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Let n be a positive integer divisible by 8. The Clifford-cyclotomic gate set Gn consists of the Clifford
gates, together with a z-rotation of order n. It is easy to show that, if a circuit over Gn represents a
unitary matrix U , then the entries of U must lie in Rn, the smallest subring of C containing 1/2 and
exp(2πi/n). The converse implication, that every unitary U with entries in Rn can be represented
by a circuit over Gn, is harder to show, but it was recently proved to be true when n = 2k. In that
case, k− 2 ancillas suffice to synthesize a circuit for U , which is known to be minimal for k = 3,
but not for larger values of k. In the present paper, we make two contributions to the theory of
Clifford-cyclotomic circuits. Firstly, we improve the existing synthesis algorithm by showing that,
when n = 2k and k ≥ 4, only k− 3 ancillas are needed to synthesize a circuit over for U , which is
minimal for k = 4. Secondly, we extend the existing synthesis algorithm to the case of n = 3 ·2k with
k ≥ 3.

1 Introduction

1.1 Background

Let n be a positive integer divisible by 8. The Clifford-cyclotomic gate set of degree n, which we denote
by Gn, consists of the usual Clifford gates

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, and CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
together with the z-rotation of order n

Tn =

[
1 0
0 ζn

]
,

where ζn is the primitive n-th root of unity ζn = e2πi/n. For any n divisible by 8, Gn is universal for
quantum computation. The gate sets G8 and G16 are also known as the Clifford+T and Clifford+

√
T

gate sets, respectively. Clifford-cyclotomic circuits are important to the design of quantum algorithms
[15], the theory of fault-tolerant quantum computation [5, 10], and the study of quantum complexity
[14]. Because of this, they have received significant attention in the literature [2, 3, 7, 8, 9, 11, 13].

An important question in the theory of Clifford-cyclotomic circuits is that of precisely characterizing
the matrices that can be exactly represented by a circuit over Gn. Let Rn be the smallest subring of C
containing 1/2 and ζn. It is easy to see that, if a circuit over Gn represents a unitary matrix U , then the
entries of U must lie in Rn. The converse implication, that every unitary U with entries in Rn can be
represented by a circuit over Gn, is harder to show. Indeed, until recently, it was only known to be true for
the Clifford+T gate set G8, as well as for a handful of adjacent gate sets [3, 8]. Recently, however, it was
shown that this converse is true whenever n is a power of 2 [2]. In that case, log(n)− 2 ancillas suffice
to synthesize a circuit for U , which is known to be minimal for n = 8, but not for larger powers of 2.
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2 Contributions to the Theory of Clifford-Cyclotomic Circuits

This recent exact synthesis result naturally raises two questions. Firstly, when n is a power of 2, can the
number of ancillas needed to synthesize a Clifford-cyclotomic circuit of degree n be made smaller than
log(n)− 2? Secondly, can one prove an exact synthesis result for Clifford-cyclotomic circuits whose
degree is not a power of 2? In the present paper, we contribute to the theory of Clifford-cyclotomic
circuits by answering both questions positively.

1.2 Contributions

Let m be a positive integer.
We prove that any 2m-dimensional unitary U with entries in R16 can be exactly represented by an

m-qubit circuit over G16 using at most 1 ancilla, which is minimal. We establish this result through a
study of the effect of catalytic embeddings [1] on the determinant which may be of independent interest.
We then use this result about circuits over G16 to save an ancilla in synthesizing circuits over G2k , for
k ≥ 4.

We also prove, inspired by the results of [4], that any 2m-dimensional unitary U with entries in R3·2k

with k ≥ 3 can be exactly represented by an m-qubit circuit over G3·2k , thereby establishing a number-
theoretic characterization for Clifford-cyclotomic circuits whose degree is not a power of 2.

2 Rings

We now introduce the rings that will be important in what follows and we discuss some of their properties.
For further details, we encourage the reader to consult [6, 17].

We assume that rings have a multiplicative identity. If R is a ring and u ∈ R, we write R/(u) for the
quotient of R by the ideal (u). Two elements v and v′ of the ring R are congruent modulo u, if their
difference is a multiple of u, that is, if v− v′ ∈ (u). In that case, we write v ≡u v′, or v ≡ v′ (mod u).
The relation ≡u is an equivalence relation on R and the elements of R/(u) are precisely the equivalence
classes of elements of R under the relation ≡u. We sometimes refer to these equivalence classes as
residues.

2.1 Cyclotomic integers

We write ζn for the primitive n-th root of unity ζn = e2πi/n. The ring of cyclotomic integers Z[ζn]
is the smallest subring of C that contains ζn. Since ζ †

n = ζ n−1
n , the ring Z[ζn] is closed under complex

conjugation.
Let ϕ denote Euler’s totient function, so that ϕ(n) counts the integers in {1, . . . ,n} that are relatively

prime to n. The ring Z[ζn] can be characterized as

Z[ζn] =
{

a0 +a1ζn +a2ζ
2
n + · · ·+aϕ(n)−1ζ

ϕ(n)−1
n | a0, . . . ,aϕ(n)−1 ∈ Z

}
. (1)

