Verified compilation of space-efficient reversible circuits

Matthew Amy¹ Martin Roetteler² Krysta Svore²

¹ University of Waterloo ² Microsoft Research

July 25, 2017

Quantum computing

Theory:



Quantum computing

Reality:

Quantum computing is weakened by the high degree of overhead required to perform classical computations reversibly (and to correct errors)

Reversible computing

Every operation must be invertible

•
$$x \wedge y = 0 \implies x = ???, y = ???$$

• Can't re-use memory without "uncomputing" its value first

To perform classical functions reversibly, embed in a larger space

• Toffoli
$$(x, y, z) = (x, y, z \oplus (x \land y))$$

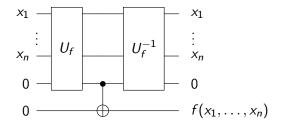
• Toffoli $(x, y, 0) = (x, y, x \land y)$

Reclaiming space

Naïve "reversibilification": replace every AND gate with a Toffoli

- Temporary bits are called ancillas
- Uses space linear(!) in the number of AND gates

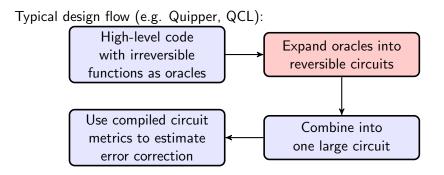
Bennett's trick: copy out result of a computation & uncompute



Resource estimation

 $Quantum \ compilers \equiv resource \ estimators$

• Estimate how much overhead a real implementation incurs



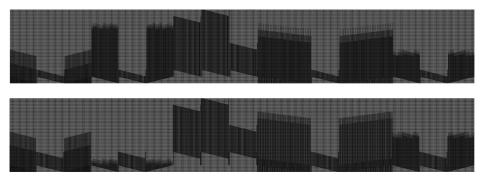
Ex. The QLS algorithm has an estimated logical space blowup of $\times 10^{6}$!

Why verify?

Resource estimates vary wildly between compilers

Typical hardware verification doesn't scale, since reversible circuits are monolithic & generally not reusable

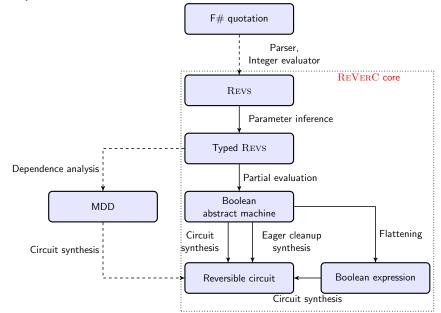
• Think assembly without labels or jumps



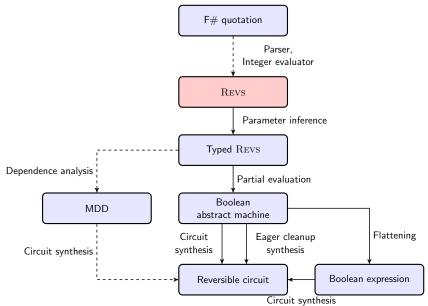
ReverC

- \bullet Compiler for the F# embedded DSL $\rm Revs$
- Performs optimizations for space-efficiency
- Formally verified in F*
- Includes a BDD-based assertion-checker for program verification

Compiler architecture



Revs

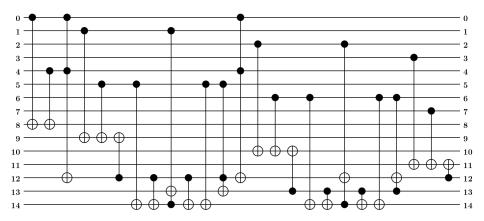


REVS by example *n*-bit adder

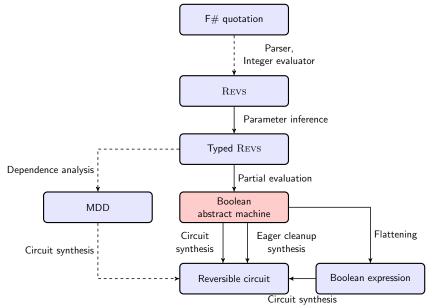
```
let adder n = <0
  fun a b ->
    let maj a b c = (a \land (b \oplus c)) \oplus (b \land c)
    let result = Array.zeroCreate(n)
    let mutable carry = false
    result.[0] \leftarrow a.[0] \oplus b.[0]
    for i in 1 ... n-1 do
       carry \leftarrow maj a.[i-1] b.[i-1] carry
       result.[i] \leftarrow a.[i] \oplus b.[i] \oplus carry
       assert result.[i] = (a.[i] + b.[i] + carry)
    result
@>
```

**Note: all control is compile-time static

REVS by example ${\it n\text{-}bit}$ adder



Boolean abstract machine



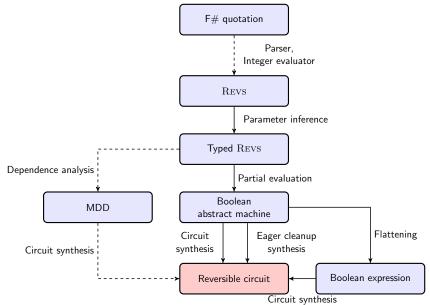
Boolean abstract machine

We use partial evaluation to reduce REVS to a sequence of assignments

- Lvalue most be a new, 0-valued store location
- RHS is a Boolean expression
- Semantics & transformation coincide \rightarrow easier verification!

