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Abstract

We provide an extensive overview of upper bounds on the number of gates needed in reversible and quantum circuits.
As reversible gate libraries we consider single-target gates, mixed-polarity multiple-controlled Toffoli gates, and the
set consisting of the NOT, the CNOT, and the two-controlled Toffoli gate. As quantum gate libraries we consider the
semi-classical NCV library (consisting of NOT, CNOT, and the square-root of NOT called V) as well as the universal
and commonly used Clifford+T gate library. Besides a summary of known bounds, the paper provides several new
and tighter bounds. Several synthesis approaches and mapping schemes were used to calculate the bounds.

Keywords: Complexity analysis, reversible functions, reversible circuits, quantum circuits, upper bounds, synthesis,
technology mapping.

1. Introduction

Reversible circuits and their implementations in quantum computers has attracted many researchers in the last
decades. Reversible computation [1] has proven itself as a very promising research area, especially for applications
to emerging technologies. This is confirmed by its results in emerging applications such as quantum computation [2],
superconducting quantum interference devices (SQUID) [3], and nanoelectromechanical systems (NEMS) [4], but
also in low power electronics [1, 5].

As a result of its applicability to such emerging technologies, synthesis of reversible logic has been intensively
studied and several approaches have been proposed [6, 7, 8]. To compare the efficacy of different synthesis ap-
proaches, the resulting circuits are evaluated in terms of cost metrics which depend on the target application. Standard
application-independent metrics used include the number of gates and the gate delay, also called the circuit depth. To
further incorporate technology-dependent information, the number of application-specific gates (e.g. quantum phase
gates) based on a given library is often compared. Adding helper lines (so-called ancillas) to the circuit for temporary
computations offers to reduce the gate count and the depth at the expense of space. For more details the reader is
referred to [9].

In this paper we derive tighter upper bounds for the number of gates that are required to implement a reversible
function in a reversible or quantum circuit. This is important as an approach to understand the complexity of reversible
circuits, but also to give an overall quality-measure of the different reversible synthesis methods. Previous research
has investigated this topic based on specific synthesis algorithms and using a specific gate library [10, 11]. Further,
the exact bounds are known for reversible circuits over up to four variables [12, 13, 14].

Our work is both an improvement over previous reported upper bounds and an extension of the upper bounds to
more gate libraries. As reversible gate libraries we consider single-target gates and their specializations. Single-target
gates (ST) are reversible gates that can invert one line, called the target line, based on the other lines. In the most
general case, the target line is inverted, if a control function based on the other lines evaluates to true. The more
specialized but still universal mixed-polarity multiple-controlled Toffoli (MPMCT) gate library restricts the control
function to product terms. Finally, the NOT, CNOT, Toffoli (NCT) library restricts the product terms to at most two
literals of which all must be of positive polarity. As quantum gate libraries we consider the semi-classical NCV
library [15] (consisting of NOT, CNOT, and the square-root of NOT) as well as the Clifford+T gate library. The latter
library is of particular interest in the implementation of fault-tolerant quantum circuits [16, 17].
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The paper is organized as follows. Section 2 gives a brief background on exclusive sum-of-products (ESOP)
expressions, reversible circuits, and quantum circuits. Section 3 outlines the general procedure to find the upper
bounds and gives an overview of all presented bounds. Sections 4–8 then provide bounds based on the five considered
reversible and quantum gate libraries. Section 9 summarizes all results.

2. Background

2.1. Boolean Functions

Let IB = {0, 1} denote the Boolean values. Then we refer to Bn,m = { f | f : IBn → IBm} as the set of all Boolean
multiple-output functions with n inputs and m outputs. There are 2m2n

such Boolean functions. We write Bn = Bn,1
and assume that each f ∈ Bn is represented by a propositional formula over the variables x1, . . . , xn. Furthermore, we
assume that each function f ∈ Bn,m is represented as a tuple f = ( f1, . . . , fm) where fi ∈ Bn for each i ∈ {1, . . . ,m} and
hence f (~x) = ( f1(~x), . . . , fm(~x)) for each ~x ∈ IBn.

2.2. Exclusive Sum-of-Products

Exclusive sum-of-products (ESOPs, [18]) are two-level descriptions of Boolean functions in which a function

f =

k⊕
i=1

x
pi1
i1
∧ · · · ∧ x

pili
ili

(1)

is composed of k product terms that are combined using the exclusive-OR (EXOR, ⊕) operation. A product term is
the conjunction of literals li where a literal is either a propositional variable x1 = x or its negation x0 = x̄. ESOPs are
the most general form of two-level AND-EXOR expressions.

Several subclasses have been considered in the past, e.g., positive polarity Reed-Muller expressions (PPRM [18]),
in which all literals are positive. There are further subclasses, many of which may be defined by applying the following
decomposition rules to a Boolean function f (x1, x2, . . . , xn):

f = x̄i fx̄i ⊕ xi fxi (Shannon)
f = fx̄i ⊕ xi( fx̄i ⊕ fxi ) (positive Davio)
f = fxi ⊕ x̄i( fx̄i ⊕ fxi ) (negative Davio)

with co-factors fx̄i = f (x1, . . . , xi−1, 0, xi+1, . . . , xn) and fxi = f (x1, . . . , xi−1, 1, xi+1, . . . , xn).

2.3. Reversible Circuits

Boolean functions can be realized reversibly by circuits that consist of at least n lines and are constructed using
cascades of reversible gates from a given gate library. The most common gate libraries are generalizations of the
Toffoli gate [19] and are defined in the following.

Definition 1 (Single-target gate). Given a set of variables X = {x1, . . . , xn}, a single-target (ST) gate Tc(C, t) with
control lines C = {xi1 , . . . , xik } ⊂ X, a target line t ∈ X \ C, and a control function c ∈ Bk inverts the variable on the
target line, if and only if c(xi1 , . . . , xik ) evaluates to true. All other variables remain unchanged. If the definition of c
is obvious from the context, it can be omitted from the notation Tc.

As an example the single-target gate T∨({x1, x2}, x3) acts on three lines x1, x2, x3 and inverts line x3, if and only if
line x1 or x2 are set to true. Its graphical representation is:

x1

x2

x3

x1

x2

x3 ⊕ (x1 ∨ x2)

∨

(2)



Definition 2 (Toffoli gate). Mixed-polarity multiple-control Toffoli (MPMCT) gates are a subset of the single-target
gates in which the control function c is represented by one product term or c = 1. The literals in the product term are
called control lines or controls. Multiple-control Toffoli gates (MCT) are a subset from the MPMCT gates in which
the product terms can only consist of positive literals. The NCT gate library refers to MCT gates that have at most
two control lines. The name is derived from NOT (Toffoli gate with no control line), CNOT (controlled NOT: Toffoli
gate with one control line), and Toffoli (Toffoli gate with two control lines).