Every element u ∈ Z[ζn] can be uniquely expressed as a Z-linear combination of powers of ζn as in
Equation (1). That is, we have

a0 +a1ζn + · · ·+aϕ(n)−1ζ
ϕ(n)−1
n = a′0 +a′1ζn + · · ·+a′

ϕ(n)−1ζ
ϕ(n)−1
n

if and only if a j = a′j for 0 ≤ j ≤ ϕ(n)−1.
We will be interested in two families of rings of cyclotomic integers: the one corresponding to n= 2k,

and the one corresponding to n = 3 ·2k. For k ≤ k′, we have Z[ζ2k ]⊆ Z[ζ2k′ ] (resp. Z[ζ3·2k ]⊆ Z[ζ3·2k′ ]).
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Moreover, for k ≥ 1, every element u ∈ Z[ζ2k+1 ] (resp. u ∈ Z[ζ3·2k+1 ]) can be uniquely written as u =
a+bζ2k+1 (resp. u = a+bζ3·2k+1), with a,b ∈ Z[ζ2k ] (resp. a,b ∈ Z[ζ3·2k ]).

We define the ring Rn as the smallest subring of C that contains 1/2 and ζn. The ring Rn can be
characterized as in Equation (1). Indeed, we have

Rn =
{

a0 +a1ζn +a2ζ
2
n + · · ·+aϕ(n)−1ζ

ϕ(n)−1
n | a0, . . . ,aϕ(n)−1 ∈ D

}
, (2)

where D = {a/2ℓ | a ∈ Z and ℓ ∈ N} is the ring of dyadic fractions. Every element u ∈ Rn can be
uniquely expressed as in Equation (2).

If n is divisible by 8, then n = 8d, so that ζ 2d
n = ζ4 = i, ζ d

n = ζ8, and ζ d
n + ζ−d

n = ζ8 − ζ
†
8 =

√
2.

Hence, in that case, we have i ∈Rn and 1/
√

2 ∈Rn, which implies that the entries of the gates H, S, CX ,
and Tn belong to Rn. Thus, whenever n is divisible by 8, any matrix that can be represented by a circuit
over Gn has entries in Rn.

2.2 The ring Z[ζ12]

The ring Z[ζ12] will play an important role in Section 7. We now record some of its relevant properties.
We know from Equation (1) that

Z[ζ12] =
{

a0 +a1ζ12 +a2ζ
2
12 +a3ζ

3
12 | a0,a1,a2,a3 ∈ Z

}
.

We define δ ∈ Z[ζ12] as δ = 1+ ζ 3
12 = 1+ i. The cyclotomic integer δ is prime in Z[ζ12] and the

prime factorization of 2 in Z[ζ12] is given by

2 = (1+ i)2(−i) = δ
2(−i). (3)

Now consider an element u∈R12. By Equations (2) and (3), we can write u as u= u′/δ ℓ, with u′ ∈Z[ζ12]
and ℓ ∈ N. The smallest such ℓ is called the least denominator exponent of u and is denoted lde(u).
Equivalently, lde(u) is the smallest ℓ ∈ N such that δ ℓu ∈ Z[ζ12]. More generally, if M is a matrix (or
a vector) with entries in R12, then lde(M) is the smallest ℓ such that δ ℓM is a matrix (or a vector) over
Z[ζ12].

Proposition 2.1. We have:

• Z[ζ12]/(2) = {a0 +a1ζ12 +a2ζ 2
12 +a3ζ 3

12 | a0,a1,a2,a3 ∈ {0,1}}, and

• Z[ζ12]/(δ ) = {0,1,ζ12,ζ
2
12}.

Proof. Let u = a0+a1ζ12+a2ζ 2
12+a3ζ 3

12 ∈Z[ζ12]. Since 2 ≡ 0 (mod 2), the coefficients a0, a1, a2, and
a3 can be chosen in {0,1}, which establishes the first item in the proposition. For the second item, notice
that, since δ = 1+ζ 3

12, we have 1+ζ 3
12 ≡ 0 (mod δ ) so that ζ 3

12 ≡−1 ≡ 1 (mod δ ). This, together with
the fact that 2 ≡ 0 (mod δ ), implies that any u ∈ Z[ζ12]/(δ ) can be written as u = a0 + a1ζ12 + a2ζ 2

12
with a0,a1,a2 ∈ {0,1}. Since we have the cyclotomic relation ζ 4

12 − ζ 2
12 + 1 = 0, we get ζ 2

12 ≡ ζ12 + 1
(mod δ ), from which the second item in the proposition then follows.