After expanding & assigning unique locations to a 4-bit adder:

Circuit compilation



A.K.A. garbage collection

```
(* result = alloc(4), carry<sub>0</sub> = alloc(1) *)

1 result.[0] \leftarrow a.[0] \oplus b.[0]

2 carry<sub>1</sub> \leftarrow (a.[0] \land (b.[0] \oplus carry<sub>0</sub>)) \oplus (b.[0] \land carry<sub>0</sub>)

3 result.[1] \leftarrow a.[1] \oplus b.[1] \oplus carry<sub>1</sub>

4 carry<sub>2</sub> \leftarrow (a.[1] \land (b.[1] \oplus carry<sub>1</sub>)) \oplus (b.[1] \land carry<sub>1</sub>)

5 result.[2] \leftarrow a.[2] \oplus b.[2] \oplus carry<sub>2</sub>

6 carry<sub>3</sub> \leftarrow (a.[2] \land (b.[2] \oplus carry<sub>2</sub>)) \oplus (b.[2] \land carry<sub>2</sub>)

7 result.[3] \leftarrow a.[3] \oplus b.[3] \oplus carry<sub>3</sub>
```

After line 4, we can garbage-collect carry₁ and reuse its space for carry₃

Problem: we can't overwrite $carry_1$ with the 0 state Solution: each location *i* is associated with an expression $\kappa(i)$ s.t.

$$i \oplus \kappa(i) = 0$$

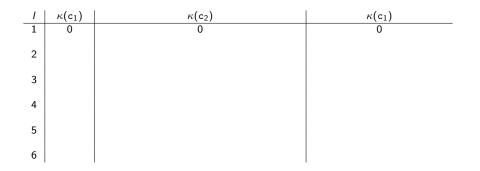
```
<sup>1</sup> c_1 \leftarrow a.[0] \land b.[0]

<sup>2</sup> c_2 \leftarrow (a.[1] \land (b.[1] \oplus c_1)) \oplus (b.[1] \land c_1)

<sup>3</sup> clean c_1 (* c_1 \leftarrow c_1 \oplus \kappa(c_1) *)

<sup>4</sup> c_3 \leftarrow (a.[2] \land (b.[2] \oplus c_2)) \oplus (b.[2] \land c_2)

<sup>5</sup> clean c_2 (* c_2 \leftarrow c_2 \oplus \kappa(c_2) *)
```



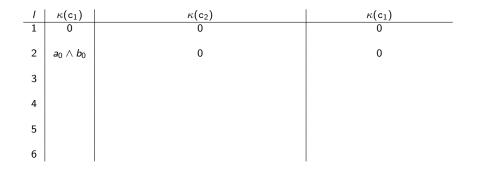
```
<sup>1</sup> c_1 \leftarrow a.[0] \land b.[0]

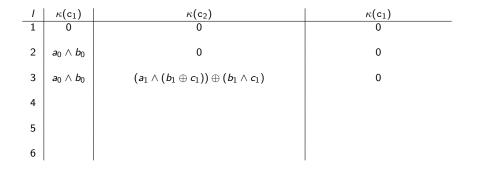
<sup>2</sup> c_2 \leftarrow (a.[1] \land (b.[1] \oplus c_1)) \oplus (b.[1] \land c_1)

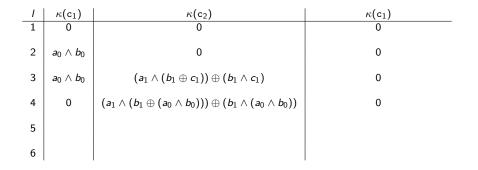
<sup>3</sup> clean c_1 (* c_1 \leftarrow c_1 \oplus \kappa(c_1) *)

<sup>4</sup> c_3 \leftarrow (a.[2] \land (b.[2] \oplus c_2)) \oplus (b.[2] \land c_2)

<sup>5</sup> clean c_2 (* c_2 \leftarrow c_2 \oplus \kappa(c_2) *)
```







```
<sup>1</sup> c_1 \leftarrow a.[0] \land b.[0]

<sup>2</sup> c_2 \leftarrow (a.[1] \land (b.[1] \oplus c_1)) \oplus (b.[1] \land c_1)

<sup>3</sup> clean c_1 (* c_1 \leftarrow c_1 \oplus \kappa(c_1) *)

<sup>4</sup> c_3 \leftarrow (a.[2] \land (b.[2] \oplus c_2)) \oplus (b.[2] \land c_2)

<sup>5</sup> clean c_2 (* c_2 \leftarrow c_2 \oplus \kappa(c_2) *)
```

