Colimits of Double Categories

Dorette Pronk¹ with Marzieh Bayeh² and Martin Szyld¹

¹Dalhousie University

²University of Ottawa

Groups, Rings, Lie and Hopf Algebras. IV Memorial University, May 30, 2022

Double Categories

• A double category is an internal category in Cat,

$$\mathbf{C}_1 \times_{\mathbf{C}_0} \mathbf{C}_1 \xrightarrow{\circ} \mathbf{C}_1 \xrightarrow{s \atop {\underline{\leftarrow}} i^{\circ} \xrightarrow{>}} \mathbf{C}_0$$

 \bullet Since \boldsymbol{C}_0 and \boldsymbol{C}_1 are categories, this is really a diagram

Double Categories

In other words, a double category $\ensuremath{\mathbb{D}}$ has

- objects C₀₀,
- vertical arrows \mathbf{C}_{01} , denoted $d_0(v) \xrightarrow{v} d_1(v)$,
- horizontal arrows C_{10} , denoted $s(f) \xrightarrow{f} t(f)$,
- double cells C₁₁, denoted

where $d_0(\alpha) = f$, $d_1(\alpha) = f'$, $s(\alpha) = u$, and $t(\alpha) = v$.

Double Cell Composition

Double cells can be composed

Horizontally

• Vertically

Colimits of Double Categories

Double Cell Composition

Both composition operations are required to be associative and together they need to satisfy the middle-four axiom:

$$(\beta' \circ \alpha') \bullet (\beta \circ \alpha) = (\beta' \bullet \beta) \circ (\alpha' \bullet \alpha).$$

Examples

● For any 2-category C, Q(C) is the double category of quintets in C, with double cells

$$\begin{array}{ccc}
\stackrel{f}{\longrightarrow} & \text{for each } \alpha \colon vf \Rightarrow gu \text{ in } \mathcal{C}. \\
\stackrel{u}{\longleftarrow} & \stackrel{\alpha}{\longrightarrow} & \stackrel{v}{\longrightarrow} & \end{array}$$

② For any 2-category C, $\mathbb{H}(C)$ is the double category with double cells

③ The double category $\mathbb{V}(\mathcal{C})$ is defined analogously.

Example: Matched Pairs of Groups

Let Σ, F and G be groups with Σ = FG with right action
 ⊲: G × F → G and left action ▷: G × F → F defined by

$$g \cdot f = (g \triangleright f) \cdot (f \triangleleft g)$$

such that

$$g \triangleright (f_2 f_1) = (g \triangleright f_2) \cdot ((g \triangleleft f_2) \triangleright f_1)$$

$$(g_2 g_1) \triangleleft f = (g_2 \triangleleft (g_1 \triangleright f)) \cdot (g_1 \triangleleft f)$$

• We can model this as a double category

$$\begin{array}{c}
G \times F \xrightarrow{s=\pi_2} F \\
\xrightarrow{t=\flat} F \\
d_1=\pi_1 \downarrow d_0=\triangleleft \downarrow \downarrow \\
G \xrightarrow{s=\pi_2} \{\bullet\}
\end{array}$$

Example: Matched Pairs of Groups

• Double cells are of the form

- Note: for each left-hand corner there is precisely one double cell.
- Such double categories are called vacant.
- Horizontal composition:

since (g₂g₁) ⊲ f = (g₂ ⊲ (g₁ ⊳ f)) · (g₁ ⊲ f).
Vertical composition goes similarly (using the other condition).

Matched Pairs of Groupoids

- This leads us to a straightforward generalization of the notion of matched pair of groups; namely, a *matched pair of groupoids*.
- A matched pair of groupoids is a pair of groupoids

$$d_0, d_1 \colon \mathcal{V} \rightrightarrows \mathcal{P} \quad \text{and} \quad s, t \colon \mathcal{H} \rightrightarrows \mathcal{P}$$

with the same base (set of objects) with actions

$$\triangleright \colon \mathcal{H} \times_{s,\mathcal{P},d_1} \mathcal{V} \to \mathcal{V} \quad \text{and} \quad \triangleleft \colon \mathcal{H} \times_{s,\mathcal{P},d_1} \mathcal{V} \to \mathcal{H}$$

such that we can form double cells

and horizontal and vertical composition are well-defined.

• Result: Matched pair of groupoids are vacant double groupoids.