The quadratic integer ring Z[
√

3] is the smallest subring of C containing Z and
√

3. The elements
of Z[

√
3] can be characterized as Z[

√
3] = {a+ b

√
3 | a,b ∈ Z} and every element of Z[

√
3] can be

uniquely written as such a Z-linear combination of 1 and
√

3. Because
√

3 = ζ12+ζ
†
12, we have Z[

√
3]⊆



4 Contributions to the Theory of Clifford-Cyclotomic Circuits

u (mod δ ) u (mod 2) u†u (mod 2)
0 0 0
0 1+ζ 3

12 0
0 1+ζ12 +ζ 2

12 0
0 ζ12 +ζ 2

12 +ζ 3
12 0

1 1 1
1 ζ 3

12 1
1 ζ12 +ζ 2

12 ≡2 ζ12(1+ζ12)
√

3
1 1+ζ12 +ζ 2

12 +ζ 3
12 ≡2 ζ 4

12(1+ζ12)
√

3
ζ12 ζ12 1
ζ12 1+ζ 2

12 ≡2 ζ 4
12 1

ζ12 ζ 2
12 +ζ 3

12 ≡2 ζ 2
12(1+ζ12)

√
3

ζ12 1+ζ12 +ζ 3
12 ≡2 ζ 5

12(1+ζ12)
√

3
ζ 2

12 ζ 2
12 1

ζ 2
12 1+ζ12

√
3

ζ 2
12 1+ζ 2

12 +ζ 3
12 ≡2 ζ 3

12(1+ζ12)
√

3
ζ 2

12 ζ12 +ζ 3
12 ≡2 ζ 5

12 1

Table 1: The possible residues for u ∈ Z[ζ12] modulo δ and 2, as well as those for u†u modulo 2.

Z[ζ12]. Since ζ 6
12 =−1 and ζ 4

12 −ζ 2
12 +1 = 0, we have ζ

†
12 = ζ12 −ζ 3

12. It can then be verified by direct
computation that if u = a+bζ12 + cζ 2

12 +dζ 3
12 ∈ Z[ζ12], then

u†u = ((a2 + c2 +ac)+(b2 +d2 +bd))+(ab+bc+ cd)
√

3. (4)

In particular, the Euclidean norm of u ∈ Z[ζ12] belongs to Z[
√

3], i.e., if u ∈ Z[ζ12], then u†u ∈ Z[
√

3].

Lemma 2.2. We have:

• if u ∈ Z[ζ12] and u ≡δ 0, then u†u ≡2 0,

• if u ∈ Z[ζ12] and u ̸≡δ 0, then u†u ≡2 1 or u†u ≡2
√

3, and

• if u,v ∈ Z[ζ12] and u†u ≡2 v†v, then u ≡2 ζ m
12v for some integer m.

Proof. By inspection of Table 1, which lists the possible residues of u ∈ Z[ζ12] modulo δ and 2, as well
as the possible residues of u†u modulo 2. The calculations leading to the construction of Table 1 can
be verified using the congruences from the proof of Proposition 2.1, in addition to the following facts:
δ †δ = 2, (1+ζ12)

†(1+ζ12) = 2+
√

3 ≡2
√

3, and ζ 4
12 ≡2 ζ 2

12 +1.

3 Matrices and circuits

Let R be a commutative ring. We write M(R) for the collection of all square matrices with entries in R,
and Mm(R) for the ring of m×m matrices in R. When R is a subring of C that is closed under complex
conjugation, we write U(R) for the collection of all unitary matrices with entries in R, and Um(R) for the
group of m×m unitary matrices with entries in R.
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We now introduce certain matrices which will be useful in Section 7. Let c ∈ C. For 0 ≤ j ≤ m−1,
the one-level operator of type c is the m×m matrix c[ j] defined as

c[ j] =


· · · j · · ·

... I 0 0
j 0 c 0
... 0 0 I


Similarly, let M ∈ M2(C). For 0 ≤ j < j′ ≤ m−1, the two-level operator of type M is the m×m matrix
M[ j, j′] defined as

M[ j, j′] =



· · · j · · · j′ · · ·
... I 0 0 0 0
j 0 M1,1 0 M1,2 0
... 0 0 I 0 0

j′ 0 M2,1 0 M2,2 0
... 0 0 0 0 I


The one-level operator c[ j] acts on an m-dimensional vector u by scaling its j-th component by c and
leaving the remaining components unchanged. The two-level operator M[ j, j′] similarly acts as M on the
j-th and j′-th components of u and leaves the remaining components unchanged. Note that if |c| = 1
then c[ j] is unitary, and that if M ∈ U2(C), then M[ j, j′] is unitary.

We close this section by recalling the existence of some well-known circuit constructions which will
be useful in what follows. As mentioned in Section 1, when n is divisible by 8, the gate set Gn subsumes
the Clifford+T gate set. Hence, any matrix that can be represented by a Clifford+T circuit can also be
represented by a circuit over Gn. As a consequence, the one-level operators of type ζn and the two-level
operators of type X and H can be represented exactly over the gate set Gn using a single ancilla.

Theorem 3.1 (Giles & Selinger). The one- and two-level operators of type ζn, X, and H can each be
exactly represented by a circuit over Gn using at most one ancilla.

Proof. Circuit constructions for the one- and two-level operators of type ζ8, X , and H using a single
ancilla can be found in [8, Section 5]. To obtain a circuit for the one-level operator of type ζn, it suffices
to replace T with Tn where appropriate.

4 Determinants

The determinant is an important function on matrices. We will be interested in the determinant of
certain block matrices.

Let R be a commutative ring and let M be an m×m matrix with entries in R. The determinant of M
with respect to R, denoted by detR(M), is defined as

detR(M) = ∑
σ∈Sm

sgn(σ)
m

∏
j=1

M j,σ( j),

where Sm is the symmetric group of degree m and sgn(σ) is the sign of the permutation σ ∈ Sm. If R is a
subring of some ring R′ and M is a matrix with entries in R, we have detR(M) = detR′(M). For simplicity,
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when the ring R in which the determinant is to be computed is clear from context, we sometimes write
det(M) rather than detR(M). The determinant is multiplicative, in the sense that for matrices M and M′

over R of compatible dimensions, we have detR(MM′) = detR(M)detR(M′). Moreover, if M is a complex
unitary matrix, then |detC(M)|= 1.

