] and one of

v = ej , (−1)[j]v = ej , X[j,j′]v = ej , or X[j,j′](−1)[j′]v = ej

must hold.

• If lde2(v) > 0, apply Lemma 5.3 to reduce the 2-denominator exponent of v.

We can now use Lemma 5.4 to prove that every unitary matrix with entries in D can be written as
a product of generators. This, together with Proposition 4.4 establishes our characterization of circuits
over the gate set {X,CX,CCX,H ⊗H}.

Theorem 5.5. If V is an n-dimensional unitary matrix with entries in D, then there exist generators
G1, . . . , G` from (2) such that G1 · · ·G`V = I.

Proof. By iteratively applying Lemma 5.4 to the columns of V .

Corollary 5.6. A matrix V can be exactly represented by an n-qubit circuit over {X,CX,CCX,H ⊗H}
if and only if V ∈ U2n(D). Moreover, a single ancilla always suffices to construct a circuit for V .
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5.1.1 Super-integral Clifford+T operators

One might wonder whether the H ⊗ H gate can be replaced with the H gate. Since the H gate lies
strictly outside of U2n(D), having denominator

√
2, we get a slightly more general gate set. Circuits over

this gate set generate matrices of the form

V = 1
√

2q
W (4)

where q ∈ N and W is a matrix over Z.
We now leverage Theorem 5.5 and Corollary 4.5 to show that every unitary matrix of the form

in Eq. (4) can be represented by a circuit over {X,CX,CCX,H}. For these matrices, we use
√

2-
denominator exponents. We extend the set of generators from (2) with a matrix of the form I⊗H. Thus
the relevant generators are now{

(−1)[a], X[a,b], (H ⊗H)[a,b,c,d], In/2 ⊗H
}

(5)

where a, b, c, and d are distinct elements of [n], and In/2⊗H is only well-defined when n is even. As the
extra generator is only available in even dimensions, we start by showing that there are no odd-dimension
unitary matrices of the form of Eq. (4) with odd q. The proof of this fact is due to Xiaoning Bian [10].

Lemma 5.7. If V 6= 0 is as in (4), then all the
√

2-denominator exponents of V are congruent modulo 2.

Proof. Suppose that q < q′ are two
√

2-denominator exponents of V . Then V = W/
√

2q = W ′/
√

2q
′

for
some integer matrices W and W ′. Assume without loss of generality that q < q′. Then

W ′ =
√

2
q′

V =
√

2
q′−q

W

so that
√

2q
′−q

W is an integer matrix. Hence q ≡ q′ (mod 2), since V 6= 0 and
√

2 /∈ Z.

Lemma 5.8. If v is an n-dimensional unit vector of the form v = (1/
√

2)qu where u is an integer vector
and q is odd, then there exist generators G1, . . . , G` from (5) such that

G1 · · ·G`v = 1√
2


1
1
0
...
0

 .

Proof. By induction on q. For the base case, it suffices to observe that since
∑
u2
k = 2, there exist j, j′

such that uj = (−1)mj and uj′ = (−1)mj′ and the other entries of u are all 0. It can then be verified
that

X[0,j]X[1,j′](−1)mj

[j] (−1)mj′

[j′] v = 1√
2


1
1
0
...
0

 .

Now suppose q ≥ 3. Then
∑
u2
k = 2q = 4q′ and hence the number of u2

k ≡ 1 (mod 4) is congruent to 0
modulo 4. Then, as in Lemma 5.3, we can group these entries in sets of size 4 and apply Lemma 5.2 to
each set to reduce the

√
2-denominator exponent of the vector by 2.

Note also that the proof of Lemma 5.8 implies that there are no unit vectors of the form v = u/
√

2q

with odd q ≥ 3 and dimension n < 4.