MPMCT gates are drawn by using a dot for each literal that appears in the product term; a solid dot is used for
positive literals and a hollow dot for negative literals. Reversible circuits are built by joining them to form a cascade,
e.g.:

x1 = 0 1 1 1 x1 = 1
x2 = 0 0 0 1 x2 = 1
x3 = 0 0 1 1 x3 = 1

The circuit shows an example simulation of the input pattern 000, leading to the output pattern 111. Running the
circuit from right to left on the pattern 111 likewise leads to 000 at the inputs. Equivalent MPMCT and MCT circuit
realizations for the single-target gate in (2) are

x1 x1

x2 x2

x3 x3 ⊕ (x1 ∨ x2)

and
x1 x1

x2 x2

x3 x3 ⊕ (x1 ∨ x2)

respectively. Note that both realizations can be derived from the ESOP representations x̄1 x̄2 ⊕ 1 and x1x2 ⊕ x1 ⊕ x2 for
x1 ∨ x2.

Every reversible (invertible) function f ∈ Bn,n can be realized by a reversible circuit over MPMCT or MCT gates
using exactly n lines. A synthesis algorithm such as [20] provides a constructive proof. An additional temporary
(ancilla) line may need to be added when restricting the number of control lines (see, e.g., [21]). Each single-target
gate can be expressed in terms of a cascade of MPMCT or MCT gates, which can be obtained from an ESOP or PPRM
expression [18], respectively.

2.4. Quantum Cost Metrics
In order to compute a reversible function on a quantum computer, reversible gates must be mapped into circuits

over some library of quantum gates. Such quantum circuits allow the manipulation of classical Boolean values, but
also any complex-valued linear combination of them, called a superposition of states. In particular, the Boolean values
are denoted |0〉 and |1〉, and the state of a qubit is given by α|0〉 + β|1〉 for some amplitudes α, β ∈ C. Likewise, we
denote a vector of n bits ~x by |x1x2...xn〉 and describe the state of an n-qubit circuit as a complex combination of n-bit
vectors. In general the state of an n-qubit circuit may not be written as n independent qubit states, a phenomenon
known as entanglement.

A quantum gate acting on n qubits is typically represented by a 2n × 2n unitary (norm-preserving) matrix. We
denote by U† the inverse of a gate U, given by the conjugate transpose of U. The subset of unitary matrices that are
in fact permutation operators correspond exactly to the (Boolean) reversible functions.

The quantum cost of a reversible circuit is measured with respect to the quantum gate library that is used in
technology mapping. We consider two quantum gate libraries in this paper: the NCV library and the Clifford+T
library. Both libraries are complete for reversible functions.

The NCV gate library consists of the gates NOT, represented by the unitary matrix

X =

(
0 1
1 0

)
,

as well as the CNOT and controlled V/V† gates, where

V = 1
√

2

( 1+i
2

1−i
2

1−i
2

1+i
2

)



Table 1: Overview of the presented bounds

Gate library 1 MPMCT gate 1 Single-target gate Reversible circuit

Single-target gates (ST) Section 4
Mixed-polarity multiple-control Toffoli gates (MPMCT) Section 5.1 Section 5.2
NOT, CNOT, and Toffoli gates (NCT) Section 6.2 Section 6.3 Section 6.4
NOT, CNOT, V , V† gates (NCV) Section 7.1 Section 7.2 Section 7.3
Clifford+T gates Section 8.1 Section 8.2 Section 8.3

is the “square root” of X. The quantum cost for the NCV gate library is defined as the total number of gates used. We
call this number the NCV-cost of a reversible circuit. A possible NCV realization for the Toffoli gate T∧({x1, x2}, x3)
is:

V V V†

Its NCV-cost is 5 and there exists no realization with fewer costs.
The Clifford+T library consists of CNOT gate, along with the gates H and T , where

H = 1
√

2

(
1 1
1 −1

)
and T =

(
1 0
0 eiπ/4

)
.

It is typically assumed that this gate set includes the S = T 2 and Z = T 4 gates, together with the T gate known as
phase gates. The Clifford+T gate library has grown in popularity due to having known fault-tolerant implementations
in most common error correcting codes [17]. These implementations typically have circuit latency proportional to the
number of T stages—a group of T gates executed in parallel. This number, called the T -depth [22], defines the quan-
tum cost of the Clifford+T gate library. The number of H gates in a Clifford+T circuit is provided as a secondary cost
metric, as this number affects the T -depth optimization possibilities [23]. A T -depth optimal Clifford+T realization
of the Toffoli gate is [22]:

T T†

T T† T†

H T T H

Its T -depth is 3 as indicated by the emphasized T stages.

3. Overview

Each of the subsequent five sections provides upper bounds for a reversible or quantum gate library. Table 1 gives
an overview of all the considered configurations. The first column lists all the gate libraries while the remaining
columns describe the function class for which bounds are given.

For instance, Section 4 discusses how many single-target gates are required to represent any reversible function.
Along with the number of gates required for the realization of a reversible function, in the case of MPMCT gates it is
further investigated how many of such gates are required to realize one single-target gate.

Fig. 1 illustrates our layered mapping approach from which our upper bounds have been derived. Synthesis
approaches allow the realization of a reversible function using ST or MPMCT gates, depending on the approach. ST
based circuits can be mapped to MPMCT circuits after synthesis. Different mapping techniques (referred to as B1,
NC, and MI and described in detail in Section 6.1) then transform these circuits into circuits that are solely composed
of NCT gates which can then be transformed into quantum circuits w.r.t. a quantum gate library.
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Figure 1: Mapping model

4. Complexity of Single-target Circuits

In this section we review the size of reversible circuits based on single-target gates. Let X = {x1, . . . , xn}. Given
an n-variable reversible function f (x1, . . . , xn) ∈ Bn,n and a line index i ∈ {1, . . . , n}, one can decompose f into three
n-variable reversible functions

f = g1 ◦ f ′ ◦ g2 (3)

such that g1 = Tl(X \ {xi}, xi) and g2 = Tr(X \ {xi}, xi) are single-target gates with control functions l and r, and f ′ is
a reversible function that does not change in line i; in other words f ′i (~x) = xi. Such a decomposition can always be
found for all 1 ≤ i ≤ n [7].

A synthesis algorithm can readily be derived by recursively applying the decomposition to all variables. Eventually
f ′ will be the identity function and the last two single-target gates g1 and g2 collapse to one single-target gate with
control function l⊕r. This immediately implies a linear upper bound for single-target gates: each n-variable reversible



Table 2: Upper bounds for realizing an ST gate

Method MCT MPMCT

Decomposition 3 · 2n−3 − 2 3 · 2n−4

ESOP expressions 2n−1 29 · 2n−8

function f can be realized with at most
ucST(n) = 2n − 1 (4)

ST gates [24]. If the decomposition is applied to all lines in numerical order, the resulting circuit is called a V-shape

x1 y1

x2 y2. .
. .. .

xn yn

··
·

· ·
·

referring to the distribution of the target lines. The above synthesis approach, called the Young subgroup synthesis,
was initially proposed in [7], then later reimplemented based on binary decisions diagrams (BDD) and presented
in [25].