If φ : R → R′ is a ring homomorphism, then the entrywise application of φ is a ring homomorphism
Mm(R)→Mm(R′). By a slight abuse of notation, we use the symbol φ to denote both the homomorphism
R → R′ and its entrywise extension M(R)→ M(R′). Now consider a matrix M over R. Since φ is a ring
homomorphism and the determinant is a polynomial in the matrix entries, we have

φ(detR(M)) = φ

(
∑

σ∈Sm

sgn(σ)
m

∏
j=1

M j,σ( j)

)
= ∑

σ∈Sm

sgn(σ)
m

∏
j=1

φ (M) j,σ( j) = detR′(φ(M)). (5)

Let R be a commutative ring and let R′ be a commutative subring of Mm(R). Now consider a matrix
M in Mm′(R′). The matrix M is an m′×m′ block matrix whose blocks are m×m matrices over R. We
can therefore compute the determinant of M with respect to R′, and then the determinant of the resulting
matrix with respect to R. Alternatively, we can “open” the blocks and think of M as an mm′×mm′ matrix
over R to directly compute the determinant of M with respect to R. The following theorem, whose proof
can be found in [16, Theorem 1], states that these two quantities are equal.

Theorem 4.1 (Silvester). Let R be a commutative ring, let R′ be a commutative subring of Mm(R), and
let M ∈ Mm′(R′). Then

detR M = detR(detR′ M).

It will be convenient for us to consider a variant of Theorem 4.1 where R′ is not a subring of Mm(R)
but simply related to one.

Corollary 4.2. Let R and R′ be two commutative rings, let φ : R′ → Mm(R) be a ring homomorphism,
and let M ∈ Mm′(R′). Then

detR(φ(M)) = detR(φ(detR′(M))).

Proof. Let Q = φ [R′] be the direct image of R′ under φ . Then Q is a commutative subring of Mm(R),
since R′ is commutative. Hence, by Theorem 4.1 and Equation (5),

detR(φ(M)) = detR(detQ(φ(M))) = detR(φ(detR′(M))),

as desired.

5 Catalytic embeddings

We now introduce catalytic embeddings [1, 2, 9]. Let U and V be two sets of unitary matrices. An
m-dimensional catalytic embedding from U into V is a pair (φ ,c) where φ : U → V is a function and
c ∈ Cm is a unit vector such that

1. If U ∈ U has dimension d, then φ(U) ∈ V has dimension md, and

2. For any u ∈ Cd , φ(U)(u⊗ c) = (Uu)⊗ c.

We often write (φ ,c) : U → V to indicate that (φ ,c) is a catalytic embedding from U to V . The
composition of an m-dimensional catalytic embedding (φ ,c) : U → V and an m′-dimensional catalytic
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embedding (φ ′,c′) : V → W is the mm′-dimensional catalytic embedding (φ ′ ◦φ ,c⊗c′) : U → W . The
catalytic embedding (idU ,1) : U → U acts as the identity for this notion of composition.

We now discuss two specific catalytic embeddings which will be important in the rest of this paper.
Let k ≥ 2 and define the matrix Λk and the vector ck by

Λk =

[
0 1

ζ2k−1 0

]
and ck =

1√
2

[
1

ζ2k

]
.

We can use Λk and ck to define a catalytic embedding, following [1, 2]. Consider a matrix M ∈ M(R2k).
Then M can be uniquely written as M = A+Bζ2k , for some A,B ∈ M(R2k−1), so that we can construct
the matrix A⊗ I2 +B⊗Λk ∈ M(R2k−1). It can be shown that the assignment

A+Bζ2k 7−→ A⊗ I2 +B⊗Λk (6)

defines, for every m, a ring homomorphism φk : Mm(R2k)→ M2m(R2k−1). Moreover, we have φk(M†) =
φk(M)† for every M, so that φk restricts to a group homomorphism Um(R2k)→ U2m(R2k−1). Now let u
be an arbitrary vector. Then

φk(U)(u⊗ ck) = (A⊗ I +B⊗Λk)(u⊗ ck)

= (A⊗ I)(u⊗ ck)+(B⊗Λk)(u⊗ ck)

= Au⊗ Ick +Bu⊗Λkck

= Au⊗ ck +Bu⊗ζ2k ck

= Au⊗ ck +Bζ2k u⊗ ck

= (Au+Bζ2k u)⊗ ck

= (Uu)⊗ ck.

The pair (φk,ck) is therefore a catalytic embedding. For future reference, we record this fact in the
proposition below.

Proposition 5.1. Let k ≥ 2. Then (φk,ck) is a 2-dimensional catalytic embedding from U(R2k) to
U(R2k−1).

By identifying M1(R2k) with R2k , we can think of the function φk, when restricted to R2k as a ring
homomorphism R2k → M2(R2k−1). The function φk as defined by Equation (6) is then the entrywise
extension of φk from R2k to M(R2k). We can therefore use Corollary 4.2 to get, for U ∈ U(R2k), an
expression for the determinant of φk(U).