Lemma 5.9. There are no odd-dimensional unitary matrices V = W/
√

2q such that W is an integer
matrix and q is odd.
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Proof. By induction on n. If n = 1, then the only possibility is V = 1, hence there is no such unitary
with odd least

√
2-denominator exponent. Now consider n ≥ 3 and assume that V = W/

√
2q where q is

odd and W is an integer matrix. Let v be the first column of V . By Lemma 5.7, all the
√

2-denominator
exponents of v are odd and by Lemma 5.8 there exists a unitary transformation G = G1 · · ·G`U such
that

GV =


1√
2

1√
2

0 V ′

...
0

 .

Let u1, u2 be the first two columns of (GV )†. Since (GV )† is unitary, we know that u†1u1 = u†2u2 = 1,
and u†1u2 = u†2u1 = 0. In can then be observed from the unit condition on u1 and u2, that they each
have one additional ±(1/

√
2) entry, and are 0 everywhere else. Further, by the orthogonality condition

it follows that these entries both occur on the same row j. Hence there exists m such that

(−1)m[2]X[2,j]
[
u1 u2

]
= 1√

2


1 1
1 −1
0 0
...

...
0 0

 .

Thus
UV ((−1)m[2]X[2,j])† =

[
H 0
0 V ′′

]
where V ′′ is a unitary matrix of the form of Eq. (4) that has odd dimension and, by Lemma 5.7, odd
least

√
2-denominator exponent, a contradiction.

Having ruled out matrices with odd dimension and odd
√

2-denominator exponent, we can now prove
our theorem.

Theorem 5.10. If V = W/
√

2q is an n-dimensional unitary matrix such that W is an integer matrix,
then there exist generators G1, . . . , G` from (5) such that G1 · · ·G`V = I.

Proof. If q is even, the result follows from Theorem 5.5. If q is odd, then by Lemma 5.9 n must be even,
and so (In/2 ⊗H)V is a matrix with entries in D. Hence the result follows by applying Theorem 5.5 to
(In/2 ⊗H)V .

Corollary 5.11. A matrix V can be exactly represented by an n-qubit circuit over {X,CX,CCX,H} if
and only if V is a 2n-dimensional unitary matrix such that V = W/

√
2q for some integer matrix W and

some q ∈ N. Moreover, a single ancilla always suffices to construct a circuit for V .

5.2 The D
[√

2
]

case

We now focus on the group of n×n unitary matrices with entries in D
[√

2
]
. The elements of this group

can be written as

V = 1
√

2q
W (6)

where q ∈ N and W is a matrix over Z
[√

2
]
. We now use

√
2-denominator exponents and the relevant

generators are {
(−1)[a], X[a,b], H[a,b]

}
(7)

where a and b are distinct elements of [n]. By Proposition 4.8, all of the above generators can be exactly
represented by quantum circuits over the gate set {X,CX,CCX,H,CH}. As in the previous cases, we
prove our characterization by showing that any unitary matrix of the form (6) can be expressed as a
product of generators from (7).
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Lemma 5.12. If u1, u2 ∈ Z
[√

2
]

are such that u1 ≡ u2 (mod 2), then

H

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1, u′2 ∈ Z

[√
2
]

such that u′1 ≡ u′2 ≡ 0 (mod
√

2).

Proof. Since u1 ≡ u2 (mod 2), we have u1 + u2 ≡ u1 − u2 ≡ 0 (mod 2). It can then be verified that

H

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1 ≡ u′2 ≡ 0 (mod 2).

Lemma 5.13. If v is an n-dimensional unit vector over D
[√

2
]

and lde√2(v) > 0, then there exist
generators G1, . . . , G` from (7) such that G1 · · ·G`v = v′ and lde√2(v′) < lde√2(v).

Proof. Write v as v = u/
√

2q where u ∈ Z
[√

2
]

and q > 0. Since v is a unit vector we have v†v = 1 and
thus 2q =

∑
u†juj =

∑
u2
j since u is real. Letting uj = xj + yj

√
2, this yields the following equation

2q =
∑

x2
j + 2y2

j + xjyj2
√

2.

Thus
∑
x2
j ≡ 0 (mod 2) and

∑
xjyj = 0. It follows that uj ≡ 1 (mod 2) for evenly many j and

uj ≡ 1 +
√

2 (mod 2) for evenly many j. We can therefore group these entries in sets of size 2 and apply
Lemma 5.12 to each such set in order to reduce the

√
2-denominator exponent of the vector.