1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0
4	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	0
5	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	$(a_2 \wedge (b_2 \oplus c_2)) \oplus (b_2 \wedge c_2)$
6			

```
<sup>1</sup> c_1 \leftarrow a.[0] \land b.[0]

<sup>2</sup> c_2 \leftarrow (a.[1] \land (b.[1] \oplus c_1)) \oplus (b.[1] \land c_1)

<sup>3</sup> clean c_1 (* c_1 \leftarrow c_1 \oplus \kappa(c_1) *)

<sup>4</sup> c_3 \leftarrow (a.[2] \land (b.[2] \oplus c_2)) \oplus (b.[2] \land c_2)

<sup>5</sup> clean c_2 (* c_2 \leftarrow c_2 \oplus \kappa(c_2) *)
```

1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0
4	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	0
5	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	$(a_2 \wedge (b_2 \oplus c_2)) \oplus (b_2 \wedge c_2)$
6	0	0	???

Verification

Formal verification of $\rm ReVer C^1$ carried out in F^{\star}

- \sim 2000 lines of code
- \sim 2200 lines of proof code, written in 1"person month"

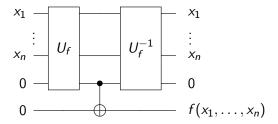
Main theorems:

- Circuit synthesis produces correct output
- Circuit synthesis cleans all intermediate ancillas
- Each abstract machine compiler preserves the semantics
- All optimizations correct, etc.

¹https://github.com/msr-quarc/ReVerC

Verifying Bennett

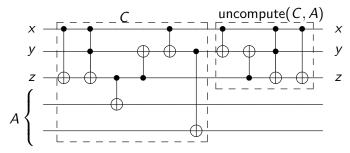
The Bennett trick:



Works because the middle gate does not affect bits used in U_f

Verifying Bennett A generalized Bennett method

Given a circuit C and set of bits A, we can uncompute C on \overline{A} if no bits of A are used as controls in C



```
Verifying Bennett
val bennett : C:circuit -> copy:circuit -> st:state ->
  Lemma (requires (wfCirc C /\ disjoint (uses C) (mods copy)))
        (ensures (agree_on st
                     (evalCirc (C@copy@(rev C)) st)
                     (uses C)))
let bennett C copy st =
  let st', st'' = evalCirc C st, evalCirc (C@copy) st in
    eval_mod st' copy;
    ctrls_sub_uses (rev C);
    evalCirc_state_swap (rev C) st' st'' (uses C);
    rev_inverse C st
val uncompute_mixed_inverse : C:circuit -> A:set int -> st:state ->
  Lemma (requires (wfCirc C /\ disjoint A (ctrls C)))
        (ensures (agree_on st
                     (evalCirc (rev (uncompute C A)) (evalCirc C st))
                     (complement A))
let uncompute_mixed_inverse C A st =
  uncompute_agree C A st;
  uncompute_ctrls_subset C A;
  evalCirc_state_swap (rev (uncompute C A))
                       (evalCirc C st)
                       (evalCirc (uncompute C A) st)
                       (complement A);
  rev_inverse (uncompute C A) st
```

Experiments

Bit counts with eager cleanup \sim to state-of-the-art compiler

Benchmark	Revs (eager)			ReVerC (eager)		
	bits	gates	Toffolis	bits	gates	Toffolis
carryRippleAdd 32	129	467	124	113	361	90
carryRippleAdd 64	257	947	252	225	745	186
mult 32	128	6016	4032	128	6016	4032
mult 64	256	24320	16256	256	24320	16256
carryLookahead 32	109	1036	344	146	576	146
carryLookahead 64	271	3274	1130	376	1649	428
modAdd 32	65	188	62	65	188	62
modAdd 64	129	380	126	129	380	126
cucarroAdder 32	65	98	32	65	98	32
cucarroAdder 64	129	194	64	129	194	64
ma4	17	24	8	17	24	8
SHA-2 round	353	2276	754	449	1796	594
MD5	7905	82624	27968	4769	70912	27520

Conclusion

- \bullet Formalized an irreversible language Revs
- Designed a new eager cleaning method based on cleanup expressions
- Implemented & formally verified a compiler (ReVerC) in F*

Take aways

- Proving theorems about real code is not unreasonably difficult
- Design code in such a way to minimize the scope of difficult logic

Thank you!

Questions?