Corollary 5.2. Let k ≥ 2 and let U ∈ Un(R2k). Then we have

detR2k−1 (φk(U)) = detR2k−1 (φk(detR2k (U))).

In other words, Corollary 5.2 states that, for U ∈ U(R2k), to compute the determinant of φk(U) over
R2k−1 , one can first compute the determinant u of U over R2k , and then compute the determinant of φk(u)
over R2k−1 .
Remark 5.3. The function detR2k−1 ◦φk : R2k → R2k−1 is known in number theory as the relative norm
of the field extension Q(ζ2k)/Q(ζ2k−1), and is often denoted by NQ(ζ2k )/Q(ζ2k−1 ). Corollary 5.2 therefore
states that the determinant (over R2k−1) of φk(U) is the relative norm of the determinant (over R2k ) of U ,
i.e., detR2k−1 ◦φk = NQ(ζ2k )/Q(ζ2k−1 ) ◦detR2k .



8 Contributions to the Theory of Clifford-Cyclotomic Circuits

We close this section by introducing a second catalytic embedding. The construction is essentially
the same as in the definition of (φk,ck). We define the matrix Γk and the vector dk by

Γk =

[
0 1

ζ3·2k−1 0

]
and dk =

1√
2

[
1

ζ3·2k

]
.

We then define the function ψk : M(R3·2k)→ M(R3·2k−1) by

ψk(A+Bζ2k) = A⊗ I2 +B⊗Γk.

Reasoning as above, we obtain the proposition below.

Proposition 5.4. Let k ≥ 2. Then (ψk,dk) is a 2-dimensional catalytic embedding from U(R3·2k) to
U(R3·2k−1).

An analogue of Corollary 5.2 holds for (ψk,dk), but we omit it here, since it will not be useful for
our purposes.

6 Clifford-cyclotomic circuits of degree 2k

We now turn to the exact synthesis of circuits for matrices with entries in the ring R2k . We will take
advantage of the following result, which was established in [8, Lemma 7].

Theorem 6.1 (Giles & Selinger). If U is a 2m × 2m matrix with entries in R8 and det(U) = 1, then U
can be exactly represented by an ancilla-free m-qubit circuit over G8.

Let U be a unitary matrix with entries in R16. Then the determinant of U over R16 is an element
of R16 of norm 1. The next lemma shows that this determinant must be a power of ζ16. The proof is
relegated to Appendix A.

Lemma 6.2. Let u ∈ R16 be such that |u|= 1. Then u = ζ ℓ
16 for some 0 ≤ ℓ≤ 15.

In order to save an ancilla in synthesizing circuits over G16 our strategy is the following. Consider an
m-qubit unitary U with entries in R16. By Lemma 6.2, the determinant of U is a power of ζ16. Hence,
multiplying U by an appropriate power of the one-level operator of type ζ16 if needed, we can assume
without loss of generality that U has determinant 1. By Corollary 5.2, φ4(U) is then an (m+ 1)-qubit
unitary of determinant 1 with entries in R8 and it can thus be represented by an (m+1)-qubit circuit by
Theorem 6.1.

Theorem 6.3. A 2m ×2m matrix U can be exactly represented by an m-qubit circuit over G16 if and only
if U ∈ U2m(R16). Furthermore, a single ancilla suffices to synthesize a circuit for U.

Proof. The left-to-right implication follows immediately from the fact that all the elements of G16 belong
to U(R16). For the right-to-left implication, let U ∈ U2m(R16). Since U is unitary, detR16(U) is an
element of R16 of norm 1. Thus, by Lemma 6.2, we have that detR16(U) = ζ ℓ

16 for some 0 ≤ ℓ ≤ 15.
Now let P be the fully-controlled phase gate

P = diag(1,1, ...,1,ζ ℓ
16),

and let V =P†U . Note that detR16(V )= detR16(P
†)detR16(U)= 1. Now consider the catalytic embedding

(φ4,c4) defined in Section 5. By Corollary 5.2, we have

detR8(φ4(V )) = detR8(φ4(detR16(V ))) = detR8(I2) = 1.
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Pu

e0

u
P C

Uu

e0 H T16 T †
16 H e0

Figure 1: The circuit constructed in the proof of Theorem 6.3.

Hence, φ4(V ) ∈ U2m+1(R8) and detR8(φ4(V )) = 1 so that, by Theorem 6.1, φ4(V ) can be represented by
an ancilla-free circuit C over G8. Now let D be the circuit D = (Im ⊗ (T16H))† ◦C ◦ (Im ⊗ (T16H)) over
G16. Then T16He0 = c4, so that, for an arbitrary u, we have:

D(u⊗ e0) = (Im ⊗ (T16H))† ◦C ◦ (Im ⊗ (T16H))(u⊗ e0)

= (Im ⊗ (T16H))† ◦C(u⊗ c4)

= (Im ⊗ (T16H))† ◦φ4(V )(u⊗ c4)

= (Im ⊗ (T16H))†((V u)⊗ c4)

= (V u)⊗ e0.

