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Double Categories - the Definition

Double Categories

@ A double category is an internal category in Cat,

s
C1 XCo C1 2 C1 =i°— Co .
t

@ Since Cp and C; are categories, this is really a diagram
C11 X¢yp C11 Co1 Xy Co1

S

Chi=——F——-Cp1

e

o — —
Cio=——"——=0Cp
t

Ci1 X¢y; C11

Cio Xcqy Cro0
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Double Categories - the Definition

Double Categories

In other words, a double category D has
@ objects Cgo,

e vertical arrows Co;, denoted dy(v)—e—=di(v),

e horizontal arrows Cjg, denoted s(f)*f>t(f),

@ double cells C;;, denoted

A-f.B

u¢ (e} $V

A ——= B
f’

where dp(a) = f, di(a) = ', s(a) = u, and t(a) = v.
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Double Categories - the Definition

Double Cell Composition

Double cells can be composed
o Horizontally

A—t.p_&.¢C A—E.C
u @ v$ B $W = u Boa w
A/ B/ C/ A/ !/
f/ g/ g/f‘/
o Vertically
A—f.B A—f.B

A/I 7 B// A// 7 B//
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Double Categories - the Definition

Double Cell Composition

Both composition operations are required to be associative and together
they need to satisfy the middle-four axiom:

o
u a v B w
L]
u% o v% B’ %W/
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Double Categories - Examples

Examples

@ For any 2-category C, Q(C) is the double category of quintets in C,
with double cells

— for each a: vf = gu in C.

© The double category V(C) is defined analogously.
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Example: Matched Pairs of Groups

@ Let X, F and G be groups with ¥ = FG with right action
<4: G X F — G and left action >: G x F — F defined by

g-f=(grf) (fag)
such that
gr(hh) = (gvh) - ((gaf)>fi)
(g2g1)<af = (g2<(g1>f)) (g1 af)

@ We can model this as a double category

S:ﬂ'

G x F

e

— )
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Example: Matched Pairs of Groups

@ Double cells are of the form
g<f

R

° °
fi (g,f) igbf
° °

_

@ Note: for each left-hand corner there is precisely one double cell.

@ Such double categories are called vacant.
@ Horizontal composition:

g1df g2<1(g1l>f) (g281)af
o—— >0 —> 0 o ——>0
l glbfi lggb(glbf)) — fi l(g2g1)>f
i —_— 0 —> i i —_— i
81 82 8281

since (gog1)<f = (g2 <(g1>f)) (g1 <f).
@ Vertical composition goes similarly (using the other condition).
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Matched Pairs of Groupoids
@ This leads us to a straightforward generalization of the notion of

matched pair of groups; namely, a matched pair of groupoids.
@ A matched pair of groupoids is a pair of groupoids

dp,d1: V=3P and s,t: H=P
with the same base (set of objects) with actions
b:H xepa VoV and < H xepag V—H
such that we can form double cells
P Q
v$ (v,h)

R——

h

h>v

|
v
S

and horizontal and vertical composition are well-defined.
@ Result: Matched pair of groupoids are vacant double groupoids.
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The category DbICat

The category DblCat of double categories has:
@ objects: double categories C,D, .. ;

@ arrows: double functors F, G, ... are internal functors,

Ci X¢, C,—=Cy=r= == GCp

t
FIXFI\L Fll J{Fg
S

D1 XDy D1 2 Dl élt D()

where Fg and Fq are functors.

@ 2-cells: these come in two flavours: internal and external; or, vertical
and horizontal.
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The 3-Dimensional Structure of DblCat

Transformations

@ Vertical Transformations v: F =s= G: C = D given by

FA—"- FB

m% Yh %'YBforeach h: A— BinC

functorial in the horizontal direction and natural in the vertical
direction.

