On the CNOT-complexity of CNOT-PHASE circuits

Matthew Amy ^{1,2} Parsiad Azimzadeh ² Michele Mosca ^{1,2}

¹Institute for Quantum Computing, Waterloo, Canada

²University of Waterloo, Waterloo, Canada

Theory of Quantum Computation, Communication and Cryptography July 18th, 2018

Sea knot???

Source: Wikipedia

Gate set	Complexity	State-of-the-art
CNOT	???	Asymptotically optimal synthesis ¹
CZ-PHASE	Polynomial	Optimal synthesis
CNOT-PHASE	???	Re-write rules
Clifford	???	Re-write rules
Clifford + T	???	Re-write rules

Assuming completely connected topology...

CNOT-PHASE: Circuits over CNOT and
$$R_Z(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i \theta} \end{pmatrix}$$

¹Patel, Markov and Hayes, *Optimal synthesis of linear reversible circuits*

Phase folding/T-par uses T-depth optimal CNOT-PHASE synthesis as a sub-routine

Amy, Maslov and Mosca, Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning Phase folding/T-par uses T-depth optimal CNOT-PHASE synthesis as a sub-routine

Idea: replace *T*-depth optimal with CNOT-optimal!

Amy, Maslov and Mosca, Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning

We...

- Show that in certain cases, minimizing the number of CNOT gates is equivalent to finding a minimal CNOT circuit cycling through a set of parities of the inputs
- Show that cycling through a set of parities is NP-hard if
 - ▶ all CNOT gates have the same target, or
 - the circuit inputs are not linearly independent
- Give a new heuristic optimization algorithm

Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion

The sum-over-paths form

Recall the basis state action of $\ensuremath{\mathrm{CNOT}}$ and Phase gates:

$$\begin{array}{l} \text{CNOT} : |x\rangle |y\rangle \mapsto |x\rangle |x \oplus y\rangle \\ R_Z(\theta) : |x\rangle \quad \mapsto e^{2\pi i \theta x} |x\rangle \end{array}$$

We call this basis state action the sum-over-paths (SOP) form

The sum-over-paths form

Recall the basis state action of CNOT and Phase gates:

$$\begin{array}{l} \text{CNOT} : |x\rangle |y\rangle \mapsto |x\rangle |x \oplus y\rangle \\ R_Z(\theta) : |x\rangle \quad \mapsto e^{2\pi i \theta x} |x\rangle \end{array}$$

We call this basis state action the sum-over-paths (SOP) form

Definition

The SOP form of a CNOT-PHASE circuit C is a pair (f, A) where

• $f : \mathbb{F}_2^n \to \mathbb{R}$ is a pseudo-Boolean function given by

$$f(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbb{F}_2^n} \widehat{f}(\mathbf{y}) \chi_{\mathbf{y}}(\mathbf{x}), \qquad \chi_{\mathbf{y}}(\mathbf{x}) = x_1 y_1 \oplus \cdots \oplus x_n y_n$$

• $A \in \operatorname{GL}(n, \mathbb{F}_2)$ is a linear permutation such that $U_C : |\mathbf{x}\rangle \mapsto e^{2\pi i f(\mathbf{x})} |A\mathbf{x}\rangle$

Consider an implementation of CCZ:

First annotate...

First annotate...

$$|\mathbf{x}
angle \mapsto e^{rac{2\pi i}{8}(x_1)}$$

First annotate...

$$|\mathbf{x}
angle \mapsto e^{rac{2\pi i}{8}(x_1+x_2)}$$

First annotate...

$$|\mathbf{x}
angle \mapsto e^{rac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3))}$$

First annotate...

$$|\boldsymbol{x}\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3))})|\boldsymbol{x}\rangle$$

First annotate...

$$|\mathbf{x}\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3)+(x_1\oplus x_2\oplus x_3))})|\mathbf{x}\rangle$$

First annotate...

$$|\mathbf{x}\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3)+(x_1\oplus x_2\oplus x_3)+7(x_1\oplus x_2))}|\mathbf{x}\rangle$$

First annotate...

$$|\mathbf{x}\rangle \mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3)+(x_1\oplus x_2\oplus x_3)+7(x_1\oplus x_2)+x_3)}|\mathbf{x}\rangle$$

First annotate...

$$\begin{aligned} |\mathbf{x}\rangle &\mapsto e^{\frac{2\pi i}{8}(x_1+x_2+7(x_1\oplus x_3)+7(x_2\oplus x_3)+(x_1\oplus x_2\oplus x_3)+7(x_1\oplus x_2)+x_3)}|\mathbf{x}\rangle \\ &\mapsto e^{\frac{2\pi i}{2}x_1x_2x_3}|\mathbf{x}\rangle\end{aligned}$$

Recall:

$$CS^{\dagger}: |x_1x_2\rangle \mapsto e^{\frac{2\pi i}{4}3x_1x_2} |x_1x_2\rangle$$
$$\mapsto e^{\frac{2\pi i}{8}(7x_1+7x_2+x_1\oplus x_2)} |x_1x_2\rangle$$

Can use the same CNOT structure as CCZ to implement CS^{\dagger} !