Hence D exactly represents V over G16 using a single ancilla. Moreover, P can also be represented by a
circuit over G16 using a single ancilla. Indeed, this follows from Theorem 3.1, since P is (a power of) a
one-level operator of type ζ16. Thus, the unitary U can be represented using a single ancilla as well.

The circuit constructed in the proof of Theorem 6.3 is depicted in Figure 1. We note that, if U is
a unitary with entries in R16 and the dimension of U is larger than 4, then an ancilla is necessary to
synthesize a matrix for a U . As a result, the construction of Theorem 6.3 uses the minimal number of
ancillas (in the worst case).
Corollary 6.4. Let k ≥ 4. A 2m ×2m matrix U can be exactly represented by an m-qubit circuit over G2k

if and only if U ∈U2m(R2k). Furthermore, k−3 ancillas suffice to synthesize a circuit for U.

Proof. By induction, using Theorem 6.3 as the base case, and a construction similar to the one given in
Figure 1 in the inductive step.

7 Clifford-cyclotomic circuits of degree 3 ·2k

We now turn to the exact synthesis of circuits for matrices with entries in the ring R3·2k . Our strategy is
to first prove that every matrix with entries in R24 can be represented by a circuit over G24, and to then
use an inductive argument like the one used in proving Corollary 6.4. In order to establish the result for
n = 24, we start by showing that every unitary matrix with entries in R12 can be factored as a product of
convenient generators.

7.1 Generating Un(R12)

To generate Un(R12), we use one-level operators of type ζ12 and two-level operators of type X and H ′,
where

H ′ = ζ8H =
δ

2

[
1 1
1 −1

]
.
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Note that H ′ ∈ U(R12). We follow [3, 8] and first show that a unit vector with entries in R12 can be
mapped to a standard basis vector using one- and two-level operators of type ζ12, X , and H ′. To this end,
we proceed by induction on the least denominator exponent of the vector.

Lemma 7.1. Let a and b be integers, at least one of which is nonzero. Then a2 + b2 + ab ≥ 1, and
equality is achieved exactly when (a,b) is one of (±1,0), (0,±1), or (±1,∓1).

Proof. First notice that if a ̸= 0 and b = 0, then a2 +b2 +ab = a2 ≥ 1, since a ∈ Z. A similar argument
applies when a= 0 and b ̸= 0. Equality in the first of these cases happens exactly when a=±1 and b= 0,
while equality in the second of these cases happens exactly when a = 0 and b =±1. Now suppose that
a and b are both nonzero, and assume, without loss of generality, that |a| ≥ |b|. We then have a2 ≥ |ab|,
so that a2 +ab ≥ 0. Hence,

a2 +ab+b2 ≥ b2 ≥ 1,

since b ∈ Z. Equality in this case happens exactly when b2 = 1 and a2 +ab = 0 which, in turn, happens
exactly when b =±1 and a =∓1.

Lemma 7.2. If u is an m-dimensional unit vector with entries in R12 and lde(u) = 0, then, for any
0 ≤ j ≤ m−1, there exists a sequence G1, . . . ,Gq of one- and two-level operators of type ζ12, X, and H ′

such that G1 · · ·Gqu = e j.

Proof. It suffices to show that u = ζ ℓ
12e j′ for some integers j′ and ℓ, since, if u is of that form, then it can

be mapped to e j by applying the appropriate operators of type ζ12 and X . Because u is a unit vector, we
have u†u = 1. Hence, using Equation (4), we get

1 = u†u = ∑
j

u†
ju j = ∑

j
((a2

j + c2
j +a jc j)+(b2

j +d2
j +b jd j))+(a jb j +b jc j + c jd j)

√
3.

Since every element Z[
√

3] can be uniquely expressed as an integer linear combination of 1 and
√

3, the
equation above implies the equations below.

∑
j
((a2

j + c2
j +a jc j)+(b2

j +d2
j +b jd j)) = 1 (7)

∑
j
(a jb j +b jc j + c jd j) = 0 (8)

It follows from Lemma 7.1 that Equation (7) can only be satisfied if there is exactly one index j such that
either a2

j +c2
j +a jc j = 1 or b2

j +d2
j +b jd j = 1, but not both. By Lemma 7.1, this happens precisely when

(a j,c j) is one of (±1,0), (0,±1), or (±1,∓1), and (b j,d j) is (0,0), or when (b j,d j) is one of (±1,0),
(0,±1), or (±1,∓1), and (a j,c j) is (0,0). These 12 solutions all satisfy Equation (8) and correspond
exactly to the possible powers of ζ12.

Lemma 7.3. If u,v ∈ Z[ζ12] are such that u†u ≡2 v†v, then there exists ℓ such that

H ′T ℓ
12

[
u
v

]
=

[
u′

v′

]
for some u′,v′ ∈ Z[ζ12] such that u′ ≡ v′ ≡ 0 (mod δ ).
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Proof. Let u and v be as stated. Then, by Lemma 2.2, we have u ≡2 ζ ℓ
12v for some ℓ. Equivalently,

u±ζ ℓ
12v ≡ 0 (mod 2), so that u+ζ ℓ

12v = 2w and u−ζ ℓ
12v = 2w′ for some w,w′ ∈ Z[ζ12]. We then get

H ′T ℓ
12

[
u
v

]
= H ′

[
u

ζ ℓ
12v

]
=

δ

2

[
u+ζ ℓ

12v
u−ζ ℓ

12v

]
=

δ

2

[
2w
2w′

]
= δ

[
w
w′

]
,

which completes the proof.

