
ON THE CNOT-COMPLEXITY OF CNOT-PHASE CIRCUITS

MATTHEW AMY1,2, PARSIAD AZIMZADEH2 AND MICHELE MOSCA1,3,4,5

1 Institute for Quantum Computing, University of Waterloo, Canada
2 David R. Cheriton School of Computer Science, University of Waterloo, Canada
3 Department of Combinatorics & Optimization, University of Waterloo, Canada

4 Perimeter Institute for Theoretical Physics, Waterloo, Canada
5 Canadian Institute for Advanced Research, Toronto, Canada

Abstract. We study the problem of CNOT-optimal quantum circuit synthesis over gate sets consisting of
CNOT and Z-basis rotations of arbitrary angles. We show that the circuit-polynomial correspondence relates
such circuits to Fourier expansions of pseudo-Boolean functions, and that for certain classes of functions this
expansion uniquely determines the minimum CNOT cost of an implementation. As a corollary we prove that
CNOT minimization over CNOT and phase gates is at least as hard as synthesizing a CNOT-optimal circuit
computing a set of parities of its inputs. We then show that this problem is NP-complete for two restricted
cases where all CNOT gates are required to have the same target, and where the circuit inputs are encoded
in a larger state space. The latter case has applications to CNOT optimization over more general Clifford+T

circuits.
We further present an efficient heuristic algorithm for synthesizing circuits over CNOT and Z-basis

rotations with small CNOT cost. Our experiments show a 23% reduction of CNOT gates on average across
a suite of Clifford+T benchmark circuits, with a maximum reduction of 43%.

1. Introduction

The two-qubit controlled-NOT (CNOT) gate forms the backbone of most discrete quantum circuits. As
the only entangling operation – and, moreover, the only two-qubit operation – in most common gate sets, it
is used judiciously in effectively any practically useful quantum circuit. Even in physical implementations
where gates commonly have tunable parameters many use the CNOT gate, or a CNOT gate up to single
qubit rotations, as the two qubit entangling gate (e.g. [11]).

Due to the low cost of the controlled-NOT gate in most fault tolerant models [13, 14] compared to
single-qubit gates implemented with resource states – for instance, the T gate in the surface code or the
Hadamard gate in the 15-qubit Reed-Muller code – reducing the number of CNOT gates is typically regarded
as a secondary optimization objective. In some cases, optimizations aimed at reducing T -count or T -depth
(the number of layers of parallel T gates in a circuit) result in a massive increase in CNOT count [4]. While
in many contexts the savings obtained by optimizing T gates or other such gates makes up for the explosion
in CNOT gates, it is nevertheless desirable to find optimization methods which can mitigate this increase, as
even in fault tolerant models CNOT gates incur non-negligible cost.

Direct optimization of CNOT gates has generally been studied only in the restricted case of reversible
circuits. Synthesis and optimization methods have been developed for the subset of linear reversible functions,
which are exactly the circuits implementable with just CNOT gates [18, 24], but the vast majority of
optimizations apply to the NCT gate set, consisting over NOT, CNOT and Toffoli gates, or its generalization
to multiply-controlled Toffoli gates. In the former case, additional reductions may be possible between distinct
linear reversible circuits separated by other quantum gates. Likewise, further reductions are typically possible
between Toffoli or multiply-controlled Toffoli gates once they have been expanded into suitable quantum gate
sets [1].

In this work, we consider the problem of minimizing CNOT count in the presence of other quantum gates,
specifically phase gates (single qubit Z-basis rotations). By the circuit-polynomial correspondence [6, 10, 20],
such circuits are known to correspond to weighted sums of parity functions called phase polynomials [4].

1

Using this correspondence, we introduce the problem of synthesizing a parity network, a CNOT circuit
which computes a set of parities, possibly non-simultaneously. Computing a minimal parity network for a
particular set of parity functions is shown to be equivalent to finding a CNOT-optimal circuit for a particular
phase polynomial, and to be computationally easier than the full CNOT optimization problem over CNOT
and phase gates. This problem is then shown to be NP-complete in two restricted cases: when all CNOT
gates are restricted to the same target bit, and when the m circuit inputs are encoded in the state space of
n > m qubits. The former case provides evidence for the hardness of computing minimal parity networks,
while the latter case is useful when optimizing CNOT counts in Clifford+T circuits.

We further devise a new heuristic optimization algorithm for CNOT-phase circuits by synthesizing parity
networks. The optimization algorithm is inspired by Gray codes [15], which cycle through the set of n-bit
strings using the exact minimal number of bit flips. Like Gray codes, our algorithm achieves the minimal
number of CNOT gates when all 2n parities are needed. To test our algorithm, we implemented it as a
replacement for the T -parallelization sub-routine in the T -par framework [4] to apply our optimization over
general Clifford+T circuits – our experiments show a reduction in CNOT count of 23% on average.

The paper is organized as follows. Section 2 introduces the circuit-polynomial correspondence for quantum
circuits composed of CNOT and phase gates, as well as the minimal parity network synthesis problem, then
further shows that the general problem of CNOT-minimization over CNOT and phase gates is at least as
hard as the parity network synthesis problem. Section 3 studies the complexity of this synthesis problem and
shows that the fixed-target and encoded input cases are NP-complete. In Section 4 we present our heuristic
CNOT minimization algorithm, and Section 5 gives experimental results.

1.1. Preliminaries. We give a brief overview of the basics of quantum circuits and our notation throughout.
In this paper we work in the circuit model of quantum computation [22]. The state of an n-qubit quantum

system is taken as a unit vector in a dimension 2n complex vector space. As is standard we denote the 2n
basis vectors of the computational basis by |x〉 for bit strings x ∈ Fn2 – these are called the classical states. A
general quantum state may then be written as a superposition of classical states

|ψ〉 =
∑

x∈Fn
2

αx|x〉,

for complex αx and having unit norm. The states of two n and m qubit quantum systems |ψ〉 and |φ〉 may be
combined into an n+m qubit state by taking their tensor product |ψ〉⊗ |φ〉 – in particular, |x〉⊗ |y〉 = |x‖y〉
where ‖ denotes the concatenation of two binary vectors or strings. If to the contrary the state of two qubits
cannot be written as a tensor product the two qubits are said to be entangled. We write |x| to denote the
Hamming weight of the binary string x.

Quantum circuits, in analogy to classical circuits, carry qubits from left to right along wires through
gates which transform the state. In the unitary circuit model gates are required to implement unitary
operators on the state space – that is, quantum gates are modelled by complex-valued matrices U satisfying
UU† = U†U = I, where U† is the complex conjugate of U . As a result, such quantum computations must
be reversible, and in particular, the set of classical functions computable by a quantum circuit is the set of
invertible, n bit to n bit functions. To perform general (irreversible) classical functions, extra bits called
ancillae are typically needed to implement them reversibly. We use UC to denote the unitary operator
corresponding to the circuit C and C :: C ′ to denote the circuit obtained by appending C ′ to the end of C.

We will primarily be interested in two quantum gates in this paper, the controlled-NOT gate (CNOT)
which (as a function of classical states) inverts its second argument conditioned on the value of its first, and
the Z-basis rotation RZ(θ) which applies a phase shift of eiθ conditioned on its argument. Specifically, we
define

CNOT|x〉|y〉 = |x〉|x⊕ y〉, RZ(θ)|x〉 = e2πiθx|x〉,
for x, y ∈ F2. By the linearity of quantum computation a unitary operator is fully defined by its effect on
the computational basis states. Other common quantum gates include the NOT gate X|x〉 = |1⊕ x〉 and
the Hadamard gate H|x〉 = 1√

2

∑
y∈F2

(−1)xy|y〉. The CNOT gate together with the Hadamard gate and
S = RZ

(1
4
)
generate the Clifford group, a set of quantum operations particularly important in quantum

error correction and for which there are efficient implementations in many fault-tolerant schemes. While the
Clifford group alone is not universal for quantum computing, in the sense that not every unitary matrix

2

can be approximated to arbitrary accuracy by a Clifford group circuit, adding the T = RZ
(1

8
)
gate to the

Clifford group gives a universal gate set. The Clifford group combined with the T gate is typically referred to
as the Clifford+T gate set. We say a circuit is written over a particular set of gates if the circuit only uses
gates from that set.

1.2. Related work. Previous work regarding CNOT optimization has largely focussed on strictly reversible
circuits. Iwama, Kambayashi and Yamashita [18] gave some transformation rules which they use to normalize
and optimize CNOT-based circuits. More specific to CNOT circuits, Patel, Markov and Hayes [24] gave an
algorithm for synthesizing linear reversible circuits which produces circuits of asymptotically optimal size.
Their method modifies Gaussian elimination by prioritizing rows which are close in Hamming distance and
gives circuits of size at most O(n2/ logn), coinciding with the known lower bound of Θ(n2/ logn) on the
worst-case size of CNOT circuits [27].