5. Complexity of MPMCT Circuits

This section first gives upper bounds for the realization of single-target gates in terms of MPMCT gates and then
gives upper bounds for reversible circuits in general.

5.1. Upper Bounds for Single-target Gates
The complexity of ST gates was studied in [26] and upper bounds were derived based on functional decomposition

and ESOP upper bounds. In particular, it was proven that an ST gate can be realized with at most

usMPMCT(n) ≤ 3 · 2n−4 (5)

MPMCT gates. Table 2 summarizes all derived upper bounds for ST gates based on MCT and MPMCT gates.

5.2. Upper Bounds for Reversible Circuits
In [10], based on the transformation-based synthesis approach [20], it has been proven that every reversible func-

tion over n variables can be realized with no more than

ucMPMCT(n) ≤ n · 2n (6)

MPMCT gates. The algorithm proceeds by traversing each of the 2n rows of the truth table and for each row adds at
most one gate per column, giving a worst case of n · 2n gates.

The authors in [11] derived a weaker upper bound based on a cycle-based synthesis approach. Their synthesis
algorithm produces circuits with at most

ucMPMCT(n) ≤
(
3n + 1

2

)
· 2n (7)

MPMCT gates. Although the bound is weaker, the authors are able to decompose the formula to use a fewer number
of NOTs, CNOTs, and Toffoli gates. This can have an influence on the quantum cost metric.

Using the complexity of a single-target gate (see previous section), in [26] a better upper bound is derived for
MPMCT circuits. Based on the Young subgroup synthesis approach it is shown that any reversible function over n
variable can be implemented with at most

ucMPMCT(n) ≤ 3(2n − 1) · 2n−4 ≤ 3n · 2n−3 (8)

MPMCT gates.
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Figure 2: Different types of mapping an MCT into smaller MCT gates using one ancilla

6. Complexity of NCT Circuits

This section first gives an overview of the approaches considered for mapping MPMCT gates to NCT circuits.
Upper bounds on the number of NCT gates needed to realize MPMCT gate, ST gate, and general reversible circuits
are then studied.

6.1. Technology Mapping for Reversible Circuits
In order to derive a quantum circuit for a reversible function, the following approach is typically applied: (i) use

synthesis to obtain a reversible circuit description, e.g., based on MPMCT gates; (ii) transform the circuit into one that
consists only of NCT gates; (iii) map each Toffoli gate to a quantum circuit. Different approaches have been proposed
for the second step:

1. Barenco et al. (Lemma 7.3): According to [15, Lemma 7.3] a Toffoli gate T(C, t) with |C| ≥ 3 is mapped to a
cascade

T(C1, a1) ◦ T(C2 ∪ {a1}, t) ◦ T(C1, a1) ◦ T(C2 ∪ {a1}, t) (9)

where C = C1 ∪ C2 and C1 ∩ C2 = ∅. The helper line a1 can neither be in C, nor can it be t. If no free line
is available, an additional line must be added to the circuit. Note that the cascade restores the value on a1 and
therefore it can be reused for all gates. Fig. 2(b) shows the cascade for a 7 controlled MCT gate.

2. Nielsen and Chuang, [27]: If the helper line in the previous transformation is assigned to the 0 state, the fourth
gate in (9) can be omitted. This approach leads to circuits with cheaper quantum cost, however, if no free
lines are in the 0 state an additional line is needed. Fig. 2(c) illustrates the resulting circuit after applying this
transformation.

3. Miller et al., [28]: An MPMCT gate can be mapped directly to a quantum circuit in a more efficient way by
making use of controlled V gates. In particular, a Toffoli gate T(C, t) may be mapped to the following circuit:

V(a1, t) ◦ T(C1, a1) ◦ V†(a1, t) ◦ T(C2, a1) ◦ V(a1, t) ◦ T(C1, a1) ◦ V†(a1, t) ◦ T(C2, a1) (10)

In this case, the control set C2 has one fewer line, at the expense of 4 controlled V/V† gates. A helper line is
required, but as in the Barenco et al. approach any free line may be used rather than one in the 0 state. An
example of this transformation is illustrated in Fig. 2(d).

4. Barenco et al. (Lemma 7.2): According to [15, Lemma 7.2] a second step can be applied to the circuits obtained
from the previous algorithms or directly when the number of helper lines is |C| − 2. The resulting cascade
consists of NCT gates and is illustrated in Fig. 3(b). In [29], Maslov et al. have optimized this algorithm to
improve the quantum cost of NCV based quantum circuits. The network depicted in Fig. 3(c) presents the
optimized transformation for the 5-controlled gate with 3 helper lines. Each Toffoli gate is combined with a
CNOT gate to form a Peres gate, which uses 4 instead of 5 NCV gates.
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Figure 3: Different types of mapping an MCT gate into smaller NCT gates using (c − 2) ancillas

In the rest of the paper we denote the one ancilla mapping algorithms of Barenco et al. (Lemma 7.3), Nielsen and
Chuang, and Miller et al. by B1, NC, and MI, respectively. Also, we refer to the c − 2 ancillas mapping algorithm
from Barenco et al. (Lemma 7.2) as B2.

6.2. Upper Bounds for MPMCT Gates

Theorem 1. A c-control MPMCT gate can be realized, if c ≥ 5, with at most

• umNCTB1 (c) ≤ 8(c − 3)

• umNCTNC (c) ≤ 6(c − 3)

• umNCTMI (c) ≤ 8(c − 4) + 4

• umNCTB2 (c) ≤ 4(c − 2)

NCT gates. Note that these bounds are upper bounds.

Proof. The upper bounds for B1 and B2 are proven in [15].
In the NC mapping two of the three resulting MPMCT gates have

⌈
c
2

⌉
controls while the third one has c + 1 −

⌈
c
2

⌉
controls. Each of these gates is mapped with respect to the B2 mapping, giving

umNCTNC (c) ≤ 2 · 4
(⌈

c
2

⌉
− 2

)
+ 4

(
c + 1 −

⌈
c
2

⌉
− 2

)
≤ 4

(
c +

⌈
c
2

⌉
− 5

)
For even c, we have umNCTNC (c) ≤ 6

(
c − 10

3

)
≤ 6(c − 3), and for odd c, we have umNCTNC (c) ≤ 6(c − 3).

In the MI mapping two of the resulting four MPCMCT gates have
⌈

c
2

⌉
controls while the other two have c −

⌈
c
2

⌉
controls. Applying B2 mapping yields

umNCTMI (c) ≤ 2 · 4
(⌈

c
2

⌉
− 2

)
+ 2 · 4

(
c −

⌈
c
2

⌉
− 2

)
≤ 8(c − 4)

Toffoli gates. In addition, four NCV gates are required.

Table 3 summarizes these upper bounds for the number of Toffoli gates given by each mapping from the previous
section when applied to an MPMCT gate with c ≥ 5 control lines. Note that for the MI mapping four additional NCV
gates are included and that four additional NOT gates need to be added in the case that all control lines in the MPMCT
gate are negative.