The category **DblCat**

The category **DblCat** of double categories has:

- objects: double categories $\mathbb{C}, \mathbb{D}, \ldots$;
- arrows: double functors F, G, \ldots are internal functors,

where F_0 and F_1 are functors.

• 2-cells: these come in two flavours: internal and external; or, vertical and horizontal.

Transformations

• Vertical Transformations $\gamma \colon F \Longrightarrow G \colon \mathbb{C} \rightrightarrows \mathbb{D}$ given by

$$FA \xrightarrow{Fh} FB$$

$$\gamma_{A} \downarrow \qquad \gamma_{h} \qquad \downarrow \gamma_{B} \text{ for each } h: A \to B \text{ in } \mathbb{C}$$

$$GA \xrightarrow{Gh} GB$$

functorial in the horizontal direction and natural in the vertical direction.

• Horizontal Transformations $\nu \colon F \Longrightarrow G$ are defined dually, by a family of double cells,

Modifications

Modifications are 3-dimensional cells

$$\begin{array}{ccc}
F & \stackrel{\mu}{\longrightarrow} & G \\
\gamma & & \Theta & & \\ \downarrow & & & \\ F' & \stackrel{\nu}{\longrightarrow} & G'
\end{array}$$

that are given by a family of double cells, indexed by the objects of the domain double category,

$$FA \xrightarrow{\mu_{A}} GA$$

$$\gamma_{A} \downarrow \Theta_{A} \downarrow \delta_{A}$$

$$F'A \xrightarrow{\nu_{A}} G'A.$$

Interlude

- When we view a group G as a one-object category BG, functors $BG \rightarrow BH$ correspond precisely to group homomorphisms $G \rightarrow H$.
- Now the natural transformations make the category of groups into a 2-category: natural transformations Bφ ⇒ Bψ correspond to group elements h ∈ H such that hψh⁻¹ = φ.
- This also places groups into a much larger category of groupoids or categories and this means that the notion of colimit of a diagram of groups may change significantly:
 - The colimit of a disconnected diagram is not a group.
 - We may also consider pseudo and lax colimits. (An important application of this is the tom Dieck fundamental groupoid.)

Example

- Double functors between vacant double groupoids correspond to groupoid homomorphisms between matched pairs that preserve the factorization.
- For matched pairs of groups, vertical transformations are determined by an element of the first factor of the codomain that establishes a conjugation between the homomorphisms between the first factors of the matched pairs.
- Analogously, horizontal transformations are determined by conjugation with an element of the second factor of the codomain.
- Modifications correspond to a pair of a horizontal and a vertical transformation.

The category **DblCat** - Properties

- DblCat is not a double category.
- DblCat is enriched in the category DblCat of double categories: each DblCat(ℂ, D) is a double category.
- We can also view **DblCat** as a 2-category: **DblCat**_v (resp. **DblCat**_h) is the 2-category with vertical (resp. horizontal) transformations.
- So lax (co)limits have typically been taken in the 2-category DblCat_v or DblCat_h with laxity in one direction.
- We want to introduce a notion of colimit that may have laxity in both directions so we want to index the diagram by a double category.

Diagrams in **DblCat**

To define a diagram of double categories indexed by a double category \mathbb{D} :

- Send objects of $\mathbb D$ to double categories;
- Send both horizontal and vertical arrows to double functors;
- For 2-dimensional cells we have to make a choice: we send double cells to *vertical* transformations.

So an indexing double functor is a double functor

```
\mathbb{D} \to \mathbb{Q}(\mathsf{DblCat}_{\nu})
```

We will also refer to indexing double functors as vertical double functors

$\mathbb{D} \twoheadrightarrow \mathsf{DblCat}.$

Questions

- Have we lost our ability to use horizontal transformations and modifications?
- Have we lost our ability to distinguish between horizontal and vertical arrows in the indexing double category?

No, they will show up in the notion of **doubly lax transformation**.

Intro to Doubly Lax Transformations

- Introduce a cylinder double category Cyl_v (DblCat).
- There are vertical double functors

$$\operatorname{Cyl}_{v}(\operatorname{DblCat}) \xrightarrow[v]{v}{}_{v} \xrightarrow{d_{0}}{}_{d_{1}} \operatorname{DblCat}$$

 A doubly lax transformation α: F ⇒ G: D → DblCat is given by a double functor

$$\alpha \colon \mathbb{D} \to \operatorname{Cyl}_{\nu}(\mathsf{DblCat})$$

such that $d_0 \alpha = F$ and $d_1 \alpha = G$.