In the realm of pure quantum circuits, Shende and Markov [26] studied the CNOT cost of Toffoli gates.
They proved that 6 CNOT gates is minimal for the Toffoli gate, and gave a lower bound of 2n CNOT gates
for the n qubit Toffoli gate. More recently, Welch, Greenbaum, Mostame and Aspuru-Guzik [28] studied the
construction of efficient circuits for diagonal unitaries. They used similar insights to the ones we use here,
notably the use of the 2n Walsh functions as a basis for n-qubit diagonal operators which correspond to the
parity functions in the Fourier expansions [23] we use to describe CNOT-phase circuits. While their main
objective was to optimize circuits by constructing approximations of the operator which use fewer Walsh
functions, they give a construction of an optimal circuit computing all 2n Walsh functions. They further
give CNOT identities which they use to optimize circuits when not all Walsh functions are used, but give no
experimental data as to the effectiveness of these optimizations. In contrast, we present and test an algorithm
which directly synthesizes an efficient circuit for a specific set of Walsh functions, rather than construct a
circuit for the full set and optimize later.

2. CNOT-phase circuits and Fourier expansions

We begin by introducing the circuit-polynomial correspondence [20] for quantum circuits composed of
CNOT and RZ gates, which associates a phase polynomial and a linear Boolean transformation with every
circuit. While the {CNOT, RZ} gate set does not contain any branching gates, we call this the sum-over-paths
form of a circuit in keeping with similar analyses [10, 19, 20].

Definition 2.1. The sum-over-paths form of a circuit C over CNOT and RZ gates with associated unitary
UC is given by a pseudo-Boolean function

f(x) =
∑

y∈Fn
2

f̂(y) · (x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn)

with coefficients f̂(y) ∈ R, together with a basis state transformation A ∈ GL(n,F2) such that

UC =
∑

x∈Fn
2

e2πif(x)|Ax〉〈x|.

In particular, UC maps the basis state |x〉 to e2πif(x)|Ax〉. We refer to the sum-over-paths form as the pair
(f,A).

The expression of f(x) as a weighted sum of parities of x in Definition 2.1 is the Fourier expansion1 of
f with Fourier coefficients f̂(y) [23]. We call the collective set of Fourier coefficients the Fourier spectrum
or just the spectrum of f . Previous works [4, 6, 8] have used the term phase polynomial to refer to the
expression of f(x) over the parity basis – we use the term Fourier expansion to avoid confusion with regular
polynomial representations of f .

For convenience we define χy : Fn2 → F2 to be the parity function for the indicator vector y ∈ Fn2 . In
particular,

χy(x) = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn.

1Standard literature (e.g. [23]) on Fourier analysis of pseudo-Boolean functions uses the multiplicative group {−1, 1} as the
Boolean group, resulting in a different set of coefficients. As the additive group {0, 1} is more natural for quantum computing and
the resulting expansion obeys the properties needed, we use this representation. A full discussion can be found in Appendix A.

3

x1 RZ

(
1
8

) x1 ⊕ x3
RZ

(
3
8

) x1 ⊕ x2 ⊕ x3
RZ

(
1
8

) x1 ⊕ x2
RZ

(
3
8

) x1
x1

x2 RZ

(
1
8

)
• • • • x2

x3 •
x2 ⊕ x3

RZ

(
3
8

) x3
• RZ

(
1
8

)
x3

Figure 1. An annotated circuit implementing the doubly controlled Z gate.

The Fourier expansion of f is then written as

f(x) =
∑

y∈Fn
2

f̂(y)χy(x).

We also define the support of the Fourier expansion of f to be the set of parities with non-zero coefficients –
that is,

supp(f̂) = {y ∈ Fn2 | f̂(y) 6= 0}.
It was previously shown by Amy, Maslov and Mosca [4] that there exists a canonical sum-over-paths

expression for every {CNOT, T} circuit, and in particular it can be computed in time polynomial in the
number of qubits. The same method may be used to compute a canonical sum-over-paths form for any circuit
over {CNOT, RZ}, with the only difference being that the Fourier coefficients are defined over R rather than
Z8.

Proposition 2.2. Every circuit C written over {CNOT, RZ} has a canonical, polynomial-time computable
sum-over-paths form.

Given a {CNOT, RZ} circuit, its sum-over-paths form can be computed by first constructing the annotated
circuit, where the inputs are labelled by x1, x2, . . . , xn, and outputs of every gate are labelled by a parity of
the inputs. Note that by the linearity of quantum circuits and the fact that both CNOT and RZ gates map
basis states to basis states (possibly with a phase), the state of each qubit can in fact be described at any
point in the circuit as a parity over the input (basis) state. As the CNOT gate maps |x〉|y〉 to |x〉|x⊕ y〉, the
output for the control bit of a CNOT gate has the same label as its input, while the target bit is labelled
with the XOR of the input labels. An RZ(θ) gate does not change the basis state of the qubit, and hence the
annotation is unchanged.

Then to construct the sum-over-paths form, for every RZ(θ) gate with incoming label χy(x) a factor of
θ · χy(x) is added to f(x) – equivalently, f̂(y) is taken to be the sum of the parameters (θ) of all RZ gates
with incoming label χy(x). The linear transformation A is defined by the mapping x 7→ x′ where x′ is the
labels at the end of the circuit.

As an example, Fig. 1 shows a circuit implementing the doubly controlled Z operator

Λ2(Z) =
∑

x∈F3
2

e2πi x1x2x3
2 |x〉〈x|.

The state of each qubit as a parity of an input basis state |x1x2x3〉, x1, x2, x3 ∈ F2, is annotated after each
gate. Annotations are only shown in cases where the state of the qubit is changed for clarity. Summing up
the phase rotations due to RZ gates gives the expression

f(x) = 1
8 (x1 + x2 + 3(x1 ⊕ x3) + 3(x2 ⊕ x3) + (x1 ⊕ x2 ⊕ x3) + 3(x1 ⊕ x2) + x3) .

As the circuit returns each qubit to its initial state, the sum-over-paths form is (f, I) where I ∈ GL(3,F2) is
the identity matrix.

2.1. Parity networks. A key observation about the canonical sum-over-paths forms is that only parities
which appear in the annotated circuit may have non-zero Fourier coefficient. Otherwise, the parities may
appear in any order, parities may appear in the circuit but not in the sum-over-paths form, or the same
parity may appear multiple times. Multiple RZ gates may also be applied with the same incoming parity
throughout a circuit, in which case the Fourier coefficient is the sum of all the rotation angles and can be

4

replaced with a single RZ gate – this effect was previously used to optimize T -count in Clifford+T circuits by
merging T gates applied to the same parity [4].

The inverse of the above observation is that a circuit in which every parity in supp(f̂) appears as an
annotation can be modified to implement the phase rotation f(x) =

∑
y∈Fn

2
f̂(y)χy(x) at no extra CNOT

cost. For example, the circuit in Fig. 1 can be modified to give a new circuit with (non-equivalent) sum over
paths form (f ′, I) for

f ′(x) = 2
3 (x2 ⊕ x3) + 1

3 (x1 ⊕ x2 ⊕ x3)

with no additional CNOT gates simply by changing the parameters of the fourth and fifth RZ gates to 2
3 and

1
3 , respectively, and removing all other phase gates. The resulting circuit is shown below:

RZ

(
1
3

)
• • • •

• RZ

(
2
3

)
•

This motivates the definition of a parity network below as a CNOT circuit computing a set of parities, which
can be used to implement phase rotations with Fourier expansions having support contained in that set.

Definition 2.3. A parity network for a set S ⊆ Fn2 is an n-qubit circuit C over CNOT gates where, for each
y ∈ S, the parity χy(x) appears in the annotated circuit.

As all parity networks apply some overall linear transformation of the input, we say a parity network is
pointed at A ∈ GL(n,F2) if the overall transformation is A, i.e.,

UC =
∑

x∈Fn
2

|Ax〉〈x|.

For convenience we refer to a parity network with the trivial transformation as an identity parity network.
In the context of synthesizing parity networks, we use the term pointed parity network to refer to a parity
network applying a specific linear transformation.

We can now formalize the above observations with the following proposition, stating that the problem of
finding a minimal size (pointed) parity network is equivalent to finding a CNOT-minimal circuit having a
particular sum-over-paths form. For the remainder of the paper we consider these problems interchangeable.

Proposition 2.4. Given a circuit C over {CNOT, RZ} with sum-over-paths form (f,A), the circuit C ′
obtained from C by removing all phase gates is a parity network for supp(f̂) pointed at A.

Furthermore, given parity network C for S ⊆ Fn2 pointed at A, the circuit C ′ obtained from C by, for every
y ∈ S, inserting a phase gate RZ(f̂(y)) where χy(x) appears as an annotation, has sum-over-paths form
(f,A).

Proof. For the former statement, by definition of the canonical sum-over-paths form the annotated version
of C necessarily contains χy(x) as a label for every y ∈ supp(f̂). Since RZ gates do not change labels or
permute basis vectors, the circuit C ′ contains all the labels of C and implements the permutation A, hence
C ′ is a parity network supp(f̂) pointed at A.