@ Horizontal Transformations v: F = G are defined dually, by a
family of double cells,

FA 2. GA

Fu$ Yy $Gu

FA/ ? GA/
A

D. Pronk, M. Bayeh, M. Szyld Colimits of Double Categories 11/38



Modifications

Modifications are 3-dimensional cells

F=t=¢
’YH/ ) Hé
Fl==¢

that are given by a family of double cells, indexed by the objects of the
domain double category,

FA " GA
’YAl @A i(SA

v Y
F’ATA>G'A.
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The 3-Dimensional Structure of DblCat

Interlude

@ When we view a group G as a one-object category BG, functors
BG — BH correspond precisely to group homomorphisms G — H.

@ Now the natural transformations make the category of groups into a
2-category: natural transformations By =- B correspond to group
elements h € H such that hph™! = .

@ This also places groups into a much larger category of groupoids or
categories and this means that the notion of colimit of a diagram of
groups may change significantly:

e The colimit of a disconnected diagram is not a group.
e We may also consider pseudo and lax colimits. (An important
application of this is the tom Dieck fundamental groupoid.)
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The 3-Dimensional Structure of DblCat

Example

@ Double functors between vacant double groupoids correspond to
groupoid homomorphisms between matched pairs that preserve the
factorization.

@ For matched pairs of groups, vertical transformations are determined
by an element of the first factor of the codomain that establishes a
conjugation between the homomorphisms between the first factors of
the matched pairs.

@ Analogously, horizontal transformations are determined by
conjugation with an element of the second factor of the codomain.

@ Modifications correspond to a pair of a horizontal and a vertical
transformation.
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The category DbICat - Properties

o DblCat is not a double category.

o DbICat is enriched in the category DbICat of double categories: each
DbICat(C, D) is a double category.

@ We can also view DblICat as a 2-category: DblCat, (resp. DbICaty)
is the 2-category with vertical (resp. horizontal) transformations.

@ So lax (co)limits have typically been taken in the 2-category DblCat,
or DbICat, with laxity in one direction.

@ We want to introduce a notion of colimit that may have laxity in both
directions - so we want to index the diagram by a double category.
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Diagrams in DblCat

To define a diagram of double categories indexed by a double category D:
@ Send objects of D to double categories;
@ Send both horizontal and vertical arrows to double functors;

@ For 2-dimensional cells we have to make a choice: we send double
cells to vertical transformations.

So an indexing double functor is a double functor
D — Q(DblCat,)
We will also refer to indexing double functors as vertical double functors

D — DblCat.
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Diagrams in DbICat

Questions

@ Have we lost our ability to use horizontal transformations and

modifications?
@ Have we lost our ability to distinguish between horizontal and vertical
arrows in the indexing double category?

No, they will show up in the notion of doubly lax transformation.

17/38
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Doubly Lax Transformations

Intro to Doubly Lax Transformations

@ Introduce a cylinder double category Cyl (DblCat).
@ There are vertical double functors
do

Cy|v(Db|Cat) —Z~ DblCat
d1

o A doubly lax transformation a: F = G: D — DbICat is given by

a double functor
a: D — Cyl, (DblCat)

such that dgae = F and diax = G.
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The Double Category of (Vertical) Cylinders

The double category Cyl, (DblCat) of vertical cylinders is defined by:
@ Objects are double functors, denoted by | f.

@ Vertical arrows f (—uﬂ f are given by vertical transformations,
u
it
f
i L2 r
f
e
. (h7’{7k) ] . . .
@ Horizontal arrows f ——= f’ are given by horizontal transformations,
h
P
lr
K
g
%
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Double Cylinders

f
A double cell, (U7M7V)¢ (e,x,8) t(UCMCV’) consists of two vertical 2-cells,
7

(h,r,k)
B, k@
vz Ovas
ut g v g and a modification X,

Vkf =5 o fh P Ny
b
kvf ¥ fdh

HEH Hﬁu

! o
F Fu —E 7 St A el
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Doubly Lax Transformations

Cylinders and Transformations

@ There are vertical double functors dp, d; : Cyl,(DblCat) —— DblCat,
sending a cylinder to its top and bottom respectively;

o A doubly lax transformation 6: F = G between vertical double
functors F, G: D — DbICat is given by a double functor