Lemma 7.4. If u is an m-dimensional unit vector with entries in R12 and lde(u) ≥ 1, then there exists
a sequence G1, . . .Gq of one- and two-level operators of type ζ12, X, and H ′ such that lde(G1 · · ·Gqu)<
lde(u).

Proof. Let k = lde(u) and let v = δ ku ∈Z[ζ12]. We know from Lemma 2.2 that, for v ∈Z[ζ12], if v ̸≡δ 0,
then v†v ≡2 1 or v†v ≡2

√
3. We can therefore write v†v as

v†v = ∑
j

v†
jv j = ∑

v j≡δ 0
v†

jv j + ∑
v j ̸≡δ 0

v†
jv j = ∑

v j≡δ 0
v†

jv j + ∑
v†

j v j≡21

v†
jv j + ∑

v†
j v j≡2

√
3

v†
jv j. (9)

Since u is a unit vector and δ †δ = 2, we have v†v = u†u(δ †δ )k = 2k. Because k ≥ 1, this implies that
v†v ≡2 0. Hence, by Lemma 2.2, taking Equation (9) modulo 2 yields

0 ≡2 v†v ≡2 a+b
√

3,

where a is the number of v j such that v†
jv j ≡2 1, and b be the number of v j such that v†

jv j ≡2
√

3. It then
follows that we must have a ≡2 b ≡2 0. That is, both a and b are even integers. We can therefore group
the entries of v that are not congruent to 0 modulo δ into pairs (v j,v j′) such that v†

jv j ≡2 v†
j′v j′ . Applying

Lemma 7.3 to every such pair reduces the least denominator exponent of u.

Lemma 7.5. If u is an m-dimensional unit vector with entries in R12, then, for any 0 ≤ j ≤ m− 1,
there exists a sequence G1, . . . ,Gq of one- and two-level operators of type ζ12, X, and H ′ such that
G1 · · ·Gqu = e j.

Proof. By induction on lde(u). If lde(u) = 0, then the result follows from Lemma 7.2. If lde(u) ≥ 1,
then, by Lemma 7.4, there exists a sequence G1, . . .Gq of two-level operators of type ζ12, X , and H ′

such that lde(G1 · · ·Gqu)< lde(u). Now let u′ = G1 · · ·Gqu. By the induction hypothesis, there exists a
sequence G′

1, . . . ,G
′
q′ of one- and two-level operators of type ζ12, X , and H such that G′

1 · · ·G′
ℓ′u

′ = e j.
We therefore have

e j = G′
1 · · ·G′

q′u
′ = G′

1 · · ·G′
q′ ·G1 · · ·Gqu,

which completes the proof.

Theorem 7.6. A matrix U belongs to U(R12) if and only if U can be expressed as a product of one- and
two-level operators of type ζ12, X, and H ′.

Proof. The right-to-left direction follows immediately from the fact that one- and two-level operators
of type ζ12, X , and H ′ are unitaries with entries in R12. We now prove the left-to-right direction. Let
U ∈ U(R12) and let u be the first column of U . Then u is a unit vector with entries in R12. Hence, by
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Lemma 7.5, there exists a sequence G1, . . . ,Gq of one- and two-level operators of type ζ12, X , and H ′

such that G1 · · ·Gqu = e1. Since U and G1, . . . ,Gq are unitaries with entries in R12, we have

G1 · · ·GqU =


1 0 · · · 0
0
... U ′

0

 ,
for some smaller U ′ ∈ U(R12). Repeating this process inductively, we ultimately obtain a sequence
F1, . . . ,Fq′ of one- and two-level operators of type ζ12, X and H ′ such that F1 · · ·Fq′U = I. Multiplying by
(F1 · · ·Fq′)

−1 on both sides then yields the desired decomposition.

7.2 Exact synthesis

Theorem 7.7. A 2m ×2m matrix U can be exactly represented by an m-qubit circuit over G24 if and only
if U ∈ U2m(R24). Furthermore, 2 ancillas suffice to synthesize a circuit for U.

Proof. The left-to-right follows immediately from the fact that elements of G24 belong to U(R24). Now
let U ∈ U2m(R24) and let (ψ3,d3) : U(R24)→ U(R12) be the catalytic embedding defined in Section 5.
Then ψ3(U) ∈ U2m+1(R12) and can be represented as a product of one- and two-level operators of type
ζ12, X , and H ′. By Theorem 3.1, these 1- and 2-level operators can each be represented by a circuit over
G24 using a single ancilla. Hence, there is a circuit C over G24 that represents ψ3(U). Using an additional
ancilla and reasoning as in Theorem 6.3, we obtain a circuit over G24 for U that uses 2 ancillas.

We can now use Theorem 7.7 to obtain an exact synthesis result for Clifford-cyclotomic gate sets of
degree 3 ·2k, with k ≥ 3. The proof is very similar to that of Corollary 6.4, so we omit it here.