Recall:

$$CS^{\dagger}: |x_1x_2\rangle \mapsto e^{\frac{2\pi i}{4}3x_1x_2} |x_1x_2\rangle$$
$$\mapsto e^{\frac{2\pi i}{8}(7x_1+7x_2+x_1\oplus x_2)} |x_1x_2\rangle$$

Can use the same CNOT structure as CCZ to implement CS^{\dagger} !

Definition

A parity network for a set $S \subseteq \mathbb{F}_2^n$ is an *n*-qubit circuit *C* over CNOT gates where each $y \in S$ appears in the annotated circuit.

A parity network is **pointed at** $A \in GL(n, \mathbb{F}_2)$ if it implements the overall linear transformation A.

Definition

A parity network for a set $S \subseteq \mathbb{F}_2^n$ is an *n*-qubit circuit *C* over CNOT gates where each $y \in S$ appears in the annotated circuit.

A parity network is **pointed at** $A \in GL(n, \mathbb{F}_2)$ if it implements the overall linear transformation A.

E.g. the CNOT gates of CCZ, - 101 - 111 - 110 -- 010 -- 011 - 001 -

is a parity network for $S = \{100, 010, 001, 110, 101, 011, 111\}$ pointed at A = I

A CNOT-minimal circuit with SOP form (f, A) necessarily gives a minimal parity network for supp (\hat{f}) pointed at A

CNOT-minimal synthesis and parity networks

However...

A minimal parity network for $supp(\hat{f})$ may not give a CNOT-minimal circuit across equivalent SOP forms

A minimal parity network for $supp(\hat{f})$ may not give a CNOT-minimal circuit across equivalent SOP forms

E.g., $(\frac{1}{2}(x_1 \oplus x_2), I)$ and $(\frac{1}{2}x_1 + \frac{1}{2}x_2, I)$ give equivalent unitaries but have minimal parity network implementations

$$10 \xrightarrow[]{0} 10 = 10 \qquad 10 - R_Z(\frac{1}{2}) = 10 \\ 01 \xrightarrow[]{0} 11 - R_Z(\frac{1}{2}) = 01 \qquad 01 - R_Z(\frac{1}{2}) = 01$$

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

▶ If
$$(f, A) \sim (f', A')$$
, then $A = A'$ and $f' = f + k$ for $k : \mathbb{F}_2^n \to \mathbb{Z}$

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

- ▶ If $(f, A) \sim (f', A')$, then A = A' and f' = f + k for $k : \mathbb{F}_2^n \to \mathbb{Z}$
- The Fourier coefficients of k have even order in \mathbb{R}/\mathbb{Z}

CNOT minimization of CNOT-PHASE circuits is at least as hard as synthesizing a minimal parity network

Intuition:

- ▶ If $(f, A) \sim (f', A')$, then A = A' and f' = f + k for $k : \mathbb{F}_2^n \to \mathbb{Z}$
- ▶ The Fourier coefficients of *k* have even order in \mathbb{R}/\mathbb{Z}
- If no elements of \widehat{f} have even order in \mathbb{R}/\mathbb{Z} , then

$$\mathsf{supp}(\widehat{f'}) \subseteq \mathsf{supp}(\widehat{f})$$

Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion

Minimal parity network synthesis is hard...?

Goal:

Prove that the minimal parity network problem (MPNP) is NP-hard

Obvious reductions don't work due to shortcuts

Minimal parity network synthesis is hard ...?

Goal:

Prove that the minimal parity network problem (MPNP) is NP-hard

Obvious reductions don't work due to shortcuts

A graphical interpretation

Conjecture

If for all $y \in S$, $y_i = 1$, then there exists a minimal parity network for S where each CNOT targets bit *i*.

Fixed-target minimal parity network

Conjecture

If for all $\mathbf{y} \in S$, $y_i = 1$, then there exists a minimal parity network for S where each CNOT targets bit *i*.

The fixed-target minimal parity network problem is NP-complete

Proof:

Reduction from traveling salesman on the hypercube ²

²Ernvall, Katajainen, and Penttonen, *NP-completeness of the Hamming salesman problem*

If some inputs are linearly dependent, fewer gates may be needed to implement a parity network

E.g., $S = \{111\}$

If some inputs are linearly dependent, fewer gates may be needed to implement a parity network

E.g., $S = \{111\}$

Direct applications to phase folding with ancillas!