The proof of the latter statement is similar. �

2.2. From CNOT-minimization to parity network synthesis. Proposition 2.4 implies that the problem
of finding a minimal pointed size parity network is equivalent to the problem of finding a CNOT-minimal
circuit for a particular sum-over-paths form. However, it is not necessarily the case that a CNOT-minimal
circuit having a particular sum-over-paths form is a CNOT-minimal circuit implementing a particular unitary
matrix. Since for any integer-valued function k : Fn2 → Z,

e2πif(x) = e2πi(f(x)+k(x)),

it may in general be possible to instead synthesize a different sum-over-paths form giving the same unitary
operator, but with lower CNOT cost. For instance,

1
2(x1 ⊕ x2), and 1

2x1 + 1
2x2

5

Circuits

Sum-Over-Paths

Unitaries

C C′ C′′

(f, A) (f ′, A)

U

Figure 2. Relationship between circuit, sum-over-paths and unitary representations. As
an example, the circuits C,C ′ and C ′′ all correspond to the same unitary operator U , while
only C and C ′ have the same sum-over-paths representation, (f,A). In either case, the basis
state transformation A is the same.

differ by an integer-valued function, k(x1, x2) = x1x2, and hence implement the same phase rotation. The left
expression, together with the identity basis state transformation, gives rise to a minimal circuit containing 2
CNOT gates, while the expression on the right requires no CNOT gates to implement, at the expense of an
extra phase gate. The two annotated circuits are shown below.

x1 • • x1

x2
x1 ⊕ x2

RZ

(
1
2

) x2
x2

x1 RZ

(
1
2

)
x1

x2 RZ

(
1
2

)
x2

Figure 2 summarizes the relationship between circuits, sum-over-paths, and unitaries. As we are concerned
with the question of minimizing CNOT gates over circuits with equal unitary representations, a natural
question is how this relates to the question of minimizing CNOT gates over circuits with equal sum-over-paths
representations. We now show that so long as no rotation gates have angles which are dyadic fractions –
numbers of the form a

2b where a and b are integers – the problems coincide.
We first formalize the intuition that two sum-over-paths forms correspond to equivalent unitaries if and

only if their phases are related by an integer-valued function. In particular, we define the equivalence class of
a phase function as

[f] = {f ′ : Fn2 → R | f ′ = f + k where k : Fn2 → Z},

and we say f ′ is equivalent to f , written f ′ ∼ f , if f ′ ∈ [f]. From these definitions the following proposition
follows straightforwardly.

Proposition 2.5. Given f, f ′ : Fn2 → R and A,A′ ∈ GL(n,F2), the unitary matrices∑
x∈Fn

2

e2πif(x)|Ax〉〈x|,
∑

x∈Fn
2

e2πif ′(x)|A′x〉〈x|

are equal if and only if A′ = A and f ′ ∼ f .
6

It is a known fact2 [23] that every pseudo-Boolean function f : Fn2 → R has a unique Fourier expansion.
However, to study the relationship between Fourier expansions of equivalent functions, it will be important
to know their precise form in the case of integer-valued functions.

Proposition 2.6. For any integer-valued function k : Fn2 → Z, the Fourier coefficients of k are dyadic
fractions.

Proof. Let k : Fn2 → Z be an integer-valued pseudo-Boolean function. It is known [16] that k has a unique
representation as an n-ary multilinear polynomial over Z – that is,

k(x) =
∑

y∈Fn
2

ayxy

where xy = xy1
1 x

y2
2 · · ·xyn

n and ay ∈ Z for all y.
Using the identity x+ y− (x⊕ y) = 2xy for x, y ∈ F2, we can derive an inclusion-exclusion formula for the

monomial xy which we prove explicitly in Appendix B:

(1) 2|y|−1xy =
∑

y′⊆y

(−1)|y
′|−1χy′(x).

Note that binary vectors are viewed as subsets of {1, . . . , n} for convenience. Since ay ∈ Z for all y and dyadic
fractions are closed under addition, we observe that the Fourier coefficients of k(x) are dyadic fractions:

k(x) =
∑

y∈Fn
2

ayxy =
∑

y∈Fn
2

∑
y′⊆y

(−1)|y
′|−1 ay

2|y|−1

χy′(x).

�

The proof of Proposition 2.6 also suffices to prove a more general result, namely that any function from
Fn2 to an Abelian group G in which 2 is a regular element has a unique Fourier expansion over G. This more
general version also subsumes a similar result proven in [6], namely that Fourier expansions are unique over
any cyclic group of order co-prime to 2; indeed, 2 is regular in any such group.

We next use the above proposition to show that any pseudo-Boolean function with non-dyadic spectrum
has a property of minimal support over all equivalent functions. This is important as a parity network for S
is also a parity network for any subset of S.

Proposition 2.7. Let f : Fn2 → R be a pseudo-Boolean function having a Fourier spectrum not containing
any non-zero dyadic fractions. Then for any f ′ ∼ f ,

supp(f̂) ⊆ supp(f̂ ′).

Proof. Consider some pseudo-Boolean function f ′ such that f ′ ∼ f . By definition we have f ′ = f + k for
some function k : Fn2 → Z. Expanding f(x) and k(x) with their Fourier expansions we have

f ′(x) = f(x) + k(x) =
∑

y∈Fn
2

(f̂(y) + k̂(y))χy(x).

Now since for any y, k̂(y) = a
2b , f̂(y) + k̂(y) 6= 0. Thus supp(f̂) ⊆ supp(f̂ ′) as required. �

We can now prove that the problem of synthesizing a minimal (pointed) parity network is at least as
hard as general CNOT-minimization. As a corollary, synthesizing a minimal parity network solves the
CNOT-minimization problem whenever the rotation angles, and hence the Fourier coefficients, are not dyadic
fractions.

Theorem 2.8. Given A ∈ GL(n,F2), the problem of finding a minimal parity network for S ⊆ Fn2 pointed at
A reduces (in polynomial time) to the problem of finding a CNOT-minimal circuit equivalent to an n-qubit
circuit C over {CNOT, RZ}.

2As we use a slightly different definition of Fourier expansion, not every pseudo-Boolean function has a unique Fourier
expansion. Our Fourier expansions are only unique up to constant terms, which correspond to global phase factors and are not
directly synthesizable over {CNOT, RZ}.

7

Proof. Given A ∈ GL(n,F2) and S ⊆ Fn2 , define f : Fn2 → R as

f(x) =
∑
y∈S

1
3χy(x).

It is known [4] that a circuit C over {CNOT, RZ} implementing the sum-over-paths form (f,A) can be
constructed in polynomial time.

Now let C ′ be a CNOT-minimal circuit equivalent to C. By Proposition 2.5 the sum-over-paths form of
C ′ must be (f ′, A) for some f ′ ∼ f . However, by Proposition 2.7, S = supp(f̂) ⊆ supp(f̂ ′), so by definition,
the circuit obtained from C ′ by removing all RZ gates is a (necessarily minimal) parity network for S pointed
at A. �

Remark 2.9. In cases when the Fourier coefficients contain dyadic fractions, it may in general be possible to
further minimize CNOT-count by optimizing over all equivalent phase functions. This question was studied
in [6] from the perspective of T -count optimization – in that case, the number of T gates depends only on the
size of the support, | supp(f̂)|. By contrast, the size of the support of a Fourier spectrum does not necessarily
correspond to the size of a minimal parity network – e.g., 1

2 (x1 ⊕ x2) has smaller support than 1
2x1 + 1

2x2
but a larger minimal parity network as shown earlier – which appears to make the problem of minimizing
CNOTs size over all equivalent functions more difficult.

3. Complexity of parity network minimization

We now turn to the question of the complexity of finding minimal parity networks. We study two cases in
particular where the problem can be shown to be NP-complete – the fixed-target case, and with encoded
inputs (i.e. with ancillae). At the end of the section we discuss the case of synthesizing a minimal parity
network with arbitrary targets and no ancillae.

Note that we focus on the problem of synthesizing minimal parity networks rather than pointed parity
networks – that is, synthesizing a minimal parity network up to some arbitrary overall linear transformation.
However, in the cases we consider equivalent reductions for pointed parity networks are also possible.

3.1. Fixed-target minimal parity network. We call the problem of synthesizing a minimal parity network
in which every CNOT gate has the same target the fixed-target minimal parity network problem. Formally,
we define the associated decision problem MPNPFT below:

Problem: Fixed-target minimal parity network (MPNPFT)
Instance: A set of strings S ⊆ Fn2 , and a positive integer k.
Question: Does there exist an n-qubit circuit C over CNOT gates of

length at most k such that C is a parity network for S?

Remark 3.1. In general not every set of strings S admits an ancilla-free fixed-target parity network, as the
value of the target bit necessarily appears in every parity calculation of a fixed-target CNOT circuit. It
follows that an (ancilla-free) parity network for S is synthesizeable if and only if there exists an index i such
that for every y ∈ S, yi = 1. However, a fixed-target parity network may always be synthesized by adding a
single ancillary bit initialized to the state |0〉. In particular, given a set S ⊆ Fn2 and A ∈ GL(n,F2), we may
construct

S′ = {(y ‖ 1) | y ∈ S},

where y ‖ 1 denotes the length n+ 1 string obtained by concatenating y with 1. It may then be observed
that a fixed-target parity network for S′ is always synthesizeable, and in particular forms a parity network
for S when the (n+ 1)th bit is initialized to |0〉.

To show that the fixed-target minimal parity network problem is NP-complete, we introduce the Hamming
salesman problem (HTSP) [12]. Recall that the n-dimensional hypercube is the graph with vertices x ∈ Fn2
and edges between x,y ∈ Fn2 if x and y differ in one coordinate (i.e. have Hamming distance 1).

