MATH 2030: ASSIGNMENT 6

EIGENVALUES AND EIGENVECTORS OF $n \times n$ MATRICES

Q.1: pg 309, q 2. For the given matrix,

$$A = \begin{bmatrix} 1 & -9 \\ 1 & -5 \end{bmatrix}$$

calculate

(1) The characteristic polynomial of A.
(2) The eigenvalues of A.
(3) A basis for each eigenspace of A.
(4) the algebraic and geometric multiplicity of each value

A.1.

(1) The characteristic polynomial of A will be $\det(A - \lambda I)$:

$$\begin{vmatrix} 1 - \lambda & -9 \\ 1 & -5 - \lambda \end{vmatrix} = -(1 - \lambda)(5 + \lambda) + 9$$

expanding this we find the polynomial

$$\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2.$$

(2) Equating this polynomial to zero, we find that the roots will be $\lambda = -2, -2$; this is the only value to satisfy $\det(A - \lambda I) = 0$, -2 is an eigenvalue with algebraic multiplicity 2.

(3) Computing the null space of the matrix $A + 2I = \begin{bmatrix} 3 & -9 \\ 1 & -3 \end{bmatrix}$ we find that a non-trivial solution to the homogeneous problem $(A + 2I)x = 0$ will satisfy $x_1 = -3x_2$. Thus the corresponding basis eigenvector for the eigenspace of the eigenvalue $\lambda = -2$ of A is

$$x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(4) The eigenvalue $\lambda = -2$ has algebraic multiplicity 2 and geometric multiplicity 1.

Q.2: pg 309, q 10. For the given matrix,

$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

calculate

(1) The characteristic polynomial of A.
(2) The eigenvalues of A.

1
A basis for each eigenspace of A

the algebraic and geometric multiplicity of each value

(1) Taking the determinant of the matrix $A - \lambda I$ is easily done as this matrix is upper-triangular. The characteristic equation simply the product of the diagonals

$$det(A - \lambda I) = (2 - \lambda)(1 - \lambda)(3 - \lambda)(2 - \lambda).$$

(2) The eigenvalues of A are then $\lambda = 2, 1, 3, 2$.

(3) Computing the null spaces of $A - 2I$, $A - I$ and $A - 3I$ we find the eigenspaces are spanned by the following vectors

$$E_1 = span \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad E_2 = span \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad E_3 = span \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$

(4) For $\lambda = 1, 2, 3$ have algebraic multiplicity and geometric multiplicity both equal to 1 for each eigenvalue respectively.

Q.3: pg 310, q 13. Prove that if A is invertible with eigenvalue λ and corresponding eigenvector x, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eigenvector x.

A.3. If x is an eigenvalue of A, with eigenvalue λ then $Ax = \lambda x$. As A is invertible, we may apply its inverse to both sides to get

$$x = \lambda I x = A^{-1} (\lambda x) = \lambda A^{-1} x$$

Multiplying by $1/\lambda$ on both sides show that x is an eigenvector of A^{-1} with $\lambda = \frac{1}{\lambda}$ since

$$A^{-1} x = \frac{1}{\lambda} x.$$

Q.4: pg 310, q 16. Suppose A is a 3×3 matrix with eigenvectors

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

with corresponding eigenvalues $\lambda_1 = -\frac{1}{3}$, $\lambda_2 = \frac{1}{3}$ and $\lambda_3 = 1$ respectively. Find $A^{20} x$, if $x = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.
A.4. We will give solutions for the vector given here and the vector given in the
text \(\mathbf{v}_b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \). It is easily shown that \(\mathbf{x} = \mathbf{v}_1 + \mathbf{v}_3 \), while \(\mathbf{v}_b = 1\mathbf{v}_1 - 1\mathbf{v}_2 + 2\mathbf{v}_3 \).

Computing \(A^{20}\mathbf{x} \) is then
\[
A^{20}\mathbf{x} = \left(- \frac{1}{3} \right)^{20} \mathbf{v}_1 + (1)^{20}\mathbf{v}_3 = \begin{bmatrix} 3^{-20} + 1 \\ 1 \\ 1 \end{bmatrix}
\]

while the vector \(\mathbf{v}_b \) yields
\[
A^{20}\mathbf{v}_b = \left(- \frac{1}{3} \right)^{20} \mathbf{v}_1 - \left(\frac{1}{3} \right)^{20} \mathbf{v}_2 + 2(1)^{20}\mathbf{v}_3 = \begin{bmatrix} -3^{-20} - 3^{-20} + 2 \\ -3^{-20} + 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}
\]

Q.5: pg 310, q 17. With \(\mathbf{v}_i \) and \(\lambda_i \) and \(\mathbf{x} \) as in the previous question, determine \(A^k\mathbf{x} \) for arbitrary \(k \).

A.5. Generalizing the result we find,
\[
A^k\mathbf{x} = \left(- \frac{1}{3} \right)^k \mathbf{v}_1 + (1)^k\mathbf{v}_3 = \begin{bmatrix} (-1)^{-k}3^{-k} + 1 \\ 1 \\ 1 \end{bmatrix}
\]

while the vector \(\mathbf{v}_b \) yields
\[
A^k\mathbf{v}_b = \left(- \frac{1}{3} \right)^k \mathbf{v}_1 - \left(\frac{1}{3} \right)^k \mathbf{v}_2 + 2(1)^k\mathbf{v}_3 - \begin{bmatrix} (-1)^{-k} - 13^{-k} + 2 \\ -3^{-k} + 2 \end{bmatrix}
\]

Q.6: pg 310, q 19.