The following three statements are established like the corresponding ones in the previous section.
For this reason, we omit their proofs.

Lemma 5.14. Let j ∈ [n]. If v is an n-dimensional unit vector over D
[√

2
]
, then there exist generators

G1, . . . , G` from (7) such that G1 · · ·G`v = ej.

Theorem 5.15. If V is an n-dimensional unitary matrix with entries in D
[√

2
]
, then there exist gen-

erators G1, . . . , G` from (7) such that G1 · · ·G`V = I.

Corollary 5.16. A matrix V can be exactly represented by an n-qubit quantum circuit over the gate set
{X,CX,CCX,H,CH} if and only if V ∈ U2n

(
D
[√

2
])

. Moreover, a single ancilla always suffices to
construct a circuit for V .

5.3 The D
[
i
√

2
]

case

We now consider the group of n × n unitary matrices with entries in D
[
i
√

2
]
. Such matrices can be

written as

V = 1
(i
√

2)q
W (8)

where q ∈ N and W is a matrix over Z
[
i
√

2
]
. We now use i

√
2-denominator exponents and the relevant

generators are {
(−1)[a], X[a,b], F[a,b]

}
(9)

where a and b are distinct elements of [n]. By Proposition 4.9, all of the above generators can be
exactly represented by quantum circuits over the gate set {X,CX,CCX,F}. As in the previous cases,
we establish our characterization by showing that any unitary matrix of the form (8) can be expressed
as a product of generators from (9).

Lemma 5.17. If u1, u2 ∈ Z
[
i
√

2
]

are such that u†1u1 ≡ u†2u2 ≡ 1 (mod 2), then there exist m0, m1,
m2, and m3 such that

Fm0(−1)m1
[1] (−1)m2

[2] X
m3

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1, u′2 ∈ Z

[
i
√

2
]

such that u′1 ≡ u′2 ≡ 0 (mod i
√

2).
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Proof. First consider the case in which u1 ≡ u2 (mod 2). Then u1 + u2 ≡ u1 − u2 ≡ 0 (mod 2) and it
can be verified that

F 2
[
u1
u2

]
= iH

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1 ≡ u′2 ≡ 0 (mod i

√
2). We now consider the case in which u1 6≡ u2 (mod 2). In this case,

the fact that u†1u1 ≡ u†2u2 ≡ 1 (mod 2) implies that one of u1 or u2 is congruent to 1 or 3 modulo 2i
√

2
while the other is congruent to (1 + i

√
2) or (3 + i

√
2) modulo 2i

√
2. We can therefore find m1,m2,m3

such that
(−1)m1

[1] (−1)m2
[2] X

m3

[
u1
u2

]
=
[
u′′1
u′′2

]
where u′′1 ≡ 1 + i

√
2 (mod 2i

√
2) and u′′2 ≡ 1 (mod 2i

√
2). Then

F

[
u′′1
u′′2

]
= 1

2

[
(1 + i

√
2)u′′1 + u′′2

u′′1 + (−1 + i
√

2)u′′2

]
.

But u′′1 ≡ 1 + i
√

2 (mod 2i
√

2) and u′′2 ≡ 1 (mod 2i
√

2) so that

(1 + i
√

2)u′′1 + u′′2 ≡ (1 + i
√

2)2 + 1 ≡ 2i
√

2 ≡ 0 (mod 2i
√

2).

and
u′′1 + (−1 + i

√
2)u′′2 ≡ (1 + i

√
2) + (−1 + i

√
2) ≡ 2i

√
2 ≡ 0 (mod 2i

√
2).

Hence we can set u′1 = ((1 + i
√

2)u′′1 +u′′2)/2 and u′2 = (u′′1 + (−1 + i
√

2)u′′2)/2 to complete the proof.

