
Verified compilation of space-efficient reversible circuits

Matthew Amy1 Martin Roetteler2 Krysta Svore2

1 University of Waterloo
2 Microsoft Research

July 25, 2017

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 1 / 1

Quantum computing
Theory:

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 2 / 1

Quantum computing

Reality:

Quantum computing is weakened by the high degree of overhead
required to perform classical computations reversibly
(and to correct errors)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 3 / 1

Reversible computing

Every operation must be invertible

x ∧ y = 0 =⇒ x =???, y =???

Can’t re-use memory without “uncomputing” its value first

To perform classical functions reversibly, embed in a larger space

Toffoli(x , y , z) = (x , y , z ⊕ (x ∧ y))

Toffoli(x , y , 0) = (x , y , x ∧ y)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 4 / 1

Reclaiming space

Näıve“reversibilification”: replace every AND gate with a Toffoli

Temporary bits are called ancillas

Uses space linear(!) in the number of AND gates

Bennett’s trick: copy out result of a computation & uncompute

x1

Uf U−1
f

x1

...
...

xn xn

0 • 0

0 f (x1, . . . , xn)

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 5 / 1

Resource estimation

Quantum compilers ≡ resource estimators

Estimate how much overhead a real implementation incurs

Typical design flow (e.g. Quipper, QCL):

High-level code
with irreversible

functions as oracles

Expand oracles into
reversible circuits

Combine into
one large circuit

Use compiled circuit
metrics to estimate

error correction

Ex. The QLS algorithm has an estimated logical space blowup of ×106!

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 6 / 1

Why verify?

Resource estimates vary wildly between compilers

Typical hardware verification doesn’t scale, since reversible circuits are
monolithic & generally not reusable

Think assembly without labels or jumps

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 7 / 1

ReVerC

Compiler for the F# embedded DSL Revs

Performs optimizations for space-efficiency

Formally verified in F?

Includes a BDD-based assertion-checker for program verification

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 8 / 1

Compiler architecture

F# quotation

Revs

Parser,
Integer evaluator

Typed Revs

Parameter inference

Boolean
abstract machine

Partial evaluation

Reversible circuit

Circuit
synthesis

Eager cleanup
synthesis

Boolean expression

Flattening

Circuit synthesis

MDD

Dependence analysis

Circuit synthesis

ReVerC core

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 9 / 1

Revs

F# quotation

Revs

Parser,
Integer evaluator

Typed Revs

Parameter inference

Boolean
abstract machine

Partial evaluation

Reversible circuit

Circuit
synthesis

Eager cleanup
synthesis

Boolean expression

Flattening

Circuit synthesis

MDD

Dependence analysis

Circuit synthesis

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 10 / 1

Revs by example
n-bit adder

let adder n = <@
fun a b ->

let maj a b c = (a ∧ (b ⊕ c)) ⊕ (b ∧ c)
let result = Array.zeroCreate(n)
let mutable carry = false

result .[0] ← a.[0] ⊕ b.[0]
for i in 1 .. n-1 do

carry ← maj a.[i-1] b.[i-1] carry
result .[i] ← a.[i] ⊕ b.[i] ⊕ carry
assert result .[i] = (a.[i] ⊕ b.[i] ⊕ carry)

result
@>

**Note: all control is compile-time static

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 11 / 1

Revs by example
n-bit adder

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 12 / 1

Boolean abstract machine

F# quotation

Revs

Parser,
Integer evaluator

Typed Revs

Parameter inference

Boolean
abstract machine

Partial evaluation

Reversible circuit

Circuit
synthesis

Eager cleanup
synthesis

Boolean expression

Flattening

Circuit synthesis

MDD

Dependence analysis

Circuit synthesis

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 13 / 1

Boolean abstract machine

We use partial evaluation to reduce Revs to a sequence of assignments

Lvalue most be a new, 0-valued store location

RHS is a Boolean expression

Semantics & transformation coincide → easier verification!

After expanding & assigning unique locations to a 4-bit adder:

(* result = alloc (4), carry0 = alloc (1) *)
result .[0] ← a.[0] ⊕ b.[0]
carry1 ← (a.[0] ∧ (b.[0] ⊕ carry0)) ⊕ (b.[0] ∧ carry0)
result .[1] ← a.[1] ⊕ b.[1] ⊕ carry1

carry2 ← (a.[1] ∧ (b.[1] ⊕ carry1)) ⊕ (b.[1] ∧ carry1)
result .[2] ← a.[2] ⊕ b.[2] ⊕ carry2

carry3 ← (a.[2] ∧ (b.[2] ⊕ carry2)) ⊕ (b.[2] ∧ carry2)
result .[3] ← a.[3] ⊕ b.[3] ⊕ carry3

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 14 / 1

Circuit compilation

F# quotation

Revs

Parser,
Integer evaluator

Typed Revs

Parameter inference

Boolean
abstract machine

Partial evaluation

Reversible circuit

Circuit
synthesis

Eager cleanup
synthesis

Boolean expression

Flattening

Circuit synthesis

MDD

Dependence analysis

Circuit synthesis

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 15 / 1

Eager Cleanup
A.K.A. garbage collection

(* result = alloc (4), carry0 = alloc (1) *)
1 result .[0] ← a.[0] ⊕ b.[0]
2 carry1 ← (a.[0] ∧ (b.[0] ⊕ carry0)) ⊕ (b.[0] ∧ carry0)
3 result .[1] ← a.[1] ⊕ b.[1] ⊕ carry1