- Show that for any square matrix \(A \), \(A^t \) and \(A \) have the same characteristic polynomial and hence the same eigenvalues.
- Give an example of a \(2 \times 2 \) matrix \(A \) for which \(A^t \) and \(A \) have different eigenspaces.

A.6.

- Noting that \(det(A^t) = det(A) \) we examine the characteristic polynomial of \(A \) and use this fact, \(det(A - \lambda I) = det([A - \lambda I]^t) = det(A^t - \lambda I) = det(A^t - \lambda I) \). This shows the characteristic polynomials for \(A \) and its transpose are the same, and hence they have the same eigenvalues.

- Consider the matrix \(A = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix} \) this has eigenvalues \(\lambda = 1, 2 \) with eigenspaces spanned by
\[
E_1 = span \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \quad E_2 = span \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right).
\]

The matrix \(A^t \) has the eigenspaces
\[
E_1 = span \left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} \right), \quad E_2 = span \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right).
\]
Q.7: pg 310, q 22. If \(v \) is an eigenvector of \(A \) with corresponding eigenvalue \(\lambda \) and \(c \) a scalar, show that \(v \) is an eigenvector of \(A - cI \) with corresponding eigenvalue \(\lambda - c \).

A.7. Make the matrix \(A - cI \) and contract with the vector \(x \), one finds

\[
(A - cI)x = Ax - cx = \lambda x - cx = (\lambda - c)x.
\]

This proves that the vector \(x \) corresponding to \(\lambda \) the eigenvalue of \(A \) is an eigenvector corresponding to \(\lambda - c \) for the matrix \(A - cI \).

Q.8: pg 311, q 21. Let \(A \) be an idempotent matrix, meaning \(A^2 = A \). Show that \(\lambda = 0 \) or \(\lambda = 1 \) are the only possible eigenvalues of \(A \).

A.8. Suppose \(\lambda \) is any eigenvalue of \(A \) with corresponding eigenvector \(x \), then \(\lambda^2 \) will be an eigenvalue of the matrix \(A^2 \) with corresponding eigenvector \(x \). However, \(A^2 = A \) and so \(\lambda^2 = \lambda \) for the eigenvector \(x \). This can only occur if \(\lambda = 0 \) or 1.

Q.9: pg 310, q 23. For the matrix,

\[
A = \begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}:
\]

- Find the eigenvalues and eigenspaces of this matrix.
- Using the appropriate theorem, and the previous example determine the eigenvalues and eigenspaces of \(A^{-1} \), \(A - 2I \) and \(A + 2I \).

A.9.

- This matrix has eigenvalues \(\lambda = -2, 5 \) with eigenspaces spanned by the following vectors respectively:

\[
E_{-2} = \text{span} \left(\begin{bmatrix} -2 \\ 5 \end{bmatrix} \right), \quad E_5 = \text{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
\]

- Using this result we see that the eigenvalues for \(A^{-1} \) are then \(\lambda = -\frac{1}{2}, \frac{1}{5} \) with eigenspaces

\[
E_{-\frac{1}{2}} = \text{span} \left(\begin{bmatrix} -2 \\ 5 \end{bmatrix} \right), \quad E_{\frac{1}{5}} = \text{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
\]

- the eigenvalues and eigenspaces for \(A - 2I \) are \(\lambda = -4, 3 \) and

\[
E_0 = \text{span} \left(\begin{bmatrix} -2 \\ 5 \end{bmatrix} \right), \quad E_3 = \text{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
\]

- the eigenvalues and eigenspaces for \(A + 2I \) are \(\lambda = 0, 7 \) and

\[
E_{-4} = \text{span} \left(\begin{bmatrix} -2 \\ 5 \end{bmatrix} \right), \quad E_7 = \text{span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)
\]
Q.10: pg 311, q 39. Use the helpful fact:

Proposition 0.1. any square matrix A that may be partitioned as $A = \begin{bmatrix} P & Q \\ O & S \end{bmatrix}$ where P and S are square matrices and O is the zero matrix, then $\det A = (\det P)(\det S)$.

to prove that if a square matrix $A = \begin{bmatrix} P & Q \\ O & S \end{bmatrix}$ partitioned so that P, S are square matrices then the characteristic polynomial of A is

$$
c_A(\lambda) = c_P(\lambda)c_S(\lambda).
$$

A.10. Computing $A - \lambda I$ we may partition this new matrix using I_{n-p} and I_p where p is the size of the matrix P,

$$
A - \lambda I = \begin{bmatrix} P - \lambda I_p & Q \\ O & S - \lambda I_{n-p} \end{bmatrix}
$$

Taking the determinant of this matrix we find $\det(A - \lambda I) = \det(P - \lambda I_p)\det(S - \lambda I_{n-p})$, noting that $c_A(\lambda) = \det(A - \lambda I)$ we find this last identity is exactly what was needed

$$
c_A(\lambda) = c_P(\lambda)c_S(\lambda).
$$

References