8

Problem: Hamming salesman (HTSP)
Instance: A set of strings S ⊆ Fn2 , and a positive integer k.
Question: Does there exist a path in the n-dimensional hypercube of

length at most k starting at 0 and going through each
vertex y ∈ S?

An equivalent (from a complexity theoretic viewpoint) version of the Hamming salesman problem exists
where a cycle rather than path is found. Intuitively, the Hamming salesman problem is to find a sequence of
at most k bit-flips iterating through every string in some set S starting from the initial string 00 . . . 0. In the
case when S = Fn2 the minimal number of bit flips is known to be 2n, corresponding to one bit flip per string;
this is the well known Gray code, a total ordering on Fn2 where each subsequent string differs by exactly one
bit. We will come back to this connection later in Section 4 when designing a synthesis algorithm.

Ernvall, Katajainen and Penttonen [12] show that the Hamming salesman problem is in fact NP-complete,
hence we can use a reduction from HTSP to prove NP-completeness of MPNPFT.

Theorem 3.2. MPNPFT is NP-complete.

Proof. Clearly MPNPFT is in NP, as the state of each bit as a parity of the input values at each state in
a CNOT circuit is polynomial-time computable [4], and hence a parity network can be efficiently verified.
Since HTSP is NP-complete [12] it then suffices to show NP-hardness by reducing the Hamming salesman
problem to the fixed-target minimal parity network problem.

Given an instance (S ⊆ Fn2 , k) of HTSP, we construct an instance (S′ ⊆ Fn+1
2 , k′) of MPNPFT with size

polynomial in |S| · n as follows:
S′ = {(x ‖ 1) | x ∈ S}, k′ = k.

Suppose there exists a fixed-target parity network C for S′ with length at most k. Without loss of generality
we may assume that the fixed target is the (n+ 1)th bit, as if some i 6= n+ 1 is the target index, then for
all y ∈ S′, yi = 1 = yn+1 and hence swapping bits i and n+ 1 yields a parity network for S′. We can then
construct a length k hypercube path through each vertex y ∈ S with starting point 0 by mapping C to a
sequence of bit flips on each CNOT’s control bit. Indeed, by noting that

CNOT|xi〉|xn+1 ⊕ χy(x)〉 = |xi〉|xn+1 ⊕ χy⊕{i}(x)〉,
where {i} is taken as the bitstring z with zi = 1, zj 6=i = 0, each CNOT gate in C with control i has the affect
of flipping the ith bit of y. By the definition of a parity network, for every y ∈ S, the parity

xn+1 ⊕ χy(x)
appears as an annotation in the circuit, in particular on the (n+ 1)th bit which had initial state xn+1⊕χ0(x),
hence the sequence of bit flips passes through each vertex y ∈ S starting from 0.

Likewise, if there exists a length k tour through each y ∈ S, given by a sequence of bit flips, the circuit
defined by mapping each bit flip on i to a CNOT with control i and target n+ 1 is a length k parity network
for S′ and A′. �

As the minimum k for which a parity network exists is at most (n− 1) · |S|, the optimization version of
MPNPFT is also in NP, and hence is NP-complete.

Corollary 3.3. The problem of finding a minimal fixed-target parity network is NP-complete.

It may be observed that the proof of Theorem 3.2 can be modified to show that the problem of finding a
minimal pointed parity network with fixed CNOT targets is also NP-complete. In particular, taking A to be
the identity transformation gives a reduction from the cycle version of HTSP.

3.2. Minimal parity network with encoded inputs. As CNOT-phase circuits form a relatively small
[3], classically simulable group, one of the main applications of their optimization is to optimize sub-circuits
of circuits over more powerful gate sets. The T -par optimization algorithm [4] previously took this approach,
re-synthesizing {CNOT, T} subcircuits of Clifford+T circuits with optimal T -depth. As Selinger [25] showed,
adding ancillae increases the amount of T gate parallelization possible when performing this re-synthesis.

In the case of CNOT optimization, the situation is similar in that ancillae can have a significant effect on
the number of CNOT gates required to implement a parity network, particularly if the ancillae are initialized
in linear combinations of the primary inputs. For instance, the boxed CNOT-phase sub-circuit below on the

9

left performs a phase rotation of 1
8 (x2 ⊕ x3) – by noting that the ancilla begins the sub-circuit already in the

state x2 ⊕ x3 we can remove both CNOT gates, as shown by the equivalent circuit on the right.
x1 H x′1

x2 • • • x2

x3 • T x3

0 • x2 ⊕ x3

x1 H x′1

x2 • x2

x3 • x3

0 • T x2 ⊕ x3

We now consider the problem of synthesizing minimal parity networks when some of the inputs are linear
combinations of others. Formally, given a linear transformation E ∈ Fm×n2 where m > n, a string w ∈ Fm2 we
say is an encoding of x ∈ Fn2 if Ex = w. The minimal parity network with encoded inputs problem (MPNPE)
is then to find a parity network for a given set S ⊆ Fn2 as a function of the primary inputs x ∈ Fn2 , but with
the initial state |Ex〉 rather than |x〉.

Problem: Minimal parity network with encoded inputs (MPNPE)
Instance: A set of strings S ⊆ Fn2 , a linear transformation E ∈ Fm×n2 ,

and a positive integer k.
Question: Does there exist an m-qubit circuit C over CNOT gates of

length at most k such that C is a parity network for some
set S′ ⊆ Fm2 where for any y ∈ S there exists w ∈ S′ such
that ETw = y?

It can be observed that a parity network for some set S′ as above is equivalent to a parity network for S
starting from the initial state |Ex〉 for any x ∈ Fn2 . In particular, for any w ∈ S′ and x ∈ Fn2 ,

χw(Ex) = wTEx = χET w(x) = χy(x).

MPNPE is again NP-complete, which we prove by a reduction from the well known NP-complete Maximum-
likelihood Decoding Problem (MLDP). While the focus of this paper is on {CNOT, RZ} circuits, the proof may
be modified to establish the more general result that synthesizing a CNOT circuit implementing A ∈ Fm×n2
is NP-complete.

Problem: Maximum-likelihood decoding (MLDP)
Instance: A linear transformation H ∈ Fm×n2 , a vector y ∈ Fn2 , and a

positive integer k.
Question: Does there exist a vector w ∈ Fm2 of weight at most k such

that Hw = y?
In the case when H is the parity check matrix of a code C and y is the syndrome of some vector z, finding

the minimum such w gives the minimum weight vector in the coset of z + C, corresponding to a minimum
distance decoding of z. Berlekamp, McEliece, and van Tilborg [7] proved that the Maximum-likelihood
decoding problem is NP-complete, and so we may reduce it to the minimal parity network with encoded
inputs problem to show NP-completeness.

Theorem 3.4. MPNPE is NP-complete.

Proof. As noted in the proof of Theorem 3.2, MPNPE is clearly in NP since a parity network can be verified
in polynomial time. To establish NP-hardness we give a reduction from MLDP.

Given an instance (H,y, k) of MLDP we construct an instance (S, k′) of MPNPE as follows:

S = {y}, E = HT , k′ = k − 1.

Suppose there exists a vector w ∈ Fm2 of weight at most k such that Hw = y. Then we know S′ = {w}
satisfies the requirement that for any y ∈ S there exists w ∈ S′ such that ETw = Hw = y. Moreover, the
parity computation χw can be computed with |w| − 1 ≤ k′ CNOT gates, hence there exists a parity network
of length at most k′ for S′

On the other hand, suppose there exists a length ≤ k′ parity network for some set S′ where there exists
w ∈ S′ such that ETw = Hw = y. By noting that

CNOT|χy(x)〉|χz(x)〉 = |χy(x)〉|χy⊕z(x)〉,
10

|y⊕ z| ≤ |y|+ |z|. As each bit starts in some state xi = χ{xi}(x) we see that the size of the parity in any bit
at any point in the parity network is at most k′ + 1 ≤ k, and so |w| ≤ k as required. �

Corollary 3.5. The problem of finding a minimal parity network with encoded inputs is NP-hard.

As in the fixed-target case, the problem of finding a minimal pointed parity network with encoded inputs
is also NP-complete, by virtue of the fact that a minimal identity parity network for a singleton set S = {y}
necessarily has the form C :: C ′ where both C and (C ′)−1 are both parity network for S. Recall that the
inverse circuit (C ′)−1 has the same length as C ′.

3.3. Discussion. While the case of parity network synthesis with encoded inputs corresponds to the practical
cases of synthesis with ancillae and sub-circuit re-synthesis, it relies on the hardness of finding a minimal sum
of linearly dependent vectors, or minimum distance decoding. It would appear that the problem becomes
easier when using unencoded inputs, as each vector and hence parity may be expressed uniquely over the
inputs. We leave the complexity of finding a minimal parity network without ancillae as an open problem, but
conjecture that the identity version is at least as hard as synthesizing a minimal fixed-target identity parity
network. In particular, it appears that the two problems coincide whenever one bit appears in every parity.