The encoded input minimal parity network problem is NP-complete

Proof:

Reduction from maximum-likelihood decoding³

³Berlekamp, McEliece, and van Tilborg, *On the inherent intractability of certain coding problems*

Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion

Given $S \subseteq \mathbb{F}_2^n$, synthesize an efficient parity network for S

For $S = \mathbb{F}_2^n || \mathbf{x}, \mathbf{x} \in \mathbb{F}_2^m$, minimal parity network is the Gray code and can be computed greedily

E.g.,

 $S = \mathbb{F}_2^3 \parallel 1 = \{0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111\}$

For $S = \mathbb{F}_2^n$, case is similar

Main idea:

Try to identify subsets S' of S which have the form S' $\simeq \mathbb{F}_2^n \parallel \mathbf{x}$, and synthesize those greedily

- 1. Start with a singleton stack containing the set S
- 2. Pop a set S' off the stack
- 3. If $x_i \oplus x_j$ appears in every parity of S',
 - ► Apply a CNOT between bits *i* and *j*, and
 - Adjust all subsets remaining on the stack accordingly
- 4. Pick some row *i* maximizing the number of parities in S' which either contain or do not contain x_i
- 5. Set $S_b = \{ \textbf{x} \in S' \mid x_i = b \}$ and push S_1 , S_0 onto the stack
- 6. Go to step 2

Invariant: remaining parities are expressed over the current basis

Avoids "uncomputing" or backtracking

Example

Parity network for $S = \{0110, 1000, 1001, 1110, 1101, 1100\}$

 $\left\{\begin{array}{rrrr}1 & 1 & 1 & 1\\0 & 1 & 1 & 1\\0 & 1 & 0 & 0\end{array}\right\}$

- Columns are remaining paritiesBox is current top of the stack
- Columns are remaining parities White rows haven't been partitioned
 - Grey rows have been partitioned

$$\left\{\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right\}$$

- Columns are remaining paritiesBox is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

- Columns are remaining parities
 Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

$$\left\{\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}\right\}$$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

$$\left(\begin{array}{cccccccccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right)$$

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

- Columns are remaining parities
- Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

- Columns are remaining parities
 Box is current top of the stack
- White rows haven't been partitioned
- Grey rows have been partitioned

Example

- Columns are remaining parities
 Box is current top of the stack
 G
- White rows haven't been partitioned
 - Grey rows have been partitioned

- Columns are remaining parities
 Box is current top of the stack
- White rows haven't been partitioned
 - Grey rows have been partitioned

- Columns are remaining parities Box is current top of the stack
 - White rows haven't been partitioned
 - Grey rows have been partitioned

Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion

Performance vs. brute force

Data collected across all sets of parities on 4 bits

• GRAY-SYNTH within 15% of optimal on average for |S| = 8

https://github.com/meamy/feynman

Benchmarks

Benchmark	п	Base	Nam et	Nam <i>et al.</i> (L)		T-par (GRAY-SYNTH)		
		CNOT	Time	CNOT	Time	CNOT	% Red.	
Grover_5	9	336	_	-	0.027	210	37.5	
Mod 5_4	5	32	< 0.001	28	0.001	26	18.8	
VBE-Adder_3	10	80	< 0.001	50	0.004	42	47.5	
CSLA-MUX_3	15	90	< 0.001	76	0.073	100	-11.1	
CSUM-MUX_9	30	196	< 0.001	168	0.095	148	24.5	
QCLA-Com_7	24	215	0.001	132	0.097	136	36.7	
QCLA-Mod_7	26	441	0.004	302	0.145	356	19.3	
QCLA-Adder_10	36	267	0.002	195	0.112	189	29.2	
Adder_8	24	466	0.004	331	0.165	352	24.5	
RC-Adder_6	14	104	< 0.001	73	0.080	71	31.7	
Mod-Red_21	11	122	< 0.001	81	0.091	84	31.1	
Mod-Mult_55	9	55	< 0.001	40	0.004	45	18.2	
Mod-Adder_1024	28	2005	-	-	0.739	1376	31.4	
Cycle 17_3	35	4532	-	-	2.618	2998	36.8	
GF(2 ³²)-Mult	96	7292	1.834	6299	5.571	6658	8.7	
GF(2 ⁶⁴)-Mult	192	28861	58.341	24765	114.310	25966	10.0	
Ham_15 (low)	17	259	_	_	0.043	208	19.7	
Ham_15 (med)	17	574	-	-	0.089	351	43.0	
Ham_15 (high)	20	2489	-	-	0.376	1500	40.0	
HWB_6	7	131	-	-	0.006	111	15.3	
HWB_8	12	7508	-	-	1.706	6719	10.5	
QFT_4	5	48	_	-	0.005	47	2.1	
$\Lambda_5(X)$	9	49	< 0.001	30	0.003	30	38.8	
$\Lambda_5(X)$ (Barenco)	9	84	< 0.001	60	0.004	54	35.7	
$\Lambda_{10}(X)$	19	119	< 0.001	70	0.071	70	41.2	
$\Lambda_{10}(X)$ (Barenco)	19	224	0.001	160	0.029	144	35.7	
Total							23.3	

https://github.com/meamy/feynman

Introduction

Parity networks

Complexity of minimal parity network synthesis

Heuristic synthesis

Experiments

Conclusion

In this talk...

- Parity networks characterize the CNOT complexity of CNOT-PHASE circuits for a particular phase function
- CNOT minimization is at least as hard as synthesizing a minimal parity network
- Synthesizing a minimal parity network is NP-hard when targets are fixed or inputs are encoded
- ► A heuristic parity network synthesis algorithm & benchmarks

- Proof of hardness for the general problem
- Synthesis algorithm that combines parity network synthesis with an output linear permutation
- Adding topology constraints

Thank you!