Table 3: Number of NCT gates for an MPMCT gate with c controls

Mapping Ancillas NCT

B1 (Barenco et al. (Lemma 7.3 [15]))
1

8(c − 3)
NC (Nielsen and Chuang [27]) 6(c − 3)
MI (Miller et al. [28]) 8(c − 4) + 4 a

B2 (Barenco et al. (Lemma 7.2 [15]) c − 2 4(c − 2)

a4 NCV gates

6.3. Upper Bounds for Single-target Gates

6.3.1. Upper Bounds Based on PPRM Expressions
Tighter upper bounds for reversible circuits can be obtained by combining the synthesis approach outlined in the

previous section using MCT gates and upper bounds for the size of PPRM expressions. We will make use of the
following lemma and corollary which are proven in Appendices A and B, respectively.

Lemma 1.

∑
1≤i≤

⌈ n
2
⌉ i
(
n
i

)
=


n · 2n−2 n even

n · 2n−2 + n+1
4

(
n

n+1
2

)
n odd

and
∑

⌈ n
2
⌉
<i≤n

i
(
n
i

)
=


n · 2n−2 n even

n · 2n−2 − n+1
4

(
n

n+1
2

)
n odd.

Corollary 1. From Lemma 1, we derive the following inequations for n ≥ 6:

4 ·

⌈ n
2
⌉∑

i=0

(i − 2)
(
n
i

)
+ 8 ·

n∑
i=

⌈ n
2
⌉
+1

(i − 3)
(
n
i

)
≤ (6n − 24) · 2n−1 (11)

4 ·

⌈ n
2
⌉∑

i=0

(i − 2)
(
n
i

)
+ 6 ·

n∑
i=

⌈ n
2
⌉
+1

(i − 3)
(
n
i

)
≤ (5n − 21) · 2n−1 (12)

4 ·

⌈ n
2
⌉∑

i=0

(i − 2)
(
n
i

)
+ 8 ·

n∑
i=

⌈ n
2
⌉
+1

(i − 4)
(
n
i

)
≤ (6n − 28) · 2n−1 (13)

Theorem 2. An n-variable single-target gate with n ≥ 7 can be realized with at most

• usNCTB1 (n) ≤ (6n − 30) · 2n−2

• usNCTNC (n) ≤ (5n − 26) · 2n−2

• usNCTMI (n) ≤ (6n − 34) · 2n−2

NCT gates.

Proof. An n-variable single-target gate can be realized with at most usMCT(n) = 2n−1 MCT gates. This follows from
the PPRM representation, which is canonical for a given function when disregarding the order of product terms.
Hence, there exists a control function c ∈ Bn−1 for which the PPRM expression consists of all 2n−1 product terms, and
therefore

usMCT(n) ≤ 2n−1 ≤

n−1∑
i=0

(
n − 1

i

)
(14)



with
(

n−1
i

)
being the total number of product terms that have i literals, i.e., the total number of Toffoli gates that have

i controls. Let’s now consider the number of gates after mapping to the NCT gate library: In [30], it has been shown
that each MPMCT gate, with i controls and i ≤

⌈
n−1

2

⌉
, can be decomposed to 4(i − 2) Toffoli gates. Otherwise, it can

be decomposed to a cascade using one of the mapping algorithms that require one ancilla.
When the B1 mapping is chosen as a one ancilla mapping algorithm, each i-control MPMCT gate with i >

⌈
n−1

2

⌉
can be decomposed to 8(i − 3) Toffoli gates. We thus have

usNCTB1 (n) ≤ 4 ·

⌈
n−1

2

⌉∑
i=0

(i − 2)
(
n − 1

i

)
+ 8 ·

n−1∑
i=

⌈
n−1

2

⌉
+1

(i − 3)
(
n − 1

i

)
Corollary 1
≤ (6(n − 1) − 24) · 2(n−1)−1 ≤ (6n − 30) · 2n−2

When the NC mapping is applied,

usNCTB1 (n) ≤ 4 ·

⌈
n−1

2

⌉∑
i=0

(i − 2)
(
n − 1

i

)
+ 6 ·

n−1∑
i=

⌈
n−1

2

⌉
+1

(i − 3)
(
n − 1

i

)
Corollary 1
≤ (5(n − 1) − 21) · 2(n−1)−1 ≤ (5n − 26) · 2n−2

Finally, when the MI mapping is adopted,

usNCTB1 (n) ≤ 4 ·

⌈
n−1

2

⌉∑
i=0

(i − 2)
(
n − 1

i

)
+ 8 ·

n−1∑
i=

⌈
n−1

2

⌉
+1

(i − 4)
(
n − 1

i

)
Corollary 1
≤ (6(n − 1) − 28) · 2(n−1)−1 ≤ (6n − 34) · 2n−2

6.3.2. Upper Bounds Based on General ESOP Expressions
Even tighter bounds can be obtained when using general ESOP expressions instead of PPRM expressions. Note

that this includes the consideration of negative control lines.

Theorem 3. An n-variable single-target gate can be realized, if n ≥ 6, with at most

• usNCTB1 (n) ≤ 29(n − 4) · 2n−5

• usNCTNC (n) ≤ 87
4 (n − 4) · 2n−5

• usNCTMI (n) ≤ 29(n − 5) · 2n−5

NCT gates.

Proof. The best known upper bound on the number of product terms in a minimum ESOP form for an n-variables
Boolean function is [31]

29 · 2n−7 with n ≥ 7. (15)

Hence, the ESOP expression of the control function c ∈ Bn−1 consists of at most 29 ·2n−8 product terms. Each product
term has at most n − 1 terms in the worst case, and so mapping a product term (i.e., MPMCT gate with at most n − 1
controls) using the B1 mapping gives at most 8(n− 4) Toffoli gates. Hence at most 29(n− 4) · 2n−5 Toffoli gates when
the B1 mapping is applied, so usNCTB1 (n) ≤ 29(n−4) ·2n−5 as required. The remaining upper bounds are derived using
the same argument.



6.3.3. Upper Bounds Based on Functional Decomposition
In this section, we derive upper bounds based on functional decomposition in an induction proof. We use exact

bounds for the base case that were found using exhaustive search in combination with optimal synthesis [32].

Theorem 4. For an n-variable single-target gate we have for n ≥ 6:

• usNCTB1 (n) ≤ (5n − 31) · 2n−1 + (2n−4 − 2)

• usNCTNC (n) ≤ (15n − 93) · 2n−3 + (2n−4 − 2)

• usNCTMI (n) ≤ (5n − 36) · 2n−1 + (2n−4 − 2)

NCT gates, where the first term in each bound refers to the number of Toffoli gates and the second term refers to the
number of NOT gates.