The Double Category of (Vertical) Cylinders

The double category Cyl_v (**DblCat**) of **vertical cylinders** is defined by:

- Objects are double functors, denoted by $\downarrow f$.
- Vertical arrows $f \xrightarrow{(u,\mu,v)} \overline{f}$ are given by vertical transformations,

• Horizontal arrows $f \xrightarrow{(h,\kappa,k)} f'$ are given by horizontal transformations,

Double Cylinders

A double cell, $(u,\mu,v) \oint_{V} (\alpha,\Sigma,\beta) \oint_{V} (u',\mu',v')$ consists of two vertical 2-cells, $\overline{f} \xrightarrow[(\overline{h},\overline{\kappa},\overline{k})]{\overline{f'}} f'$

 $\overset{h}{\swarrow} \overset{u'}{a} \overset{u'}{\overbrace{h}}, \overset{k}{\swarrow} \overset{v'}{\underset{v'}{\flat}} \overset{v'}{\overbrace{k}} \quad \text{and}$

and a modification Σ ,

Cylinders and Transformations

- There are vertical double functors d₀, d₁: Cyl_v(DblCat) → DblCat, sending a cylinder to its top and bottom respectively;
- A doubly lax transformation θ: F ⇒ G between vertical double functors F, G: D → DblCat is given by a double functor

 $\theta \colon \mathbb{D} \to \operatorname{Cyl}_{v}(\operatorname{DblCat}),$

such that $d_0\theta = F$ and $d_1\theta = G$.

Doubly Lax Transformations $\theta \colon F \Rightarrow G$

Doubly Lax Transformations

- Let $F, G: \mathbb{D} \longrightarrow \mathbf{DblCat}$ be vertical double functors.
- Since doubly lax transformations $F \Rightarrow G$ are represented by double functors,

 $\mathbb{D} \to \operatorname{Cyl}_{v}(\operatorname{DblCat})$

they are the objects of a double category

 $\mathbb{H}om_{d\ell}(F, G),$

a sub double category of $\mathbf{DblCat}(\mathbb{D}, \mathsf{Cyl}_{v}(\mathbf{DblCat}))$.

Lax Transformations Between 2-Functors

- By applying Q to the hom-categories of a 2-category B, we can make it into a **DblCat**-enriched category Q(B).
- This allows us to view lax transformations between 2-functors as a special case of the new doubly lax transformations.

$$\begin{array}{ccc} & \xrightarrow{F} \\ \mathcal{A} & \xrightarrow{\downarrow \alpha} \\ & \xrightarrow{\mathcal{B}} \end{array} \begin{array}{c} & & & \\ \mathcal{B} \end{array} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

- By taking a restricted \mathbb{Q} on the codomain, taking only a particular class Ω of 2-cells of \mathcal{B} for the local horizontal arrows, we obtain Ω -transformations.
- By taking a restricted $\mathbb Q$ on the domain, we also get $\Sigma\text{-transformations}.$

Doubly Lax Colimits

- A doubly lax cocone for a vertical double functor F : D → DblCat with vertex E ∈ DblCat is a doubly lax transformation F ⇒ ΔE.
- There is a double category,

$$\mathbb{LC}(F,\mathbb{E}) := \mathbb{H}\mathsf{om}_{d\ell}(F,\Delta\mathbb{E})$$

of doubly lax cocones with vertex $\mathbb E.$

A doubly lax cocone F ⇒ ΔL is the doubly lax colimit of F if, for every E ∈ DblCat,

$$\mathsf{DblCat}(\mathbb{L},\mathbb{E}) \stackrel{\lambda^*}{\longrightarrow} \mathbb{LC}(F,\mathbb{E})$$

is an isomorphism of double categories.

• The doubly lax colimit can be obtained by a **double Grothendieck construction**.

The Double Grothendieck Construction: Objects and Arrows

Let $\mathbb{D} \xrightarrow{F} \mathbf{DblCat}$ be a vertical double functor. The **double category of** elements, $\mathbb{G}r F = \int_{\mathbb{D}} F$, is defined by:

- Objects: (C, x) with C in \mathbb{D} and x in FC,
- Vertical arrows:

$$(C,x) \xrightarrow{(u,\rho)} (C',x'),$$

where $C \xrightarrow{u} C'$ in \mathbb{D} and $Fux \xrightarrow{\rho} x'$ in FC'.