Corollary 7.8. Let k ≥ 3. A 2m×2m matrix U can be exactly represented by an m-qubit circuit over G3·2k

if and only if U ∈U2m(R3·2k). Furthermore, k−1 ancillas suffice to synthesize a circuit for U.

8 Conclusion

We now know that, for n = 2k and n = 3 · 2k, m-qubit circuits with ancillas over Gn correspond pre-
cisely to matrices in U2m(Rn). Yet, many questions in the theory of Clifford-cyclotomic circuits remain
unanswered. Two natural open problems are the following.

1. For which values of n does the correspondence between circuits over Gn and matrices in U(Rn)
hold?

2. For the values of n for which the correspondence holds, what is the smallest number of ancillas
required to synthesize circuits in the worst case?

A natural initial step in addressing the first of these open problems is to consider values of n of the form
p · 2k, for p a prime. While it stands to reason that our results might generalize to such cases, it gets
progressively harder to analyze the relevant residues; this indicates that a novel approach may be needed
for such generalizations.
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A A Proof of Lemma 6.2

Let R be a ring. A unit of R is an element of R that admits a multiplicative inverse. A ring R is an
integral domain if uv ̸= 0, for all nonzero elements u,v ∈ R. An element u ∈ R is an associate of an
element v ∈ R if there exists a unit w ∈ R such that v = wu. A nonunit, nonzero element u ∈ R is called
prime if u divides v or u divides w, whenever u divides vw. An ideal I ⊊ R is called prime if uv ∈ I
implies u ∈ I or v ∈ I.

We start by recalling two well known facts, before establishing a property of roots of unity.

Proposition A.1. Let R be a commutative ring with identity and let u,v ∈ R. Then u and v are associates
if and only if u | v and v | u.

Proposition A.2. Let R be a commutative ring with identity and let u ∈ R. Then u is prime if and only if
the ideal generated by u is prime.

Lemma A.3. Let a,b ∈ N be such that gcd(a,b) = 1. Then 1−ζ b
a and 1−ζa are associates.

Proof. We have
1−ζ

b
a = (1−ζa)(1+ζa +ζ

2
a + ...+ζ

b−1
a ).

Hence, 1− ζa | 1− ζ b
a . Now since gcd(a,b) = 1, there exist c,d ∈ Z such that ac+ bd = 1. Then

1−ζa = 1−ζ ac+bd
a = 1− (ζ b

a )
d , and thus

1−ζa = 1− (ζ b
a )

d = (1−ζ
b
a )(1+ζ

b
a +(ζ b

a )
2 + ...+(ζ b

a )
d−1).

Hence, 1−ζ b
a | 1−ζa. Thus, 1−ζa and 1−ζ b

a are associates by Proposition A.1.

We are now in a position to prove Lemma 6.2, whose statement we reproduce below.

Lemma. Let u ∈ R16 be such that |u|= 1. Then u = ζ ℓ
16 for some 0 ≤ ℓ≤ 15.

Proof. Let χ = 1− ζ16 ∈ R16. Then χ is a prime element in Z[ζ16] and, by Proposition A.2, ⟨χ⟩ is a
prime ideal of R16. By Lemma A.3, we can decompose 2 in Z[ζ16] as

2 = (1+ i)(1− i)

= (1− i)2u1

= (1−ζ8)
2(1+ζ8)

2u1

= (1−ζ8)
4u2u1

= (1−ζ16)
4(1+ζ16)

4u2u1

= (1−ζ16)
8u3u2u1

= χ
8u3u2u1,

where u1, u2, and u3 are units in Z[i], Z[ζ8], and Z[ζ16], respectively. Hence, any u ∈ R16, can be written
as u = v/χℓ with ℓ ∈ N and v ∈ Z[ζ16]. Now let u ∈ R16 be such that |u| = 1 and write u as u = v/χℓ

with ℓ minimal. Observe that χ† = 1−ζ
†
16 =−ζ

†
16χ . We hence have

1 = |u|2 = u†u =
v†v

(−ζ
†
16)

ℓχ2ℓ
,
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so that v†v = χ2ℓ · (−ζ
†
16)

ℓ. If ℓ > 0, we have v†v ∈ ⟨χ⟩. Since χ is prime, this implies that we must have
either v ∈ ⟨χ⟩ or v† ∈ ⟨χ⟩. But v† ∈ ⟨χ⟩ would imply v ∈ ⟨χ⟩ since χ and χ† are associates. Hence, if
ℓ > 0, then v ∈ ⟨χ⟩, which contradicts the minimality of ℓ. It must thus be the case that ℓ = 0, so that u
is in fact an element of Z[ζ16]. Writing u as u = ∑

7
j=0 a jζ

j
16, with a j ∈ Z, we then get

1 = u†u

=
7

∑
j=0

a2
j +2Re(ζ16)((

6

∑
j=0

a ja j+1)−a0a7)+2Re(ζ 2
16)((

5

∑
j=0

a ja j+2)−a0a6 −a1a7)

+2Re(ζ 3
16)((

4

∑
j=0

a ja j+3)−a0a5 −a1a6 −a2a7).

The above equation holds when exactly one a j = ±1 and the rest are zero. Hence u = ζ ℓ
16 for some

0 ≤ ℓ≤ 15, as desired.
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