4. A heuristic synthesis algorithm

In this section we present an efficient, heuristic algorithm for synthesizing small parity networks. The
algorithm is inspired by Gray codes, which were noted in Section 3 to iterate through all 2n elements of
Fn2 minimally with one bit flip per string. The situation is different for synthesizing parity networks as the
bits which can be flipped depend on the state of all n bits, so our method works by trying to find subsets
of S which can be efficiently iterated with a Gray code on a fixed target. In the limit where S = Fn2 , the
algorithm gives a minimal size parity network for S. Again we focus just on the problem of synthesizing a
parity network up to some arbitrary overall linear transformation.

The algorithm gray-synth, is presented in pseudo-code in Algorithm 1. Note that CNOTi,j denotes a
CNOT gate with control i and target j, and Ei,j denotes the elementary F2-matrix adding row i to row j.
Given a set of binary strings S, the algorithm synthesizes a parity network for S by repeatedly choosing an
index i to expand and then effectively recurring on the co-factors S0 and S1, consisting of the strings y ∈ S
with yi = 0 or 1, respectively. As a subset S is recursively expanded, CNOT gates are applied so that a
designated target bit contains the (partial) parity χy(x) where yi = 1 if and only if y′i = 1 for all y′ ∈ S – if
S is a singleton {y′}, then y = y′, hence the target bit contains the value χy′(x) as desired. Notably, rather
than uncomputing this sequence of CNOT gates when a subset S is finished being synthesized, the algorithm
maintains the invariant that the remaining parities to be computed are expressed over the current state of
the bits. This allows the algorithm to avoid the “backtracking” inherent in uncomputing-based methods.

More precisely, the invariant of Algorithm 1 described above is expressed in the following lemma.

Lemma 4.1. Let C be a CNOT circuit and S ⊆ Fn2 . For any positive integer i we let C≤i denote the first i
gates of C, ci and ti be the control and target of the ith CNOT gate in C. If we define

A0 = I y0 = y

Ai = Eci,tiAi−1 yi = Eti,ciyi−1

for every y ∈ S, then it follows that for any x ∈ Fn2 , UC≤i|x〉 = |Aix〉 and

χyi
(Aix) = χy(x).

Proof. The fact that UC≤i|x〉 = |Aix〉 follows simply from the fact that CNOTi,j |x〉 = |Ei,jx〉. For the latter
fact, clearly χyi

(Aix) = χy(x) by definition. Moreover, recall that

χy(Ax) = yTAx = χAT y(x)
11

Algorithm 1 Algorithm for synthesizing a parity network
1: function gray-synth(S ⊆ Fn2)
2: New empty circuit C
3: New empty stack Q
4: Q.push(S, {1, . . . , n}, ε)
5: while Q non-empty do
6: (S, I, i) ← Q.pop
7: if S = ∅ or I = ∅ then return
8: else if i ∈ N then
9: while ∃j 6= i ∈ {1, . . . , n} s.t. yj = 1 for all y ∈ S do
10: C ← C :: CNOTj,i
11: for all (S′, I ′, i′)∈ Q∪(S, I, i) do
12: for all y ∈ S′ do
13: y ← Ei,jy
14: end for
15: end for
16: end while
17: end if
18: j ← arg maxj∈I maxx∈F2 |{y ∈ S | yj = x}|
19: S0 ← {y ∈ S | yj = 0}
20: S1 ← {y ∈ S | yj = 1}
21: if i ∈ {ε} then
22: Q.push(S1, I \ {j}, j)
23: else
24: Q.push(S1, I \ {j}, i)
25: end if
26: Q.push(S0, I \ {j}, i)
27: end while
28: return C
29: end function

and hence by induction,
χyi

(Aix) = χ(Ai)T yi
(x)

= χ(Ai−1)TEti,ci
Eti,ci

yi−1
(x)

= χ(Ai−1)T yi−1
(x)

= χy(x).
�

It is clear to see that each yi for y ∈ S in Lemma 4.1 is the value of y after i iterations. To see then that
the output is in fact a parity network for S, it suffices to observe that whenever S = {yi} and I = ∅, |yi| = 1
and thus by Lemma 4.1, some bit is in the state |χyi

(Aix)〉 = |χy(x)〉 after the ith CNOT gate. While the
fact that |yi| = 1 is assured by lines 9-16 in this case, the non-zero elements of the target strings are actually
zero-ed out earlier, as the algorithm expands each coordinate. In particular, the first time the “1” branch
is taken when expanding a set, corresponding to the first 1 seen over the indices previously examined, the
target bit i is set – taking further “1” branches result in the row j being flipped to 0 with a single CNOT. In
this way the algorithm makes use of the redundancy in Fourier spectrum S.

In practice, a parity network implementing some particular basis state transformation is typically needed.
We take the approach of synthesizing pointed parity network by first synthesizing a regular parity network,
then implementing the remaining linear transformation – i.e. AA−1

i where Ai is the linear transformation
implemented by the network. In our implementation we use the Patel-Markov-Hayes algorithm [24] which
gives asymptotically optimal CNOT count.

12

While the correctness of Algorithm 1 is independent of the choice of index j to expand in line 18, in
practice it has a large impact on the size of the resulting parity network. We chose j so as to maximize the
size of the largest subset, S0 or S1, i.e. j = arg maxj∈I maxx∈F2 |{y ∈ S | yj = x}|. The intuition behind this
choice is that as a subset S of Fn2 with m bits fixed approaches |S| = 2n−m, the minimal parity network for S
approaches one CNOT per string, corresponding to the Gray code in the limit. We also ran experiments with
other methods of choosing j; we found that j = arg maxj∈I maxx∈F2 |{y ∈ S | yj = x}| gave the best results
on average.

4.1. Examples.

Example 4.2. To illustrate Algorithm 1, we demonstrate the use of gray-synth to synthesize a circuit
over {CNOT, RZ} implementing the diagonal operator U |x〉 = e2πif(x)|x〉 given by

f(x) = 1
8 [(x2⊕x3) + x1 + (x1⊕x4) + (x1⊕x2⊕x3) + (x1⊕x2⊕x4) + (x1⊕x2)] .

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 1 0 0
0 0 1 0 1 0

x1 x1
x2 x2
x3 x3
x4 x4

Starting with the initial set S, written as the columns of the matrix on the left, we choose a bit maximizing
the number of 0’s or 1’s in S. As j = 1 in this case, we construct the cofactors S0 and S1 on the values in the
first row, and recurse on S0.

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 1 0 0
0 0 1 0 1 0

x1 x1
x2 x2
x3 x3
x4 x4

The greyed row above indicates that the first row has been partitioned, and the box indicates the current
subset being synthesized. The algorithm next selects row 2 and immediately descends into the 1-cofactor,
since S0 = ∅. Again, the algorithm selects row 3, and since both rows 2 and 3 have the value 1, a CNOT is
applied with bit 2 as the target and 3 as the control. The remaining vectors are updated by multiplying with
E2,3 – the modified entries are shown in red.

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 1 0 0
0 0 1 0 1 0

x1 x1
x2 x2
x3 x3
x4 x4

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 1 0 0
0 0 1 0 1 0

→

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

x1 x1

x2 x2 ⊕ x3

x3 • x3
x4 x4

As the final row has the value 0, we’re finished with this column and may continue with the remaining
subsets. The single 1 in row 2 indicates that the second qubit currently holds the value of the corresponding
parity x2 ⊕ x3, as seen in the circuit on the right.

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

x1 x1

x2 x2 ⊕ x3

x3 • x3
x4 x4

Again the algorithm chooses row 2 maximizing the number of entries which are the same for the remaining
columns, and recurses on the 0-cofactor as shown below.

13

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

x1 x1

x2 x2 ⊕ x3

x3 • x3
x4 x4

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

x1 x1

x2 x2 ⊕ x3

x3 • x3
x4 x4

In expanding the last row, we first examine the 0-cofactor and find nothing to do, then the 1-cofactor, at
which point we need to apply a CNOT with target bit 1 and control 4.

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

x1 x1

x2 x2 ⊕ x3

x3 • x3
x4 x4

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 1 0 1 0

→

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 0 1 0 1

x1 x1 ⊕ x4

x2 x2 ⊕ x3

x3 • x3
x4 • x4

Now backtracking and entering the 1-cofactor for the remaining columns, we find we need to apply a
CNOT between bits 2 and 1 to zero out the row.

0 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 1
0 0 0 1 0 1

→

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1

x1 x1 ⊕ x2 ⊕ x4

x2 • x2 ⊕ x3

x3 • x3
x4 • x4

Continuing on we recurse on the 0-cofactor of row 3 and apply a CNOT with target bit 1, control 4, before
backtracking to the 1-cofactor.

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1

x1 x1 ⊕ x2 ⊕ x4

x2 • x2 ⊕ x3

x3 • x3
x4 • x4

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1

→

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0

x1 x1 ⊕ x2

x2 • x2 ⊕ x3

x3 • x3
x4 • • x4

For the remaining two columns we first zero out row 3 by applying a CNOT gate between bits 3 and 1,
then finally descend into the cofactors on the last row.