Proof. We first show an upper bound of usMCT(n) = 2n−5 · 10 + 2n−4 − 2 for the number of MCT gates if n ≥ 5. The
proof is obtained by induction on n. For the base case let n = 5. Using exhaustive search we enumerated all 65,536
Boolean functions over 4 variables that can be represented by a 5-bit single-target gate and for each one we obtain the
minimal circuit using an exact synthesis approach [32]. The largest circuit requires 10 MCT gates:

Therefore, we have
usMCT(5) = 1 + 3 + 0 + 5 + 1 = 10, (16)

where the terms partition the Toffoli gates by their number of controls from 4 controls to 0 controls.
In the induction step, let’s consider an (n+1)-bit single-target gate Tc({x1, . . . , xn}, xn+1). By applying the Shannon

decomposition the gate can be decomposed into two n-bit single-target gates and 2 NOT gates:

x1 x1

x2 x2
.
.
.

.

.

.
xn−1 xn−1

xn xn

xn+1 xn+1 ⊕ c(x1, . . . , xn)

cx̄n cxn

With this, we obtain

usMCT(n + 1) = 2 · usMCT(n) + 2 = 2(2n−5 · 10 + 2n−4 − 2) + 2 = 2n−4 · 10 + 2n−3 − 4 + 2 = 2(n+1)−5 · 10 + 2(n+1)−4 − 2.

Hence, a single-target gate on n lines requires at most 2n−5 · 10 + 2n−4 − 2 MCT gates.
For the mapping to NCT gates we need to take a closer look at the number of controls for each MCT gate.

According to (16) we have the following distribution for each n-bit single-target gate:

#controls n − 1 n − 2 n − 3 n − 4 n − 5 0
#gates 2n−5 3 · 2n−5 0 5 · 2n−5 2n−5 2n−4 − 2

(17)

As an example, consider now the B1 mapping which requires 8(n− 3) NCT gates for a MCT gate with n controls.
Therefore:

usNCTB1 (n) =2n−5(8(n − 4) + 3 · 8(n − 5) + 5 · 8(n − 7) + 8(n − 8)) + (2n−4 − 2)

=2n−2((n − 4) + 3(n − 5) + 5(n − 7) + (n − 8)) + (2n−4 − 2)

=2n−1(5n − 31) + (2n−4 − 2)

The bounds based on the other mappings can be derived analogously.



Better bounds can be found when extending the decomposition-based approach for MPMCT gates.

Theorem 5. An n-variable single-target gate can be realized, if n ≥ 6, with at most

• usNCTB1 (n) ≤ (3n − 16) · 2n−1

• usNCTNC (n) ≤ ( 9
4 n − 12) · 2n−1

• usNCTMI (n) ≤ (3n − 19) · 2n−1

NCT gates.

Proof. We are using the same idea for the proof as for Theorem 4. The largest minimal circuit contains 6 MPMCT
gates:

Together with the decomposition
x1 x1

x2 x2
.
.
.

.

.

.
xn−1 xn−1

xn xn

xn+1 xn+1 ⊕ c(x1, . . . , xn)

cx̄n cxn

and an updated distribution of gates as in (18), an upper bound for the number of gates usMPMCT(n) = 2n−5 · 6 is
obtained for n ≥ 5.

As an example, consider again the B1 mapping which requires 8(n − 3) NCT gates for an MPMCT gate with n
controls. Based on the new bound for MPMCT gates and the following distribution for each n-bit single-target gate:

#controls n − 1 n − 2 n − 3 n − 4 n − 5
#gates 2 · 2n−5 2n−5 2 · 2n−5 2n−5 0

(18)

We have

usNCTB1 (n) ≤ 2n−5(2 · 8(n − 4) + 8(n − 5) + 2 · 8(n − 6) + 8(n − 7)) ≤ (6n − 32)2n−2 ≤ (3n − 16)2n−1

NCT gates. The bounds based on the other mappings can be derived analogously.

Comparing the upper bounds for single-target gates based on ESOPs and function decomposition, we observe that
general PPRM expressions give the best upper bounds. In fact, it gives the exact number of MCT gates and their exact
number of controls. In the remainder of the paper, we will focus on the upper bounds that are derived from PPRM
expressions.

6.4. Upper Bounds for NCT Circuits
The synthesis algorithm presented by Shende et al. in [21] provides a constructive upper bound: a reversible

function over n variables can be realized with at most

ucNCTB1 (n) ≤ 9n · 2n + o(n · 2n) (19)

NCT gates. A stronger upper bound can be found using the transformation based synthesis algorithm. In [10] it has
been proven that an n-variable reversible function can be realized with at most

ucNCTB1 (n) ≤ 5n · 2n + o(n · 2n) (20)

NCT gates. In the following we give new upper bounds on the size of NCT circuits for general reversible functions
using the transformation based synthesis approach with different mapping strategies:



Theorem 6. Using the transformation based synthesis algorithm, if n ≥ 6, an NCT based circuit has at most

• ucNCTB1 (n) ≤ (10n − 28) · 2n−1

• ucNCTNC (n) ≤ (9n − 25) · 2n−1

• ucNCTMI (n) ≤ (10n − 32) · 2n−1

NCT gates.

Proof. A reversible circuit synthesized with the transformation based approach will have at most n NOT gates, (n −
1) · 2n+1 − n2 + 4 CNOT gates, and

∑n−1
i=2

(
n
i

)
MCT gates where i denotes the number of controls on each gate.

Based on the B1 mapping, after mapping the
∑n−1

i=2

(
n
i

)
MCT gates, we get

4 ·

⌈ n
2
⌉∑

i=2

(i − 2)
(
n
i

)
+ 8 ·

n−1∑
i=

⌈ n
2
⌉
+1

(i − 3)
(
n
i

)

NCT gates. Hence:

ucNCTB1 (n) ≤ n + (n − 1) · 2n+1 − n2 + 4 + 4 ·

⌈ n
2
⌉∑

i=2

(i − 2)
(
n
i

)
+ 8 ·

n−1∑
i=

⌈ n
2
⌉
+1

(i − 3)
(
n
i

)
Corollary 1
≤ n + (n − 1) · 2n+1 − n2 + 4 + (6n − 24) · 2n−1 ≤ (10n − 28) · 2n−1 + n − n2 + 4 ≤ (10n − 28) · 2n−1

Using the NC mapping,

ucNCTNC (n) ≤ n + (n − 1) · 2n+1 − n2 + 4 + 4 ·

⌈ n
2
⌉∑

i=2

(i − 2)
(
n
i

)
+ 6 ·

n−1∑
i=

⌈ n
2
⌉
+1

(i − 3)
(
n
i

)
Corollary 1
≤ n + (n − 1) · 2n+1 − n2 + 4 + (5n − 21) · 2n−1 ≤ (9n − 25) · 2n−1 + n − n2 + 4 ≤ (9n − 25) · 2n−1

Using the MI mapping,

ucNCTMI (n) ≤ n + (n − 1) · 2n+1 − n2 + 4 + 4 ·

⌈ n
2
⌉∑

i=2

(i − 2)
(
n
i

)
+ 8 ·

n−1∑
i=

⌈ n
2
⌉
+1

(i − 4)
(
n
i

)
Corollary 1
≤ n + (n − 1) · 2n+1 − n2 + 4 + (6n − 28) · 2n−1 ≤ (10n − 32) · 2n−1 + n − n2 + 4 ≤ (10n − 32) · 2n−1

7. Complexity of NCV Quantum Circuits

This section first gives upper bounds for the realization of MPMCT and ST gates in terms of NCV gates and then
gives upper bounds for reversible circuits based on NCV gates.