Lemma 5.18. If v is an n-dimensional unit vector over D
[
i
√

2
]

and ldei√2(v) > 0, then there exist
generators G1, . . . , G` from (9) such that G1 · · ·G`v = v′ and ldei√2(v′) < ldei√2(v).

Proof. Write v as v = u/i
√

2q where u ∈ Z
[
i
√

2
]

and q > 0. Since v is a unit vector we have v†v = 1
and thus (-2)q =

∑
u†juj . Thus

∑
u†juj ≡ 0 (mod 2) and it follows that u†juj ≡ 1 (mod 2) for evenly

many j, since modulo 2 we have u†juj ≡ 0 or u†juj ≡ 1. We can therefore group these entries in sets of
size 2 and apply Lemma 5.17 to each such set in order to reduce the denominator exponent.

Lemma 5.19. Let j ∈ [n]. If v is an n-dimensional unit vector over D
[
i
√

2
]
, then there exist generators

G1, . . . , G` from (9) such that G1 · · ·G`v = ej.
Theorem 5.20. If V is an n-dimensional unitary matrix with entries in D

[
i
√

2
]
, then there exist

generators G1, . . . , G` from (9) such that G1 · · ·G`V = I.
Corollary 5.21. A matrix V can be exactly represented by an n-qubit circuit over {X,CX,CCX,F} if
and only if V ∈ U2n

(
D
[
i
√

2
])

. Moreover, a single ancilla always suffices to construct a circuit for V .
We close this section with a characterization of ancilla-free circuits over {X,CX,CCX,F}, focusing

on circuits on four or more qubits. The required circuit constructions are relegated to Appendix A.1.

Corollary 5.22. Let n ≥ 4. A matrix V ∈ U2n(D
[
i
√

2
]
) can be exactly represented by an ancilla-free

n-qubit circuit over {X,CX,CCX,F} if and only if detV = 1.
Proof. If detV 6= 1, then V cannot be exactly represented over {X,CX,CCX,F} without ancillas when
n ≥ 4, as each gate has determinant 1 in this case.

Now suppose detV = 1. First observe that in Lemma 5.17, and consequently Lemma 5.18, the least
i
√

2-denominator exponent can be reduced by substituting Fm0(−1)m1
[1] (−1)m2

[2] X
m3 as follows:

F 2 → (FZ)(ZF ),
F (−1)[1] → (FZ)(XZ)(XZ),
F (−1)[2] → (FZ),

F (−1)[1](−1)[2] → (ZF )(XZ)(XZ),
FX → (FZ)(ZX),

F (−1)[1]X → (ZF )(XZ),
F (−1)[2]X → (ZF )(ZX), and

F (−1)[1](−1)[2]X → (FZ)(XZ).
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Moreover, FZ, ZF , XZ and ZX have determinant 1 and can be represented over {X,CX,CCX,F}
without ancillas when n ≥ 4 as shown in Appendix A.1. Likewise, an analogue of Lemma 5.19, where
G1 · · ·G`v = imej , holds by using the two-level ZX operator, which has determinant 1 and is repre-
sentable without ancillas as shown in Appendix A.1. It now suffices to note that there exist generators
G1, . . . , G` from the set

{
XZ[a,b], ZX[a,b], FZ[a,b], ZF[a,b]

}
such that

G1 · · ·G`V = D

where D is a diagonal unitary with entries ±1. Since detD = detV = 1, there are an even number of
−1 entries, thus we can group them into pairs and use four-level I ⊗ Z operators to change each pair
into +1 and obtain the identity matrix.

5.4 The D[i] case
Finally, we turn our attention to the group of n× n unitary matrices with entries in D[i]. The relevant
set of generators is {

i[a], X[a,b], ωH[a,b]
}

(10)

where a and b are distinct elements of [n]. We reason as in the previous cases, noting by Proposition 4.6
that all of the above generators can be exactly represented by circuits over {X,CX,CCX,ωH, S}.

If V is a matrix over D[i], then V can be written as V = W/2q where q ∈ N and W is a matrix over
Z [i]. For our purposes, however, it is more convenient to express these matrices as

V = 1
(1 + i)qW (11)

where q ∈ N and W is a matrix over Z [i]. This is equivalent since

1
2qW = iq

(1 + i)2qW = 1
(1 + i)2qW

′.

