A Tannakian approach to Grothendieck Galois theory

Martín Szyld

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

2010

- Generalizations of Galois theory
- Modern Tannaka theory
- Galois theory with a Tannakian approach

- Generalizations of Galois theory
- Modern Tannaka theory
- Galois theory with a Tannakian approach

Grothendieck Galois theory

We begin with

$$\mathcal{E}_{\mathsf{ns}_{<\infty}}$$

Under certain hypotheses we have a lifting of F

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\tilde{F}} & \beta \operatorname{Aut}(F)_{<\infty} \\
\downarrow & & \downarrow & \downarrow \\
\mathcal{E} \operatorname{ns}_{<\infty} & & & \\
\end{array}$$

which is an equivalence of categories.

localic Galois theory (by Dubuc)

- We may omit the finiteness hypothesis on F.
- Now the group Aut(F) doesn't yield the equivalence of categories.
- We construct instead a localic group $\ell Aut(F)$ whose points are the automorphisms of F.
- Under the finiteness hypothesis on F, $\ell Aut(F)$ is isomorphic to the group of its points.

- Generalizations of Galois theory
- 2 Modern Tannaka theory
- 3 Galois theory with a Tannakian approach

Tannaka theory by Joyal-Street

We begin with

Under certain hypotheses we have a lifting of T

which is an equivalence of categories.

The generalization " \mathcal{V} instead of Vec"

- Vec → V an arbitrary tensor category, $Vec_{<\infty} \leadsto \mathcal{V}_0$ subcategory of objects that have a dual.
- The definitions and constructions can be generalized.
- $End^{\vee}(T)$ is now a Hopf algebra in \mathcal{V} .

Note: It is an open problem if \tilde{T} is an equivalence in this general case.

- Generalizations of Galois theory
- 2 Modern Tannaka theory
- 3 Galois theory with a Tannakian approach

Considering $V = s\ell$

 $End^{\vee}(T)$: Hopf algebra in $s\ell \iff$ localic group.

Then we can compare the Galois construction $\ell Aut(F)$ with the Tannakian construction $End^{\vee}(T)$.

Main results (so far)

- We have a surjective locale morphism $\ell Aut(F) \to End^{\vee}(T)$.
- $Points(End^{\vee}(T)) = Aut(T) = Aut(F) = Points(\ell Aut(F)).$
- For the Grothendieck case, in which $\ell Aut(F)$ has enough points, so does $End^{\vee}(T)$ and therefore both constructions are isomorphic.
- In this case, since

action of the localic group \longleftrightarrow comodule of the Hopf in a set X algebra in ℓX ,

it follows that the Galois and Tannaka theorems are equivalent.

Thank you!