4 carry2 ← (a.[1] ∧ (b.[1] ⊕ carry1)) ⊕ (b.[1] ∧ carry1)
5 result .[2] ← a.[2] ⊕ b.[2] ⊕ carry2

6 carry3 ← (a.[2] ∧ (b.[2] ⊕ carry2)) ⊕ (b.[2] ∧ carry2)
7 result .[3] ← a.[3] ⊕ b.[3] ⊕ carry3

After line 4, we can garbage-collect carry1 and reuse its space for carry3

Problem: we can’t overwrite carry1 with the 0 state
Solution: each location i is associated with an expression κ(i) s.t.

i ⊕ κ(i) = 0

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 16 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2

a0 ∧ b0 0 0

3

a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6

0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2 a0 ∧ b0 0 0

3

a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6

0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2 a0 ∧ b0 0 0

3 a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6

0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2 a0 ∧ b0 0 0

3 a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4 0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5

0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6

0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2 a0 ∧ b0 0 0

3 a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4 0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5 0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6

0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Eager Cleanup

1 c1 ← a.[0] ∧ b.[0]
2 c2 ← (a.[1] ∧ (b.[1] ⊕ c1)) ⊕ (b.[1] ∧ c1)
3 clean c1 (* c1 ← c1 ⊕ κ(c1) *)
4 c3 ← (a.[2] ∧ (b.[2] ⊕ c2)) ⊕ (b.[2] ∧ c2)
5 clean c2 (* c2 ← c2 ⊕ κ(c2) *)
6

l κ(c1) κ(c2) κ(c1)
1 0 0 0

2 a0 ∧ b0 0 0

3 a0 ∧ b0 (a1 ∧ (b1 ⊕ c1))⊕ (b1 ∧ c1) 0

4 0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) 0

5 0 (a1 ∧ (b1 ⊕ (a0 ∧ b0)))⊕ (b1 ∧ (a0 ∧ b0)) (a2 ∧ (b2 ⊕ c2))⊕ (b2 ∧ c2)

6 0 0 ???

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 17 / 1

Verification

Formal verification of ReVerC1 carried out in F?

∼ 2000 lines of code
∼ 2200 lines of proof code, written in 1“person month”

Main theorems:

Circuit synthesis produces correct output

Circuit synthesis cleans all intermediate ancillas

Each abstract machine compiler preserves the semantics

All optimizations correct, etc.

1https://github.com/msr-quarc/ReVerC
Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 18 / 1

https://github.com/msr-quarc/ReVerC

Verifying Bennett

The Bennett trick:
x1

Uf U−1
f

x1

...
...

xn xn

0 • 0

0 f (x1, . . . , xn)

Works because the middle gate does not affect bits used in Uf

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 19 / 1

Verifying Bennett
A generalized Bennett method

Given a circuit C and set of bits A, we can uncompute C on A if no bits of
A are used as controls in C

x • •
C

• •
uncompute(C ,A)

• • x

y • • • y

z • • • z

A

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 20 / 1

Verifying Bennett
val bennett : C:circuit -> copy:circuit -> st:state ->

Lemma (requires (wfCirc C /\ disjoint (uses C) (mods copy)))

(ensures (agree_on st

(evalCirc (C@copy@(rev C)) st)

(uses C)))

let bennett C copy st =

let st’, st’’ = evalCirc C st, evalCirc (C@copy) st in

eval_mod st’ copy;

ctrls_sub_uses (rev C);

evalCirc_state_swap (rev C) st’ st ’’ (uses C);

rev_inverse C st

val uncompute_mixed_inverse : C:circuit -> A:set int -> st:state ->

Lemma (requires (wfCirc C /\ disjoint A (ctrls C)))

(ensures (agree_on st

(evalCirc (rev (uncompute C A)) (evalCirc C st))

(complement A))

let uncompute_mixed_inverse C A st =

uncompute_agree C A st;

uncompute_ctrls_subset C A;

evalCirc_state_swap (rev (uncompute C A))

(evalCirc C st)

(evalCirc (uncompute C A) st)

(complement A);

rev_inverse (uncompute C A) st

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 21 / 1

Experiments

Bit counts with eager cleanup ∼ to state-of-the-art compiler

Benchmark Revs (eager) ReVerC (eager)

bits gates Toffolis bits gates Toffolis

carryRippleAdd 32 129 467 124 113 361 90
carryRippleAdd 64 257 947 252 225 745 186
mult 32 128 6016 4032 128 6016 4032
mult 64 256 24320 16256 256 24320 16256
carryLookahead 32 109 1036 344 146 576 146
carryLookahead 64 271 3274 1130 376 1649 428
modAdd 32 65 188 62 65 188 62
modAdd 64 129 380 126 129 380 126
cucarroAdder 32 65 98 32 65 98 32
cucarroAdder 64 129 194 64 129 194 64
ma4 17 24 8 17 24 8
SHA-2 round 353 2276 754 449 1796 594
MD5 7905 82624 27968 4769 70912 27520

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 22 / 1

Conclusion

Formalized an irreversible language Revs

Designed a new eager cleaning method based on cleanup expressions

Implemented & formally verified a compiler (ReVerC) in F?

Take aways

Proving theorems about real code is not unreasonably difficult

Design code in such a way to minimize the scope of difficult logic

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 23 / 1

Thank you!

Questions?

Matthew Amy (uWaterloo) ReVerC CAV July 25, 2017 24 / 1