• Horizontal arrows:

$$(C,x) \xrightarrow{(f,\varphi)} (D,y),$$

where $C \xrightarrow{f} D$ in \mathbb{D} , and $Ffx \xrightarrow{\varphi} y$ in FD.

The Double Grothendieck Construction: Double Cells

• Double cells: $(u,\rho) \oint (\alpha,\Phi) = (D,y)$ • Double cells: $(u,\rho) \oint (\alpha,\Phi) = (v,\lambda)$, where $\alpha : (u \stackrel{f}{f'} v)$ is a double $(C',x') \xrightarrow{(f',\varphi')} (D',y')$

cell in \mathbb{D} and Φ is a double cell in *FD*':

Factorization

- Any horizontal arrow (f, φ) can be factored as $(A, x) \stackrel{(f, 1_{Ffx})}{\longrightarrow} (B, Ffx) \stackrel{(1_B, \varphi)}{\longrightarrow} (B, y).$
- Any vertical arrow (u, ρ) can be factored as

$$(A,x) \stackrel{(u,1_{Fux}^{\bullet})}{\longrightarrow} (A',Fux) \stackrel{(1_{A'}^{\bullet},\rho)}{\longrightarrow} (A',x').$$

• And any double cell (α, Φ) can be factored as

$$\begin{array}{c|c} (A,x) & \xrightarrow{(f,1_{Ffx})} (B,Ffx) \xrightarrow{(1_B,\varphi)} (B,y) \\ & \downarrow & (v,1_{F(vf)x}^{\bullet}) \downarrow & (1_v,1_{Fv\varphi}^{\bullet}) & \downarrow (v,1_{Fvy}^{\bullet}) \\ & (u,1_{Fux}^{\bullet}) \downarrow & (\alpha,1_{(F\alpha)_x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (\alpha,1_{(F\alpha)_x}) & (B',FvFfx) \xrightarrow{(1_{B'},Fv\varphi)} (B',Fvy) \\ & \downarrow & (1_{B'}^{\bullet},(F\alpha)_x) \\ & (A',Fux) \xrightarrow{(f',1_{F(f'u)x})} (B',Ff'Fux) & (1_{B'}^{\Box},\Phi) \\ & (1_{A'}^{\bullet},\rho) \downarrow & (1_{f'}^{\bullet},1_{Ff'\rho}) & \downarrow (1_{B'}^{\bullet},Ff'\rho) \\ & (A',x') \xrightarrow{(f',1_{Ff'x'})} (B',Ff'x') \xrightarrow{(1_{B'},\varphi')} (B',y') \end{array}$$

D. Pronk, M. Bayeh, M. Szyld

The Main Theorem

• There is a doubly lax cocone $F \xrightarrow{\lambda} \Delta \mathbb{G}r F$ with the required universal property:

$$\lambda^*\colon \mathbf{DblCat}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right) \to \mathbb{LC}\left(\int_{\mathbb{D}} \mathcal{F}, \mathbb{E}\right)$$

is an iso of double categories for all $\mathbb{E} \in \textbf{DblCat}.$

• Furthermore, $\int_{\mathbb{D}}$ extends to a functor of DblCat-categories

 $\operatorname{Hom}_{\nu}(\mathbb{D},\operatorname{\mathsf{DblCat}})_{d\ell} \to \operatorname{\mathsf{DblCat}}/\mathbb{D}$

which is locally an isomorphism of double categories

$$\mathbb{H}om_{d\ell}(F,G) \cong (\mathsf{DblCat}/\mathbb{D}) \left(\int_{\mathbb{D}} F \to \mathbb{D}, \int_{\mathbb{D}} G \to \mathbb{D} \right)$$

Example: Semidirect Products

Let K and Q be groups and $\theta: Q \to Aut(K)$. Then the double categorical version of the semidirect product $K \rtimes_{\theta} Q$ is the following doubly lax colimit:

- Let $\mathbb{H}B(Q)$ be the horizontal indexing double category;
- Define the vertical functor $D: \mathbb{H}B(Q) \rightarrow DblCat$ on objects by $D(\bullet) = \mathbb{V}B(K)$
- On arrows, D(x)(•) = and D(x)(k) = θ_x(k) for x ∈ Q and k ∈ K. (Since θ_x is an automorphism, this is a well-defined double functor.)
- Then the double category of elements, $\int_{\mathbb{H}B(Q)} D$, has double cells

$$\begin{array}{c} (\bullet, \bullet) \xrightarrow{(x, 1 \bullet)} (\bullet, \bullet) & \bullet \xrightarrow{x} \bullet \\ (1^{\bullet}_{*}, k) \oint (1^{\bullet}_{x}, 1_{\theta_{x}(k)}) \oint (1^{\bullet}_{*}, \theta_{x}(k)) & & \sim \to & k \oint (x, k) \oint \theta_{x}(k) \\ (\bullet, \bullet) \xrightarrow{(x, 1 \bullet)} (\bullet, \bullet) & & \bullet \xrightarrow{x} \bullet \end{array}$$

Colimits of vacant double groupoids

- Let D be a vacant double groupoid and D → DblCat a vertical double functor valued in vacant double groupoids.
- A double functor L: X → Y between vacant double groupoids has the horizontal lifting property if for any horizontal arrow Lx → y in Y, there is a horizontal arrow x → x' in X with L(ψ) = φ.
- If F(v) has the horizontal lifting property for each vertical arrow v in D, then the colimit double category ∫_D F is again a vacant double groupoid.

Application I: Tricolimits in 2-Cat

• For a 2-category \mathcal{A} and a 2-functor $F \colon \mathcal{A} \to 2\text{-Cat}$, consider

$$\mathcal{A} \xrightarrow{F} 2\text{-Cat} \xrightarrow{\mathbb{V}} \text{DblCat}_{v}$$

and then apply ${\mathbb V}$ to obtain:

$$\mathbb{V}(\mathcal{A}) \xrightarrow{\mathbb{V}(\mathbb{V} \circ \mathcal{F})} \mathbb{V}(\mathsf{DblCat}_{\nu}) \xrightarrow{\mathsf{incl}} \mathbb{Q}(\mathsf{DblCat}_{\nu}).$$

• Applying the double Grothendieck construction gives us

$$\int_{\mathbb{V}\mathcal{A}} \mathbb{V}(\mathbb{V} \circ F) = \mathbb{V} \int_{\mathcal{A}} F$$

(as defined by Bakovic and Buckley)

- The functor V: 2-Cat → DblCat_v induces an isomorphism of 3-categories between 2-Cat and its image in DblCat_v.
- It follows that $\int_{\mathcal{A}} F$ is the **lax tricolimit** of F in **2-Cat**.

D. Pronk, M. Bayeh, M. Szyld

Application II: Categories of Elements

• For a functor $F \colon \mathbf{A} \to \mathbf{Set}$,

$$\operatorname{colim} F = \pi_0 \operatorname{El} (dF),$$

where

$$A \xrightarrow{F} Set \xrightarrow{d} Cat$$

and El (*dF*) has objects (*A*, *x*) with $x \in F(A)$ and arrows $f: (A, x) \rightarrow (A', x')$ where $f: A \rightarrow A'$ with F(f)(x) = x'.

 This follows from the universal property of the elements construction as lax colimit by applying it to cones with discrete categories as vertex and using the adjunction π₀ ⊢ d. • We can apply the same paradigm to a functor $F: \mathcal{A} \rightarrow \mathbf{Cat}$ and use

$$\operatorname{Cat} \xrightarrow{\ll \pi_0}_{\mathbb{V}} \operatorname{DblCat}_{v}$$

where the π_0 is taken with respect to horizontal arrows and cells to obtain a quotient of the vertical category of a double category.

It follows from our Main Theorem that π₀ ∫_{ⅢA} Q(V ∘ F) gives the strict 2-categorical colimit of F.

Application III: Lax Tricolimits in **DblCat**_v

For a 2-functor $F : \mathbf{A} \to \mathbf{DblCat}_{v}$, $\int_{\mathbb{V}\mathbf{A}} \mathbb{V}(F)$ is the lax tricolimit of F in \mathbf{DblCat}_{v} .

Other Results and Work in Progress

- Describe the notion of fibration between double categories that characterizes the double functors of the form ∫_D F → D and extend our results to a correspondence between suitable fibrations over D and (double pseudo) indexing functors D → DblCat.
- Extend the construction and the correspondence to double pseudo indexing functors D → Q(DblCat_v).

Thank you!