Table 4: NCV-cost for an MPMCT gate with c controls

Mapping Ancillas NCV

B1 (Barenco et al. (Lemma 7.3 [15]))
1

24(c − 3) + 12 ([30])
NC (Nielsen and Chuang [27]) 18(c − 3) + 10
MI (Miller et al. [28]) 24(c − 4) + 16

B2 (Barenco et al. (Lemma 7.2 [15])) c − 2 12(c − 2) + 2 ([30])

7.1. NCV-cost for MPMCT Gates

Theorem 7. A c-control MPMCT gate can be realized, if c ≥ 5, with at most

• umNCVB1 (c) ≤ 24(c − 3) + 12

• umNCVNC (c) ≤ 18(c − 3) + 10

• umNCVMI (c) ≤ 24(c − 4) + 16

• umNCVB2 (c) ≤ 12(c − 2) + 2

NCV gates. When the MPMCT gate has only negative controls four additional NOT gates are needed.

Proof. The first and last upper bounds have been already proven in [30], while the second and the third bounds are
calculated using the circuit structure for each mapping approach.

In the NC mapping two of the three resulting MPMCT gates have
⌈

c
2

⌉
controls while the third one has c + 1 −

⌈
c
2

⌉
controls. Each of these gates is mapped with respect to the B2 mapping, giving

umNCVNC (c) ≤ 2
(
12

(⌈
c
2

⌉
− 2

)
+ 2

)
+ 12

(
c + 1 −

⌈
c
2

⌉
− 2

)
+ 2 + 4

≤ 12
(
c +

⌈
c
2

⌉
− 5

)
+ 10

For even c, we have umNCTNC (c) ≤ 18
(
c − 10

3

)
+ 10 ≤ 18(c − 3) + 10, and for odd c, we have u(c) ≤ 18(c − 3) + 10.

In the MI mapping two of the resulting four MPCMCT gates have
⌈

c
2

⌉
controls while the other two have c −

⌈
c
2

⌉
controls. Applying B2 mapping yields

umNCTMI (c) ≤ 2
(
12

(⌈
c
2

⌉
− 2

)
+ 2

)
+ 2

(
12

(
c −

⌈
c
2

⌉
− 2

)
+ 2

)
+ 4 + 4

≤ 24(c − 4) − 16

Toffoli gates.

Table 3 summarizes the above theorem, along with the number of ancillas used by each mapping approach.

7.2. NCV-cost for Single-target Gates

The following corollary is proven in Appendix C.



Corollary 2. From Lemma 1, we derive the following inequations for n ≥ 6:
⌈ n

2
⌉∑

i=0

(12(i − 2) + 2) ·
(
n
i

)
+

n∑
i=

⌈ n
2
⌉
+1

(24(i − 3) + 12) ·
(
n
i

)
≤ (18n − 63) · 2n−1 (21)

⌈ n
2
⌉∑

i=0

(12(i − 2) + 2) ·
(
n
i

)
+

n∑
i=

⌈ n
2
⌉
+1

(18(i − 3) + 10) ·
(
n
i

)
≤ (15n − 55) · 2n−1 (22)

⌈ n
2
⌉∑

i=0

(12(i − 2) + 2) ·
(
n
i

)
+

n∑
i=

⌈ n
2
⌉
+1

(24(i − 4) + 16) ·
(
n
i

)
≤ (18n − 72) · 2n−1 (23)

Theorem 8. An n-variable single-target gate can be realized, if n ≥ 6, with at most

• usNCVB1 (n) ≤ (18n − 81) · 2n−2

• usNCVNC (n) ≤ (15n − 70) · 2n−2

• usNCVMI (n) ≤ (18n − 90) · 2n−2

NCV gates.

Proof. We have

usNCVB1 (c) ≤

⌈
n−1

2

⌉∑
i=0

(12(i − 2) + 2) ·
(
n − 1

i

)
+

n−1∑
i=

⌈
n−1

2

⌉
+1

(24(i − 3) + 12) ·
(
n − 1

i

)
Corollary 2
≤ (18(n − 1) − 63) · 2n−2 ≤ (18n − 81) · 2n−2

The other upper bounds are proven using the same argument.

7.3. NCV-cost for Quantum Circuits
Many studies have focused on the upper bound of the number of elementary quantum gates in quantum circuits.

The transformation based algorithm as mentioned in [10] leads to quantum circuits over the NCV library with the
following upper bound on NCV-cost:

ucNCVB1 (n) ≤ 11n · 2n + o(n · 2n) (24)

Comparatively, in [11] the authors have confirmed that using a cycle based synthesis approach, any reversible
function over n variable can be realized with at most

ucNCVB1 (n) ≤ 8.5n · 2n (25)

NCV gates. In the following we present the complexity of NCV circuits using the transformation based synthesis
approach with different mapping strategies.

Theorem 9. Using the transformation based synthesis algorithm, an NCV circuit has the following upper bound on
the number of NCV gates:

• ucNCVB1 (n) ≤ (11n − 33) · 2n

• ucNCVNC (n) ≤ (9.5n − 29.5) · 2n

• ucNCVMI (n) ≤ (11n − 38) · 2n



Table 5: T -depth for an MPMCT gate with c controls

Mapping Ancillas Clifford+T

B1 (Barenco et al. (Lemma 7.3 [15]))
1

24(c − 3)
NC (Nielsen and Chuang [27]) 18(c − 3)
MI (Miller et al. [28]) 24(c − 4) + 8

B2 (Barenco et al. (Lemma 7.2 [15])) c − 2 12(c − 2)

Proof. A reversible circuit synthesized with the transformation based approach will have at most n NOT gates, (n −
1) · 2n+1 − n2 + 4 CNOT gates, and

∑n−1
i=2

(
n
i

)
MCT gates where i denotes the number of controls on each gate.

Based on the B1 mapping, we see that

ucNCTB1 (n) ≤ n + (n − 1) · 2n+1 − n2 + 4 +

⌈ n
2
⌉∑

i=2

(12(i − 2) + 2) ·
(
n
i

)
+

n−1∑
i=

⌈ n
2
⌉
+1

(24(i − 3) + 12) ·
(
n
i

)
Corollary 2
≤ n + (n − 1) · 2n+1 − n2 + 4 + (18n − 63) · 2n−1 ≤ (11n − 33) · 2n + n − n2 + 4 ≤ (11n − 33) · 2n

The other upper bounds are calculated using the same method.

8. Complexity of Clifford+T Quantum Circuits

This section first presents the existing upper bounds on the T -depth of MPMCT gates. New upper bounds on the
T -depth required to realize MPMCT gates, ST gates, and quantum circuits are then given.