6: D — Cyl, (DblCat),

such that dpf = F and d16 = G.
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Doubly Lax Transformations 6: F = G

A-fp
For each double cell U¢ a #V )
A/ s B/
f‘/
GvOr
GvGflp ——— GvlgFf 04 Op
Gal U UGVFf
A ¥
Gf/GUQA 0o O FVFf
Gf’guH HQ 1 Fa
! b

Gf’@A/ Fu ﬁ 93/ Ff'Fu
f!
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Doubly Lax Transformations

Ff Fv
///////;B : Q;\\\\\\\$ F¥3/
! Fa
) CFA
o 10r GB LK O
L i'\\\'f\
GA///Gf . GV} \)GB/
A 10,
0, f
o) g
. Gf. T G
ca e |
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Doubly Lax Transformations

Doubly Lax Transformations

@ Let F,G: D — DbICat be vertical double functors.
@ Since doubly lax transformations F = G are represented by double

functors,
D — Cyl, (DblCat)

they are the objects of a double category
Homgye(F, G),

a sub double category of DblCat(ID, Cyl,(DblCat)).
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Doubly Lax Transformations

Lax Transformations Between 2-Functors

@ By applying Q to the hom-categories of a 2-category I3, we can make
it into a DblCat-enriched category Q(B).

@ This allows us to view lax transformations between 2-functors as a
special case of the new doubly lax transformations.

_F _OF
A ta B~ QA LaQB)
G o

@ By taking a restricted Q on the codomain, taking only a particular
class Q of 2-cells of B for the local horizontal arrows, we obtain
Q-transformations.

@ By taking a restricted Q on the domain, we also get
> -transformations.
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Doubly Lax Colimits

@ A doubly lax cocone for a vertical double functor F : D —— DblCat
with vertex E € DblCat is a doubly lax transformation F L AR,

@ There is a double category,
LC(F,E) = Homdg(l-_, AE)

of doubly lax cocones with vertex E.

@ A doubly lax cocone F 2. AL is the doubly lax colimit of F if, for
every E € DblCat,

DbICat(L,E) 2 LC(F,E)

is an isomorphism of double categories.

@ The doubly lax colimit can be obtained by a double Grothendieck
construction.
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Doubly Lax Colimits

The Double Grothendieck Construction: Objects and
Arrows

Let D —v> DbICat be a vertical double functor. The double category of
elements, Gr F = [ F, is defined by:

@ Objects: (C,x) with C in D and x in FC,

@ Vertical arrows:
(C.x) 2 (0 x),

where C —&5 C’in D and Fux -8 x' in FC'.

@ Horizontal arrows:
(€.x) 2 (D,y),

where C L> D in D, and Ffx LN yin FD.
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The Double Grothendieck Construction: Double Cells

(f)
(C7X)$(Day)

e Double cells: (U,p)$ (a,®) i(v,A) , where vz (v [, v) is a double
C/ / D/ /

( ?X ) (f/790/)( 7.y)

cell in D and @ is a double cell in FD':

FvFfx —>Fw Fvy

(Fa)xl J
A

v
Ff'Fux o

uny

Ff/Xl SO/ y/
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Doubly Lax Colimits

Factorization

@ Any horizontal arrow (f, ) can be factored as

(A.x) ) (B, Fs) =2 (8. ).
@ Any vertical arrow (u, p) can be factored as
(U,l. ) (1 /1p)

(A x) 37 (A, Fux) Zo=" (A, X).
@ And any double cell («, ®) can be factored as
(Ax) " (B, ) 2 (B.y)
J (v330n) Goir) §v1z,)
(u,13,) (al(ra)) (B', FvFfx) R AN (B', Fvy)
i i(lg,,(m)x)
, (Ferae) o,
(A, Fux) ——— (B, Ff'Fux) (15,,9) (132
(1;,% (1% 151,) i( . FF'p)
A/ / B/ Ff/ / B/ /
Wox) gy B ) = = (BY)
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The Main Theorem

@ There is a doubly lax cocone F 2. AGr F with the required
universal property:

\*: DblCat (/ F,E) S LC (/ F,E)
D D

is an iso of double categories for all E € DbICat.