We therefore use matrices of the form (11) and use (1 + i)-denominator exponents.

Lemma 5.23. If u1, u2 ∈ Z [i] are such that u2
1 ≡ u2

2 ≡ 1 (mod 2), then there exist m1 and m2 such
that

ωHim1
[1] i

m2
[2]

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1, u′2 ∈ Z [i] such that u′1 ≡ u′2 ≡ 0 (mod 1 + i).

Proof. If u2 ≡ 1 (mod 2), then u ≡ 1 (mod 2) or u ≡ i (mod 2). Furthermore, if u ≡ i (mod 2), then
iu ≡ 1 (mod 2). Hence, given u1, u2 ∈ Z such that u2

1 ≡ u2
2 ≡ 1 (mod 2), we can find m1 and m2 such

that im1u1 ≡ im2u2 ≡ 1 (mod 2). It can then be verified that

ωHim1
[1] i

m2
[2]

[
u1
u2

]
=
[
u′1
u′2

]
for some u′1 ≡ u′2 ≡ 0 (mod 1 + i).

Lemma 5.24. If v is an n-dimensional unit vector over D[i] and lde(1+i)(v) > 0, then there exist
generators G1, . . . , G` from (10) such that G1 · · ·G`v = v′ and lde(1+i)(v′) < lde(1+i)(v).

Proof. Write v as v = u/(1 + i)q where u ∈ Z [i] and q > 1. Since (1 + i)†(1 + i) = 2 and v is a unit
vector, we have 2q =

∑
u†juj . Thus 0 ≡

∑
u†juj ≡

∑
u2
j (mod 2) and it follows that u2

j ≡ 1 (mod 2)
for evenly many j. We can therefore group these entries in sets of size 2 and apply Lemma 5.23 to each
such set in order to reduce the denominator exponent.

Lemma 5.25. Let j ∈ [n]. If v is an n-dimensional unit vector over D[i], then there exist generators
G1, . . . , G` from (10) such that G1 · · ·G`v = ej.

Theorem 5.26. If V is an n-dimensional unitary matrix with entries in D[i], then there exist generators
G1, . . . , G` from (10) such that G1 · · ·G`V = I.
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Corollary 5.27. A matrix V can be exactly represented by an n-qubit circuit over {X,CX,CCX,ωH, S}
if and only if V ∈ U2n(D[i]). Moreover, a single ancilla always suffices to construct a circuit for V .

Corollary 5.28. Let n ≥ 4. A matrix V ∈ U2n(D[i]) can be exactly represented by an ancilla-free n-qubit
circuit over {X,CX,CCX,ωH, S} if and only if detV = 1.

Proof. We proceed as in the proof of Corollary 5.22. In particular, the least (1+i)-denominator exponent
can be reduced in Lemma 5.24 by substituting ωHim1

[1] i
m2
[2] with ancilla-free two-level generators as follows:

ωH → (ωSH),
ωHi[1] → (ωHS)(iZ),
ωHi[2] → (ωHS), and

ωHi[1]i[2] → (ωSH)(iZ).

Moreover, each parenthesized two-level operator on the right hand side has determinant 1 and can be
exactly represented over {X,CX,CCX,ωH, S} without ancillas when n ≥ 4 as shown in Appendix A.2.

An analogue of Lemma 5.25 where G1 · · ·G`v = imej holds by using the two-level iX operator, which
similarly has determinant 1 and is representable without ancillas as shown in Appendix A.2. Again,
there exist generators G1, . . . , G` from the set

{
iZ[a,b], iX[a,b], ωSH[a,b], ωHS[a,b]

}
such that

G1 · · ·G`V = D

where D is a diagonal unitary with entries im. We can then use the n-qubit two-level iZ operator to
remove the phases as follows. Suppose the jth diagonal entry is imj and let N = 2n. It can then be
observed that

(iZ[1,2])−m1(iZ[2,3])−m1−m2 . . . (iZ[N−1,N ])−m1−m2−···−mN−1D =
[
IN−1 0

0 i

∑N

j=1
mj

]
=
[
IN−1 0

0 detD

]
Since detD = detV = 1, the proof is complete.