8.1. T -depth for MPMCT Gates

Table 5 summarizes the upper bounds for the T -depth for each mapping defined in Section 6.1 when applied to an
MPMCT gate with c control lines for c ≥ 5. These upper bounds are obtained by directly mapping each two-control
Toffoli to an (optimal) T -depth 3 circuit. Likewise, we map the controlled V to an optimal T -depth 2 circuit. In the
following we derive better upper bounds by making use of T gate cancellations.

Theorem 10. A c-control MPMCT gate with c ≥ 4 can be realized with T-depth at most

4(c − 1)

using the B2 mapping.

Proof. We first note that the T -depth for a c-control MPMCT gate is the same as the T -depth for a c-control MCT
gate. In particular, we may write the MPMCT gate as an MCT gate, conjugated on some bits by NOT gates. Since
the NOT gates are irrelevant to the T -depth, the T -depth for an MPMCT gate is given by the T -depth of an MCT gate
with the same number of controls.

Consider the c-control MCT gate mapped using the B2 algorithm as shown in Figure 3(b). We first rewrite every
Toffoli with a doubly-controlled Z gate and a Hadamard gate on either side of the target line. As Hadamard gates
are self-inverse, we remove two H gates for every pair of Toffolis having the same target and nothing in between (see
Fig. 4(a)). Now recall that controlled phase gates are symmetric in that the target behaves like a control [33], i.e.,

Z

= Z =

Z



By applying this fact (see Fig. 4(b)), we may observe that each doubly-controlled Z gate now shares exactly two
controls with another gate, a fact that can be used to eliminate T gates by using the iZ-gate [34], defined as

iZ : |xyz〉 7→ ω4xyz−2xy|xyz〉

where ω = e
iπ
4 . We further denote by iZ† its inverse. The iZ gate implements the doubly-controlled Z gate up to some

phase and uses only 4 T -gates:

For each pair of doubly-controlled Z gates which share two controls, one is written as an iZ gate and a singly-controlled
S † gate, and the other is written as an iZ† and a singly-controlled S gate (see Fig. 4(c)) – the controlled S/S † gates
then cancel (see Fig. 4(d)).

To further optimize this mapping, we define a refinement of the iZ gate – the iωZ gate

iωZ : |xyz〉 7→ ω4xyz−2xy−z|xyz〉

where ω = e
iπ
4 and iωZ† is its inverse This gate may be implemented in T -depth 1, as below, and together with a T †

gate on the target implements the iZ gate:

iZ

=

T† iωZ

=

T

T†

T† T

Fig. 5(a) shows the B2 mapping of the 5 control MCT gate where iZ gates have been replaced with iωZ/iωZ†

gates, and the T gates cancelled or otherwise parallelized (see Fig. 5(b)). Note that the 4 “points” of the cascade
are left as iZ gates since they cannot be parallelized further. The extra phase gates from the outermost cascades (see
Fig. 5(b)) also cancel despite being physically separated in the circuit, since each ancilla is returned to its initial state
as in Figure 5(c).

To complete the analysis, we note that each iZ/iZ† gate can be mapped to 4 T gates in depth 2 [34], while each
iωZ/iωZ† gate can be mapped in T -depth 1 as above. This gives a total T -depth of

4(c − 2) + 4 = 4(c − 1).

Note that this bound beats out the T -depths achieved by T -par [35], showing that their heuristic approach is non-
optimal in some cases. Moreover, using a single 0-valued ancilla, the T -depth may be reduced to 4(c−2). Specifically,
using a single ancilla in the zero state, the iZ/iZ† gates may be mapped to a T -depth 1 circuit [34], giving a total T -
depth of 1 for each two-control Toffoli in the original mapping – i.e. 4(c − 2).

Next we give upper bounds on the T -depth of MPMCT gate mappings using a single helper line. For each single
ancilla mapping (B1, NC, MI), a c-control MPMCT gate is broken down into m-control and c−m + 1 or c−m-control
MPMCT gates, which are further decomposed using the B2 mapping. In addition to the optimized B2 mapping above,
we further reduce the T -depth bounds by using the self-inverse property of MPMCT gates to cancel additional T/T †

gates.

Theorem 11. An c-control MPMCT gate with c ≥ 5 controls can be realized with T-depth at most

• umCLFB1 (c) ≤ 8(c − 2)

• umCLFNC (c) ≤ 6(c − 2) + 2

• umCLFMI (c) ≤ 8(c − 3) + 4



a1 H Z H H Z H a1

a2 H Z Z H H Z Z H a2

a3 H Z Z H H Z Z H a3

H Z Z H
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a1 Z H Z H Z Z H Z H Z a1

a2 Z H H Z Z H H Z a2

a3 Z H H Z H H a3

H H

(b)

S† S

a1 iZ H iZ H iZ† iZ H iZ† H iZ† a1

a2 iZ H S† S H iZ† iZ H S† S H iZ† a2

a3 iZ H S† S H iZ† H S† S H a3

H S† S H

(c)

a1 iZ H iZ H iZ† iZ H iZ† H iZ† a1

a2 iZ H H iZ† iZ H H iZ† a2

a3 iZ H H iZ† H H a3

H H

(d)

Figure 4: Optimization of B2 mapping w.r.t. T -depth

Proof. Consider the B1 mapping, as in Figure 2(b). If we map the first two MPMCT gates using the B2 mapping
above, then use the inverse (obtained by reversing the circuit and replacing each T gate with T †) of the B2 mapping
for the remaining MPMCT gates, we can cancel an additional 8 T gates. Specifically, for each pair of MPMCT gates



a1 T† iωZ H iZ H iωZ† T T† iωZ H iZ† H iωZ† T a1

a2 T† iωZ H H iωZ† T T† iωZ H H iωZ† T a2

a3 iZ H H iZ† H H a3

H H

(a)

a1 T† iωZ H iZ H iωZ† iωZ H iZ† H iωZ† T a2

a2 T† iωZ H H iωZ† iωZ H H iωZ† T a2

a3 iZ H H iZ† H H a3

H H

(b)

a1 iωZ H iZ H iωZ† iωZ H iZ† H iωZ† a1

a2 iωZ H H iωZ† iωZ H H iωZ† a2

a3 iZ H H iZ† H H a3

H H

(c)

Figure 5: T -depth 17 implementation of the 5 control MCT gate using the B2 mapping

(first and third or second and fourth), the value on the target line of either dashed iZ gate shown in Figure 5(c) is
constant. As in the proof of Theorem 10, we may then replace each dashed iZ gate with an iωZ gate and cancel the
extra T gates. The result is a total reduction of 8 levels of T -depth, giving a total T -depth for a c-control MPMCT
gate of 2 · 4(m − 1) + 2 · 4(c + 1 − m − 1) − 8 = 8(c − 2).

Using the same argument for the NC mapping, additional T/T † gate (and layer of T -depth) from the first and third
MPMCT gates. The resulting mapping has T -depth of 6(c − 2) when c is even and 6(c − 2) + 2 when c is odd.