@ Furthermore, fD extends to a functor of DblCat-categories
Hom, (D, DblCat)4, — DblCat/D

which is locally an isomorphism of double categories

Homgy(F, G) = (DblCat/D) (/DF—>D,/DG—>]D)>.
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Example: Semidirect Products

Let K and Q be groups and 6: Q — Aut(K). Then the double categorical
version of the semidirect product K xy @ is the following doubly lax
colimit:
o Let HB(Q) be the horizontal indexing double category;
@ Define the vertical functor D: HB(Q) —— DblCat on objects by
D(e) = VB(K)
@ On arrows, D(x)(e) = e and D(x)(k) = 0x(k) for x € Q and k € K.
(Since 6 is an automorphism, this is a well-defined double functor.)
@ Then the double category of elements, fHB(Q) D, has double cells

(0,0) X1 (0 0) x

Y v
(o,0) — (o,0)

(x;1e) X

[ J [
(1:J<)l (1%:10,(k)) l(1:,6&(k)) ~ k\lL (x,k) J%ex(k)
[ J [
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Examples

Colimits of vacant double groupoids

@ Let D be a vacant double groupoid and D —5—> DblCat a vertical
double functor valued in vacant double groupoids.

@ A double functor L: X — Y between vacant double groupoids has the
horizontal lifting property if for any horizontal arrow Lx % y in Y,

there is a horizontal arrow x % x’ in X with L(v) = .

e If F(v) has the horizontal lifting property for each vertical arrow v in
D, then the colimit double category fD F is again a vacant double
groupoid.
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Application I: Tricolimits in 2-Cat

@ For a 2-category A and a 2-functor F: A — 2-Cat, consider

A—F.2.cat—Y- DbICat,

and then apply V to obtain:

v(4) P y(Dbicat,) — "~ Q(DbICat,).
@ Applying the double Grothendieck construction gives us
V(VoF)=V / F
VA A

(as defined by Bakovic and Buckley)

@ The functor V: 2-Cat — DbICat, induces an isomorphism of
3-categories between 2-Cat and its image in DblCat,.

o It follows that fA F is the lax tricolimit of F in 2-Cat.
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Examples

Application Il: Categories of Elements

@ For a functor F: A — Set ,
colimF = moEl (dF),
where
A—F.set—9. cat

and El(dF) has objects (A, x) with x € F(A) and arrows
f: (A x)— (A, x") where f: A— A with F(f)(x) = x'.

@ This follows from the universal property of the elements construction
as lax colimit by applying it to cones with discrete categories as
vertex and using the adjunction 7y - d.

D. Pronk, M. Bayeh, M. Szyld Colimits of Double Categories 34 /38



Examples

@ We can apply the same paradigm to a functor F: A — Cat and use

™0
Cat — L _DblCat,
v

where the g is taken with respect to horizontal arrows and cells to
obtain a quotient of the vertical category of a double category.

o It follows from our Main Theorem that mq [z, Q(V o F) gives the
strict 2-categorical colimit of F.

D. Pronk, M. Bayeh, M. Szyld Colimits of Double Categories 35/38



Application Ill: Lax Tricolimits in DblICat,

For a 2-functor F: A — DblCat,, [, V(F) is the lax tricolimit of F in
DblCat, .
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Other Results and Work in Progress

@ Describe the notion of fibration between double categories that
characterizes the double functors of the form [ F — ID and extend
our results to a correspondence between suitable fibrations over D
and (double pseudo) indexing functors D — DblCat.

@ Extend the construction and the correspondence to double pseudo
indexing functors D — Q(DblCat,).
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Examples

Thank you!
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