5.4.1 Super-Gaussian Clifford+T operators

As in the integral case, the characterization of Gaussian Clifford+T circuits as unitaries over D[i] requires
the unusual ωH gate as a generator. Replacing ωH with H yields a slightly larger set of unitaries with
matrices of the form

V = 1
√

2q
W (12)

where q ∈ N and W is a matrix over Z [i].
We use Corollary 5.27 together with Corollary 4.7 to show that any unitary of the form of Eq. (12) can

be represented by a circuit over the gate set {X,CX,CCX,H, S}. In this case we use
√

2-denominator
exponents and, as in Section 5.1, we make use of the fact that

√
2 /∈ Z [i]. The relevant generators are

now {
i[a], X[a,b], ωH[a,b], ωIn

}
. (13)

Lemma 5.29. If V 6= 0 is as in (12), then all the denominator exponents of V are congruent modulo 2.

Proof. Similar to the proof of Lemma 5.7.

Theorem 5.30. If V = W/
√

2q is an n-dimensional unitary matrix such that W is a matrix over Z [i],
then there exist generators G1, . . . , G` from (13) such that G1 · · ·G`V = I.

Proof. If q is even, the result follows from Theorem 5.26. If q is odd, then (ωIn)V is a matrix with
entries in D[i]. Hence the result follows by applying Theorem 5.26 to (ωIn)V .

Corollary 5.31. A matrix V can be exactly represented by an n-qubit circuit over {X,CX,CCX,H, S}
if and only if V is a 2n-dimensional unitary matrix such V = W/

√
2q for some matrix W over Z [i] and

some q ∈ N. Moreover, a single ancilla always suffices to construct a circuit for V .
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6 Conclusion
In this paper, we provided number-theoretic characterizations for several classes of restricted but universal
Clifford+T circuits, focusing on integral, real, imaginary, and Gaussian circuits. We showed that a
unitary matrix can be exactly represented by an n-qubit integral Clifford+T circuit if and only if it is an
element of the group U2n(D). We then established that real, imaginary, and Gaussian circuits similarly
correspond to the groups U2n(D

[√
2
]
), U2n(D

[
i
√

2
]
), and U2n(D[i]), respectively.

An avenue for future research is to improve the performance, in runtime or gate count, of the al-
gorithms introduced in the present paper. Further afield, it would be interesting to study restricted
Clifford+T circuits in the context of fault-tolerance, randomized benchmarking, or simulation. While
these and many other questions remain open, we hope that our characterizations will help deepen our
understanding of Clifford+T circuits, restricted or not.
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A Ancilla-Free Circuit Constructions
A.1 The D

[
i
√

2
]

case

In this appendix, we give ancilla-free constructions of the two-level operators XZ, ZX = (XZ)†, FZ,
and ZF over {X,CX,CCX,F}. We progressively build up to the necessary operators.

Lemma A.1. For any n, the n-qubit two-level X and Z gates can be represented over the gate set
{X,CX,CCX,F} with a single dirty ancilla.

Proof. Recall that the two-level X gate is representable over {X,CX,CCX} with a single dirty ancilla
[9]. The two-level Z gate can then be constructed as follows.

•

...
...

•

Z

=

•

...
...

•

F 2 X F 6

Lemma A.2. For any n, the n-qubit two-level ZXF gate can be represented over {X,CX,CCX,F}
with a single dirty ancilla.

Proof. Recall that

(ZXF )2 = I

X(ZXF )X(ZXF )X = ZXF.

Hence it follows that the two-level ZXF gate can be implemented over {X,CX,CCX,F} with a single
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dirty ancilla as follows.

•

...
...

•

ZXF

=

•
...

...

•

X ZXF X ZXF X

Proposition A.3. For any n, the n-qubit two-level XZ gates can be represented without ancillas over
{X,CX,CCX,F}.