Finally consider the MI mapping. We use the same argument to reduce each of the 4 multiple control Toffolis by
one layer of T -depth. We further note that each controlled V gate may be mapped in T -depth 1. In particular, we first
map each controlled V to controlled S gates conjugated by Hadamards, as below:

V
=

H S H



then cancel adjacent Hadamards. The controlled S gates are then mapped alternately into ωS /ωS † gates using

S
=

T ωS
=

T

T T†

where ωS maps |xy〉 to ω2xy−y|xy〉. As shown in the following:

a1 a1

H ωS ωS† ωS ωS† H

the additional T/T † gates cancel, leaving 4 ωS /ωS † gates, each of which is mapped to two T/T † gates in T -depth 1.
The total T -depth for the MI mapping scheme is then at most 2 · 4(m− 1) + 2 · 4(c−m− 1)− 8 + 4 = 8(c− 3) + 4.

8.2. T -depth for Single-target Gates

The following corollary is proven in Appendix C.

Corollary 3. From Lemma 1, we derive the following inequations for n ≥ 6:
⌈ n

2
⌉∑

i=0

4(i − 1) ·
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n
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)
+

n∑
i=

⌈ n
2
⌉
+1

8(i − 2) ·
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)
≤ (6n − 14) · 2n−1 (26)

⌈ n
2
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(
n
i

)
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⌈ n
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⌉
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(6(i − 2) + 2) ·
(
n
i

)
≤ (5n − 11) · 2n−1 (27)

⌈ n
2
⌉∑

i=0

4(i − 1) ·
(
n
i

)
+

n∑
i=

⌈ n
2
⌉
+1

(8(i − 3) + 4) ·
(
n
i

)
≤ (6n − 16) · 2n−1 (28)

Theorem 12. An n-variable single-target gate can be realized, if n ≥ 6, with T-depth at most

• usCLFB1 (n) ≤ (6n − 20) · 2n−2

• usCLFNC (n) ≤ (5n − 16) · 2n−2

• usCLFMI (n) ≤ (6n − 22) · 2n−2

Proof. We have

usCLFB1 (n) ≤

⌈
n−1

2

⌉∑
i=0

4(i − 1) ·
(
n − 1

i

)
+

n−1∑
i=

⌈
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2

⌉
+1

8(i − 2) ·
(
n − 1

i

)
Corollary 3
≤ (6(n − 1) − 14) · 2n−2 ≤ (6n − 20) · 2n−2

The other upper bounds are proven using the same argument.



Table 6: Updated T -depth for an MPMCT gate with c controls

Mapping Ancillas Clifford+T

B1 (Barenco et al. (Lemma 7.3 [15]))
1

8(c − 2)
NC (Nielsen and Chuang [27]) 6(c − 2) + 2
MI (Miller et al. [28]) 8(c − 3) + 4

B2 (Barenco et al. (Lemma 7.2 [15])) c − 2 4(c − 1)

Table 7: Complexity of reversible and quantum circuits

MPMCT
Technology Mapping

NCT NCV Clifford+T
Complexity Complexity Complexity Complexity

Sect. 5.2 Sect. 6.4 Sect. 7.3 Sect. 8.3

3(2n − 1) · 2n−4 [26]
B1 [15] (10n − 28) · 2n−1 (11n − 33) · 2n (6n − 14) · 2n−1

NC [27] (9n − 25) · 2n−1 (9.5n − 29.5) · 2n (5n − 11) · 2n−1

MI [28] (10n − 32) · 2n−1 (11n − 38)n · 2n (6n − 16) · 2n−1

8.3. T -depth for Quantum Circuits
To the best of the authors’ knowledge, no works thus far have studied the upper bounds on reversible quantum

circuits over the Clifford+T library. In this section we study and compare the T -depth of such circuits using different
kinds of synthesis approaches.

Theorem 13. Using the transformation based synthesis approach, an n-variable reversible function can be realized
over Clifford+T with a T-depth at most

• ucCLFB1 (n) ≤ (6n − 14) · 2n−1

• ucCLFNC (n) ≤ (5n − 11) · 2n−1

• ucCLFMI (n) ≤ (6n − 16) · 2n−1

Proof. For an n-variable reversible function, the synthesis approach produces a circuit with at most n NOT gates,
((n − 1) · 2n+1 − n2 + 4) CNOT gates, and

∑n−1
i=2

(
n
i

)
MCT gates where i denotes the number of controls on each gate.

The T -depth of a NOT or a CNOT gate is 0.
Based on the B1 mapping, we obtain at most

ucCLFB1 (n) ≤

⌈ n
2
⌉∑

i=2

4(i − 1) ·
(
n
i

)
+

n−2∑
i=

⌈ n
2
⌉
+1

8(i − 2) ·
(
n
i

)
Corollary 3
≤ (6n − 14) · 2n−1

The other upper bounds are obtained using the same argument.

9. Summary and Conclusions

Table 7 outlines the upper bounds for reversible and quantum circuits using the mapping methods B1, NC, and MI.
Note that the table sketches the circuit upper bounds derived from the transformation based synthesis approach [20].
Table 8 summarizes the best known upper bounds to represent an MPMCT gate (first column), a single-target gate (sec-
ond column), and a circuit (third column) using single-target gates, MPMCT gates, NCT gates, NCV gates, and
Clifford+T gates.

As can be seen from the tables, a comprehensive overview of upper bounds for the most commonly used reversible
and quantum gate libraries has been proposed in this paper. Most of the bounds are tighter compared to the previously
known ones. The bounds can be used to evaluate the quality of synthesis approaches. Although several bounds have
been proposed, concrete circuit realizations for worst case functions are still missing. Knowing such functions would
be very helpful for evaluating the limitations of known and new synthesis approaches.



Table 8: Summary for gate and circuit complexity

Gate library MPMCT gate ST gate Circuit

ST 0 1 2n − 1
MPMCT 1 3 · 2n−4 3(2n − 1) · 2n−4

NCT 6(c − 3) (5n − 26) · 2n−2 (9n − 25) · 2n−1

NCV 18(c − 3) + 6 (15n − 70) · 2n−2 8.5n · 2n [11]
Clifford+T 6(c − 2) + 2 (5n − 16) · 2n−2 (5n − 11) · 2n−1
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Appendix A. Proof of Lemma 1

This and the following proofs use many identities that can be found in [36].

Proof. Taking into conservation that
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n
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)
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we consider the cases when n is even and n is odd. If n is even, we have
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The other inequations are derived using the same argument.

Appendix B. Proof of Corollary 1

Proof. We consider the cases when n is even and n is odd. If n is even, we have
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If n is odd, we have
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=(6n − 24) · 2n−1 − (3n − 13) · 2n−3 ≤ (6n − 24) · 2n−1

The other inequations are derived using the same argument.

Appendix C. Proof of Corollaries 2 and 3

We give the proof for Corollary 2, the proof for Corollary 3 follows the same argument.



Proof. We consider the cases when n is even and n is odd. If n is even, we have
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The other inequations are derived using the same argument.