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 0

→

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

x1 x1 ⊕ x2 ⊕ x3

x2 • x2 ⊕ x3

x3 • • x3
x4 • • x4

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

x1 x1 ⊕ x2 ⊕ x3

x2 • x2 ⊕ x3

x3 • • x3
x4 • • x4

14

x1 T • • • • x1

x2 T T † • • x2

x3 T T † T † T x3

Figure 3. Circuit implementing the doubly-controlled Z gate Λ2(Z) synthesized with
Algorithm 1. The CNOT-minimal Fourier expansion in this case gives S = F3

2 \ {000}, and
A = I.

x1 • x1
x2 • • x2
x3 • • • • x3

x4
x3 ⊕ x4 x2 ⊕ x3 ⊕ x4 x2 ⊕ x4 x1 ⊕ x2 ⊕ x4 x1 ⊕ x2 ⊕ x3 ⊕ x4 x1 ⊕ x3 ⊕ x4 x1 ⊕ x4

x1 ⊕ x4

Figure 4. Annotated parity network for the set S = {(y ‖ 1) | y ∈ F3
2}. Note that the

parity network corresponds exactly to the Gray code on F3
2.

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

→

0 1 1 1 1 1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x1 x1 ⊕ x2 ⊕ x3 ⊕ x4

x2 • x2 ⊕ x3

x3 • • x3
x4 • • • x4

The overall linear transformation applied is

A =

1 1 0 1
0 1 1 0
0 0 1 0
0 0 0 1

so the algorithm completes by appending a circuit computing A−1. Inserting T = RZ(1/8) gates in the
relevant positions, we get the following circuit computing |x〉 7→ e2πif(x)|x〉:

x1 T T T T T x1

x2 T • • x2

x3 • • • x3
x4 • • • • x4

Example 4.3. Figure 3 shows a circuit implementing the doubly-controlled Z gate, corresponding to an
identity parity network for F3

2 \ {000}, synthesized with Algorithm 1 followed by the Patel-Markov-Hayes
algorithm. In this case both the parity network and the identity parity network are minimal, as verified by
brute force search – further, the circuit synthesized by Algorithm 1 reproduces exactly the minimal circuit
for F3

2 \ {000} from [28]. In general, for any n the identity parity network for Fn2 \ {0} synthesized in this
manner has the same structure, using 2n − 2 CNOT gates, compared to 2n bit flips for the Gray code.

Example 4.4. If instead of S = Fn2 \ {0} we have S ' Fm2 for some m < n, Algorithm 1 instead
gives a circuit corresponding directly to the Gray code. In particular, Fig. 4 shows a parity network
for S = {(y ‖ 1) | y ∈ F3

2} ' F3
2 synthesized with Algorithm 1, where S ' F3

2. In this case it can be observed
that the controls of the CNOT gates are exactly the bits flipped in a Gray code for F3

2. Further, it may be
noted that this is a minimal size parity network for S, and is in fact a fixed-target parity network.

4.2. Synthesis with encoded inputs. Given an encoder E ∈ Fm×n2 , we can use Algorithm 1 to synthesize
a parity network for some set S with encoded inputs as follows. Recall that a parity network for S ⊆ Fn2
with inputs encoded by E corresponds to a parity network for some set S′ ⊆ Fm2 such that for any y ∈ S,

15

0 5 10 15

|S|

0

5

10

C
N
O
T

g
a
te
s

gray-synth

Brute force

5 10 15

|S|

1.00

1.25

1.50

1.75

2.00

2.25

C
N
O
T
s
p
er

p
a
ri
ty

gray-synth

Brute force

Figure 5. Average CNOT counts of parity networks as computed by Algorithm 1 and brute
force minimization over all sets of 4 bit parities.

there exists w ∈ S′ where ETw = y. While finding the minimal such w would require solving the NP-hard
Maximum-likelihood decoding problem, we can efficiently compute some w using a generalized inverse.

Recall that a generalized inverse Ag of a matrix A ∈ Fm×n2 is an n by m matrix over F2 such that
AAgA = A,

and in particular AAgy = y whenever there exists x such that Ax = y. We use such a generalized inverse
rather than a specific inverse such as the Moore-Penrose pseudoinverse, as the latter typically does not exist
over finite fields. By contrast, for A ∈ Fm×n2 , a generalized inverse Ag may be computed [9] by finding
invertible matrices P,Q over F2 such that

A = P

[
Ir 0
0 0

]
Q

and computing

Ag = Q−1
[
Ir 0
0 0

]
P−1.

P and Q may likewise be found by first reducing A to row-echelon form, then reducing its transpose to
row-echelon form.

It is worth noting that it may be possible to perform additional optimization by optimizing the set S′
with Ag. In particular, it is known [9] that the set of solutions to the linear system Ax = y is given by
{Agy + (I − AgA)w | w ∈ Fm2 }, which may be possible to optimize with classical techniques. We tried
brute-force optimizing the set S′ for some small instances and found negligible effects on overall CNOT
counts, though we leave it as an open question as to whether scalable sub-optimal methods reduce parity
network sizes in large benchmarks.

5. Evaluation

We implemented Algorithm 1 in Haskell in the open-source quantum circuit toolkit Feynman3. Experiments
were run in Debian Linux running on a quad-core 64-bit Intel Core i7 2.40 GHz processor and 8 GB RAM.

We generated all 4-bit minimal parity networks by brute force search and compared them with the parity
networks generated with Algorithm 1. Figure 5 graphs the results, with CNOT cost averaged over sets S of
parities with the same size. The results show that our algorithm synthesizes optimal or near-optimal networks
for small and large sets S, and diverges slightly for sets of parities containing around half of the possible
parities. The divergence peaks at |S| = 8, exactly half of the 24 parities, with Algorithm 1 coming within 15%
of the minimal number of CNOT gates on average. On examining the structure of optimal parity networks for
sets on which Algorithm 1 performed poorly, it appears that the optimal parity networks save on CNOT cost
by making more judicious use of shortcuts – leaving qubits in particular states to flip between distant parities
in other bits quickly. In general we found that the optimal results in these cases were not achievable just by

3https://github.com/meamy/feynman
16

https://github.com/meamy/feynman/tree/graysynth

using the gray-synth algorithm with different index expansion orders. An effective synthesis algorithm may
then be to combine Algorithm 1 for small and large sets with a different heuristic for sets S of size close to
2n−1.

5.1. Benchmarks. To evaluate the performance of Algorithm 1 on practical quantum circuits, we imple-
mented a variant of the T -par algorithm [4] with Algorithm 1 replacing the original Matroid partitioning-
based {CNOT, RZ} synthesis, which optimized T -depth rather than CNOT-count. Circuits written over the
Clifford+T gate set are analyzed in sum-over-paths form and effectively split into alternating sequences of
{CNOT, RZ} gates and Hadamard gates, the former of which are synthesized with Algorithm 1. As the input
basis state of a particular {CNOT, RZ} sub-circuit is expressed by an encoding of the entire circuit’s inputs
as well as path variables [4, 10], we use the method of Section 4.2 to synthesize the circuit. As Algorithm 1 is
only used to perform the {CNOT, RZ} synthesis sub-routine, our optimized circuits have the same T -count
as the original T -par algorithm.

We ran our implementation on a suite of benchmarks previously used to evaluate quantum circuit
optimizations [4, 6]. Benchmark circuits containing Toffoli gates and multiply controlled Toffoli gates were
expanded to the Clifford+T gate set using the Toffoli gate decomposition from [5] with 7 CNOT gates, and
the Nielsen-Chuang multiply controlled Toffoli decomposition [22] giving 2(k−2) Toffoli gates per k-controlled
Toffoli. While other decompositions, particularly with better CNOT counts exist, we chose these standard
decompositions to compare against previous results, which used the same decompositions. All but 4 optimized
circuits4 (Mod-Adder_1024, Cycle 17_3, GF(264)-Mult and HWB_8) were formally verified to be correct
using the method of [2], with verification failing on the remaining 4 due to lack of memory. To the best of
the authors’ knowledge, this also represents the first quantum circuit optimization work where a majority of
the optimized circuits have also been formally verified.

Table 1 reports the results of our experiments. On average, Algorithm 1 resulted in an 23% reduction of
CNOT gates, with 43% reduction in the best case. In reality there may be more CNOT reduction on average,
as the algorithm performed relatively poorly on the Galois field multipliers, which comprise over a quarter
of the benchmarks. Further, only 4 benchmarks took over a second to complete, lending evidence to the
scalability of our method. One benchmark, CSLA-MUX_3, did observe an increase in CNOT gates of 31%
– this appears to be due to our sub-optimal method of generating a pointed parity network from a parity
network, combined with the fact that very few T gates cancel (that is, the support of the Fourier expansions
synthesized have total size close to the number of T gates in the original circuit). It may be possible to
reduce the overhead in this case, and further reduce CNOT counts in the other benchmarks, by synthesizing
pointed parity network directly, rather than synthesizing a parity network followed by a linear permutation.

As Algorithm 1 effectively replaces the matroid partitioning algorithm used in T -par [4], optimizing CNOT
count rather than T -depth, we compared the time, CNOT and T -depth tradeoffs of the two methods. The
results are presented in Table 1. While Algorithm 1 reduces the CNOT-count significantly compared to
matroid partitioning, the T -depth is significantly increased in those cases, as expected. In fact, the T -depth
and CNOT count appear to be inversely proportional – however, unlike matroid paritioning which increases
the CNOT count of all benchmarks, Algorithm 1 frequently reduces the T -depth of the original circuit. The
runtimes are also significantly reduced in large circuits with a large number of T gates, which is expected as
the asymptotic complexity of the matroid partitioning algorithm used in T -par is significantly higher [4].