Proof. Recall that the controlled-F gate is representable with a single dirty ancilla. The two-level XZ
gate is then constructible without ancillas using the following circuit.

•

...
...

•

•

XZ

=

• •

...
...

• •

• •

X F 2 X F 6

Proposition A.4. For any n, the n-qubit two-level FZ and ZF gates can be represented without ancillas
over {X,CX,CCX,F}.

Proof. In the n = 1 and n = 2 cases, this is trivially true, as the controlled F and controlled Z are
both implementable without ancillas. For n ≥ 3, note that XZ = −ZX, and so (ZXF )X(ZXF )X =
X(ZXF ) = −ZF . Hence, we have the equality below.

•
...

...

•

•
...

...

•

ZF

=

• • •
...

...

• • •

• • •
...

...

• • Z

X ZXF X ZXF

Finally for FZ, we can note that

F 6(XZ)X(ZXF )X(ZXF )F 2 = F 6(XZ)(ZXF )XF 2

= FF 6XF 2

= FZ,
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giving the following circuit identity

•
...

...

•

•
...

...

•

FZ

=

• • •
...

...

• • •

• • •
...

...

• • •

F 2 ZXF X ZXF X XZ F 6

where no ancillas are needed.

A.2 The D[i] case
In this appendix we give ancilla-free constructions of the two-level operators iX, iZ, ωSH, and ωHS
over {X,CX,CCX,ωH, S}. We progressively build up to the necessary operators.

Lemma A.5. For any n, the n-qubit two-level X and Z gates can be represented over the gate set
{X,CX,CCX,ωH, S} with a single dirty ancilla.

Proof. Recall that the two-level X gate is representable over {X,CX,CCX} with a single dirty ancilla
[9]. The two-level Z gate can then be constructed as follows.

•

...
...

•

Z

=

•

...
...

•

ωH X (ωH)†

Lemma A.6. For any n, the n-qubit two-level S operators can be represented over {X,CX,CCX,ωH, S}
with two dirty ancillas.

Proof. Observe that the two-level S operator can be constructed as follows.

•

...
...

•

S

=

• • •

...
...

• • •

X • X • •

S S† Z

Proposition A.7. For any n, the n-qubit two-level iX operators can be represented without ancillas
over {X,CX,CCX,ωH, S}.
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Proof. For n = 1, we have
iX = (ωH)S2(ωH).

For n = 2, we have
•

iX
=

S •

X

and for n ≥ 3, we have the circuit below.

•

...
...

•

•

...
...

•

iX

=

• •

...
...

• •

• •

...
...

• •

ωH S† iX S −iX (ωH)†

Proposition A.8. For any n, the n-qubit two-level iZ operator can be represented without ancillas over
{X,CX,CCX,ωH, S}.

Proof. Using the n-qubit iX operator as follows.

•

...
...

•

iZ

=

•

...
...

•

ωH iX (ωH)†

Proposition A.9. For any n 6= 2, the n-qubit two-level ωSH and ωHS operators are can be represented
without ancillas over {X,CX,CCX,ωH, S}. For n = 2, the 2-qubit two-level ωSH and ωHS operators
can be represented if CS is appended to the gate list.

Proof. The n = 1 case is trivially true. For n = 2, if we do not use ancillas, we are left with the Clifford
group generators and are unable to implement non-Clifford operators. However, appending CS to our
list of operators gives us the following circuits.

•

ωSH
=

• • •

S ωH S (ωH)† Z

•

ωHS
=

• • •

Z ωH S (ωH)† S
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Note moreover that the 2-qubit circuits can also be represented over {X,CX,CCX,ωH, S} with a single
dirty ancilla, which we use in the identities for n ≥ 3 below.

•

...
...

•

•

ωSH

=

• • •

...
...

• • •

• • •

(ωSH)† S† ωSH S iZ

•

...
...

•

•

ωHS

=

• • •

...
...

• • •

• • •

ωH (ωSH)† S† ωSH S iZ (ωH)†
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