We also compared the results of our heuristic optimization algorithm to a recent heuristic by Nam, Ross,
Su, Childs and Maslov [21], which was brought to our attention while preparing this manuscript. While their
algorithm does not explicitly look at the problem of CNOT minimization, they achieve significant CNOT
reductions by combining (among other techniques) a T -par style phase gate folding stage with optimized
decompositions of specific gates and rule-based local rewrites. While their software is not open-source, when
available the “light” optimization results reported in [21] are given in Table 1, as that algorithm most closely
matches the scalability of ours. Algorithm 1 typically results in similar CNOT counts to their circuit optimizer,
with Algorithm 1 reporting better CNOT counts on some circuits (e.g., VE-Adder_3, CSUM-MUX_9) and
worse on others (e.g., CSLA-MUX_3, QCLA-Mod_7). Additionally, it may be noted that in the case of the
Galois field multipliers, the reductions Nam et al. achieve are from using base circuits with fewer CNOT

4It was reported in [2] that 4 separate optimized benchmark circuits (CSLA-MUX_3, Adder_8, Mod-Mult_55 and GF(232))
provably contained errors. These errors have since been fixed and these circuits now pass verification.

17

Benchmark n Base T -par (matroids) Nam et al. (L) T -par (gray-synth)

CNOT T T -depth Time (s) CNOT T T -depth Time CNOT T Time CNOT T T -depth % Red.
Grover_5 9 336 336 144 0.028 425 154 59 – – – 0.001 226 154 128 32.7
Mod 5_4 5 32 28 12 0.001 50 16 7 < 0.001 28 16 0.001 26 16 15 18.8
VBE-Adder_3 10 80 70 24 0.004 91 24 9 < 0.001 50 24 0.004 46 24 22 42.5
CSLA-MUX_3 15 90 70 21 0.011 213 62 13 < 0.001 76 64 0.073 118 62 29 -31.1
CSUM-MUX_9 30 196 196 18 0.038 268 84 16 < 0.001 168 84 0.095 148 84 23 24.5
QCLA-Com_7 24 215 203 27 0.055 271 94 20 0.001 132 95 0.097 136 94 28 36.7
QCLA-Mod_7 26 441 413 66 0.099 729 237 58 0.004 302 237 0.145 360 237 67 18.4
QCLA-Adder_10 36 267 238 24 0.076 442 162 19 0.002 195 162 0.112 214 162 30 19.9
Adder_8 24 466 399 69 0.082 654 215 54 0.004 331 215 0.165 359 215 73 23.0
RC-Adder_6 14 104 77 33 0.012 133 47 14 < 0.001 73 47 0.080 71 47 36 31.7
Mod-Red_21 11 122 119 48 0.076 191 73 28 < 0.001 81 73 0.091 86 73 59 29.5
Mod-Mult_55 9 55 49 15 0.003 89 35 9 < 0.001 40 35 0.004 40 35 20 27.3
Mod-Adder_1024 28 2005 1995 831 0.608 2842 1011 249 – – – 0.739 1390 1011 863 30.7
Mod-Adder_1048576 58 16680 16660 7292 39.565 26600 7339 5426 – – – 12.272 11080 7339 6570 33.6
Cycle 17_3 35 4532 4739 2001 2.431 6547 1955 315 – – – 2.618 2968 1955 1857 37.4
GF(24)-Mult 12 115 112 36 0.006 197 68 14 0.001 99 68 0.041 106 68 39 7.8
GF(25)-Mult 15 179 175 51 0.012 334 111 17 0.001 154 115 0.038 163 111 53 8.9
GF(26)-Mult 18 257 252 60 0.019 484 150 22 0.003 221 150 0.055 235 150 63 8.6
GF(27)-Mult 21 349 343 72 0.044 713 217 27 0.004 300 217 0.450 319 217 75 8.6
GF(28)-Mult 24 469 448 84 0.047 932 264 31 0.006 405 264 0.066 428 264 87 8.7
GF(29)-Mult 27 575 567 96 0.113 1198 351 34 0.010 494 351 0.076 526 351 95 8.5
GF(210)-Mult 30 709 700 108 0.147 1462 410 36 0.009 609 410 0.081 648 410 109 8.6
GF(216)-Mult 48 1837 1792 180 1.519 4556 1040 65 0.065 1581 1040 0.363 1691 1040 585 7.9
GF(232)-Mult 96 7292 7168 372 132.133 22205 4128 126 1.834 6299 4128 5.571 6636 4128 2190 9.0
GF(264)-Mult 192 28861 28672 756 19072.290 105830 16448 256 58.341 24765 16448 114.310 25934 16448 7716 10.1
Ham_15 (low) 17 259 161 69 0.069 376 97 38 – – – 0.043 208 97 83 19.7
Ham_15 (med) 17 616 574 240 0.108 695 242 98 – – – 0.089 357 242 201 42.0
Ham_15 (high) 20 2500 2457 996 0.498 3036 1021 424 – – – 0.376 1502 1021 837 39.9
HWB_6 7 131 105 45 0.006 199 75 25 – – – 0.029 110 75 63 16.0
HWB_8 12 7508 5425 2106 1.879 12428 3531 951 – – – 1.706 6861 3531 2752 8.6
QFT_4 5 48 69 48 0.006 76 67 45 – – – 0.005 48 67 62 0.0
Λ3(X) 5 21 21 9 0.001 32 15 8 < 0.001 14 15 < 0.001 14 15 12 33.3
Λ3(X) (Barenco) 5 28 28 12 0.015 29 16 7 < 0.001 20 16 < 0.001 18 16 16 35.7
Λ4(X) 7 35 35 15 0.002 55 23 7 < 0.001 22 23 0.001 22 23 18 37.1
Λ4(X) (Barenco) 7 56 56 24 0.002 71 28 11 < 0.001 40 28 < 0.001 36 28 26 35.7
Λ5(X) 9 49 49 21 0.004 76 31 10 < 0.001 30 31 0.003 30 31 24 38.8
Λ5(X) (Barenco) 9 84 84 36 0.004 103 40 15 < 0.001 60 40 < 0.001 54 40 34 35.7
Λ10(X) 19 119 119 51 0.066 167 71 21 < 0.001 70 71 0.071 70 71 54 41.2
Λ10(X) (Barenco) 19 224 224 96 0.024 271 100 25 0.001 160 100 0.029 144 100 81 35.7

Total 22.6

Table 1. Benchmark optimization results. Base gives the original circuit statistics, T -par (matroids) gives optimization results
using [4], Nam et al. (L) reports the light optimization results from [21] (where available), and T -par (gray-synth) gives the
results using Algorithm 1 instead of matroid partitioning. The % reduction in CNOT gates over the base circuit is reported in the
last column.

gates. As their optimizations rely largely on special-purpose synthesis and local rewrites, the techniques are
complementary and so it may be possible to combine both to further reduce CNOT counts. Further, most of
their circuits are not verified in any way and hence may have errors, in comparison to ours which are almost
all formally certified to be correct.

Nam et al. also report on the results of a “heavy” optimization algorithm which generally performs
slightly better than Algorithm 1, with the exception of the VBE-adder_3 and Mod 5_4 benchmarks. This
optimization however does not scale to the largest of our benchmark circuits, such as GF(264)-Mult, as a
result of the use of local rule-based rewrites to optimize CNOT-phase subcircuits. An interesting question is
whether first performing a rough re-synthesis with Algorithm 1 would reduce run-times for the “heavy” local
rewrites.

6. Conclusion

In this paper we have shown that the problem of synthesizing a CNOT-minimal circuit over CNOT and
arbitrary angle RZ gates, is at least as hard as synthesizing a minimal size CNOT circuit computing a set of
parities of the inputs. We have moreover shown that this problem is in fact NP-complete for the cases when
all CNOT gates have a fixed target, and when the inputs are encoded in some larger state space. As a result
it would appear that the problem of optimizing CNOT counts in quantum circuits is intractable. We further
presented a heuristic algorithm to solve this problem which is inspired by Gray codes. The algorithm, when
used in a sum-over-paths quantum circuit optimizer (T -par) to re-synthesize CNOT and RZ sub-circuits,
reduces CNOT counts by 23% on average on our set of benchmarks. While the heuristic does not significantly
outperform special-purpose synthesis and rule-based rewriting techniques [21] on arithmetic benchmarks, our
technique is novel and complementary to rewriting, opening new avenues for optimizing CNOT gates by
direct synthesis of parity networks.

While we suspect that the problem of synthesizing minimal parity networks is intractable, we leave the
exact complexity as an open question. The two-dimensional nature of the problem makes it an unnatural
problem for reductions, as efficient circuits make use of “shortcuts” by computing strategic parities into
various bits. On the other hand, it may turn out to be possible to find an efficient algorithm for synthesizing
minimal parity networks. Likewise, while we have presented an effective heuristic algorithm for synthesizing
parity networks, we leave developing a heuristic algorithm synthesizing small pointed parity networks directly
as a possibility for future work.

As a final point of consideration, while we have studied the problem of optimizing CNOT gates in an
unrestricted architecture, physical chip designs typically have limited connectivity and can only apply CNOT
gates between connected qubits. While arbitrary CNOT gates can be implemented with a sequence of CNOT
gates having length at most proportional to the diameter of the connectivity graph, it nonetheless remains
possible that a better circuit may be found by synthesizing one directly for a given topology. A natural and
important direction for future research is then to find CNOT optimization algorithms which take into account
such connectivity constraints, a problem which likewise appears to be computationally intractable [17]. Going
in the other direction, it may be possible to find more optimizations at the logical level by taking into account
particular fault-tolerant models – for instance, in lattice surgery-based circuits where multi-target CNOT
gates have cost strictly less than separate CNOT gates [17].

References
[1] N. Abdessaied, M. Amy, R. Drechsler, and M. Soeken. Complexity of reversible circuits and their quantum implementations.

Theoretical Computer Science, 618:85–106, 2016.
[2] M. Amy. Towards Large-Scale Functional Verification of Universal Quantum Circuits. In Proceedings of the 15th International

Conference on Quantum Physics and Logic (QPL’18), To appear, 2018, 1805.06908.
[3] M. Amy, J. Chen, and N. J. Ross. A Finite Presentation of CNOT-Dihedral Operators. In Proceedings of the 14th

International Conference on Quantum Physics and Logic (QPL’17), pages 84–97, 2017, 1701.00140.
[4] M. Amy, D. Maslov, and M. Mosca. Polynomial-time t-depth optimization of Clifford+T circuits via matroid partition-

ing. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 33(10):1476–1489, Oct 2014,
arXiv:1303.2042.

[5] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal
quantum circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 32(6):818–830, 2013,
arXiv:1206.0758.

[6] M. Amy and M. Mosca. T-count optimization and reed-muller codes. arXiv preprint, 2016, arXiv:1601.07363.
19

[7] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding problems (corresp.). IEEE
Trans. Inf. Theor., 24(3):384–386, Sept. 2006.

[8] E. T. Campbell and M. Howard. Unifying gate synthesis and magic state distillation. Physical Review Letters, 118(6):060501,
2017, arXiv:1606.01906.

[9] S. Campbell and C. Meyer. Generalized Inverses of Linear Transformations. Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2009.

[10] C. M. Dawson, A. P. Hines, D. Mortimer, H. L. Haselgrove, M. A. Nielsen, and T. J. Osborne. Quantum computing and
polynomial equations over the finite field Z2. Quantum Info. Comput., 5(2):102–112, Mar. 2005, quant-ph/0408129.

[11] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K. Wright, and C. Monroe. Demonstration of a small programmable
quantum computer with atomic qubits. Nature, 536(7614):63–66, 2016, arXiv:1603.04512.

[12] J. Ernvall, J. Katajainen, and M. Penttonen. NP-completeness of the Hamming salesman problem. BIT Numerical
Mathematics, 25(1):289–292, 1985.

[13] A. G. Fowler, A. M. Stephens, and P. Groszkowski. High-threshold universal quantum computation on the surface code.
Phys. Rev. A, 80:052312, Nov 2009, arXiv:0803.0272.

[14] D. Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127–137, Jan 1998, quant-ph/9702029.
[15] F. Gray. Pulse code communication, Mar. 17 1953. US Patent 2,632,058.
[16] P. Hammer and S. Rudeanu. Boolean methods in operations research and related areas. Ökonometrie und Un-

ternehmensforschung. Springer-Verlag, 1968.
[17] D. Herr, F. Nori, and S. J. Devitt. Optimization of lattice surgery is np-hard. npj Quantum Information, 3(1):35, 2017,

1702.00591.
[18] K. Iwama, Y. Kambayashi, and S. Yamashita. Transformation rules for designing cnot-based quantum circuits. In Proceedings

of the 39th Annual Design Automation Conference, DAC ’02, pages 419–424, New York, NY, USA, 2002. ACM.
[19] D. E. Koh, M. D. Penney, and R. W. Spekkens. Computing quopit clifford circuit amplitudes by the sum-over-paths

technique. Quantum Info. Comput., 17(13&14):1081–1095, Nov. 2017, arXiv:1702.03316.
[20] A. Montanaro. Quantum circuits and low-degree polynomials over F2. Journal of Physics A: Mathematical and Theoretical,

50(8):084002, 2017, arXiv:1607.08473.
[21] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov. Automated optimization of large quantum circuits with continuous

parameters. npj Quantum Information, 4(1):23, 2018, arXiv:1710.07345.
[22] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge Series on Information and

the Natural Sciences. Cambridge University Press, 2000.
[23] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY, USA, 2014.
[24] K. N. Patel, I. L. Markov, and J. P. Hayes. Optimal synthesis of linear reversible circuits. Quantum Info. Comput.,

8(3):282–294, Mar. 2008, quant-ph/0302002.
[25] P. Selinger. Quantum circuits of T -depth one. Phys. Rev. A, 87:042302, Apr 2013, arXiv:1210.0974.
[26] V. V. Shende and I. L. Markov. On the CNOT-cost of TOFFOLI gates. Quantum Info. Comput., 9(5):461–486, May 2009,

arXiv:0803.2316.
[27] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic circuit synthesis. In Proceedings of the 2002

IEEE/ACM International Conference on Computer-aided Design, ICCAD ’02, pages 353–360, New York, NY, USA, 2002.
ACM, quant-ph/0207001.

[28] J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik. Efficient quantum circuits for diagonal unitaries without
ancillas. New Journal of Physics, 16(3):033040, 2014, arXiv:1306.3991.

Appendix A. Fourier expansions

The Fourier expansion of a pseudo-Boolean function used in this paper is not the one typically used in the
analysis of Boolean functions [23]. In particular, the Boolean group is typically taken as the multiplicative
group {−1, 1} with the parity function χy : {−1, 1}n → {−1, 1} defined by xy1

1 x
y2
2 · · ·xyn

n . The resulting
expansion is then a multi-linear polynomial in x.

We can recover the standard Fourier expansion f(x) =
∑

y∈Fn
2
f̃(y)χ̃y(x) by defining χ̃y : Fn2 → {−1, 1}

as

χ̃y(x) = (−1)x
y1
1 x

y2
2 ···x

yn
n ,

in which case by observing that

f̂(y)χy(x) = 1 + f̂(y)
2 χ̃y(x)

we see that

f̃(0) = 2n − 1
2 , f̃(y) = 1

2 f̂(y).
20

Appendix B. Proof of Eq. (1)

In this section we prove Eq. (1), namely that

2|y|−1xy =
∑

y′⊆y

(−1)|y
′|−1χy′(x)

for any x,y ∈ Fn2 .

Lemma B.1. For any x ∈ Fn2 ,

2n−1x1x2 · · ·xn =
∑

y∈Fn
2

(−1)|y|−1χy(x)

Proof. Clearly the formula is satisfied for n = 1. Now consider n = k + 1 for some k. Using the identity
x+ y − (x⊕ y) = 2xy for any x, y ∈ F2 and basic arithmetic we observe that

2kx1x2 · · ·xk+1 = 2k−1x1x2 · · · (2xkxk+1)
= 2k−1x1x2 · · · (xk + xk+1 − (xk ⊕ xk+1))
= 2k−1x1x2 · · ·xk + 2k−1x1x2 · · ·xk+1 − 2k−1x1x2 · · · (xk ⊕ xk+1)

Next we define the length k vectors x′,x′′,x′′′ ∈ Fn2 as follows:

x′i = xi, x′′i =
{
xk+1 if i = k

xi otherwise
, x′′′i =

{
xk ⊕ xk+1 if i = k

xi otherwise
By induction we see that

2kx1x2 · · ·xk+1

= 2k−1x′1x
′
2 · · ·x′k + 2k−1x′′1x

′′
2 · · ·x′′k − 2k−1x′′′1 x

′′′
2 · · ·x′′′k

=
∑

y∈Fk
2

(−1)|y|−1 (χy(x′) + χy(x′′)− χy(x′′′))

=
∑

y∈Fk
2 ,

yk=0

(−1)|y|−1χy(x′) +
∑

y∈Fk
2 ,

yk=1

(−1)|y|−1 (χy(x′) + χy(x′′)− χy(x′′′))

=
∑

y∈Fk
2 ,

yk=0

(−1)|y|−1 (χy(x′)− χy(x′)⊕ xk − χy(x′)⊕ xk+1 + χy(x′)⊕ xk ⊕ xk+1)

=
∑

y∈Fk+1
2

(−1)|y|−1χy(x)

�

Corollary B.2. For any x,y ∈ Fn2 ,

2|y|−1xy =
∑

y′⊆y

(−1)|y
′|−1χy′(x)

21

	1. Introduction
	1.1. Preliminaries
	1.2. Related work

	2. CNOT-phase circuits and Fourier expansions
	2.1. Parity networks
	2.2. From –minimization to parity network synthesis

	3. Complexity of parity network minimization
	3.1. Fixed-target minimal parity network
	3.2. Minimal parity network with encoded inputs
	3.3. Discussion

	4. A heuristic synthesis algorithm
	4.1. Examples
	4.2. Synthesis with encoded inputs

	5. Evaluation
	5.1. Benchmarks

	6. Conclusion
	References
	Appendix A. Fourier expansions
	Appendix B. Proof of eq:incex

