
The Dawn of Quantum Programming

Neil J. Ross

Department of Mathematics and Statistics, Dalhousie University

Halifax, NS, Canada

Seminal work in the field of quantum programming was done at the turn of the century but these
investigations were often restricted to theoretical studies and toy programming languages [4, 5]. One reason
for these limitations was the lack of enthusiasm from the broader quantum computing community. The
experimental hurdles that separated us from quantum computers were so vast that the questions related to
the programming of such hypothetical machines appeared irrelevant. The great experimental progress of
the last few years, which recently culminated in small, but universal, quantum computers [3], has inverted
this trend. While existing quantum devices remain limited in size, they hold a promise of scalability which
warrants giving quantum programming a second thought.

Many questions which were hitherto considered either solved or peripheral have resurfaced with the
recent developments in practical quantum computing. How should we program a quantum computer? To
properly answer this question we need to identify the basic operations from which quantum algorithms are
built in order to define programming languages that are natural and well-structured. Ideally, a quantum
programming language will not only allow us to implement existing quantum algorithms but will also facilitate
the discovery of new ones. Further, how should we compile a quantum program? Once a quantum algorithm
is implemented in a programming language it must be translated into a sequence of operations that can be
physically performed on hardware. This compilation must be executed in a way that does not offset the
computational advantage we hoped to gain by using a quantum computer. We need our quantum compilers
to preserve our quantum advantage.

The recent developments in practical quantum computing not only revive old questions about quantum
programming they also raise new questions which quantum programming can help answer. Indeed, with
medium-scale quantum computers on the horizon, it has become paramount to understand what to do with
the first generation of super-classical quantum devices. In order to identify computational problems that can
be solved with such devices we need to shift from an asymptotic understanding of quantum algorithms to a
more concrete one. Scalable quantum programming languages and efficient quantum compilers can assist in
understanding and minimizing the concrete cost of quantum algorithms.

Various quantum programming languages have been released in the last few years including LIQUi |〉
[8], Quipper [2], Scaffold [1], and, more recently, Q# [7]. All of these languages propose answers to the
fundamental questions of quantum programming and were designed with the aim of addressing the challenges
of practical quantum computing. In particular, all of these languages make it possible to express and reason
about quantum algorithms of the size and type expected in real-world applications of quantum computing.
In doing so, quantum programming environments can play an essential role in turning quantum computers
from objects of science into instruments of scientific discovery.

ProjectQ [6], an open source software stack for quantum computing recently introduced by Damian
S. Steiger, Thomas Haner, and Matthias Troyer, belongs to this new tradition of quantum programming
environments inspired by the needs of practical quantum computing. ProjectQ provides a powerful circuit
description language embedded in Python. The ProjectQ language has an intuitive syntax and many high-
level operators acting on circuits. Therefore, a programmer can define circuits gate-by-gate but can also
combine existing circuits into new ones. For example, a circuit can be controlled, iterated, or conjugated
by another circuit. Further to the ability to describe complex families of circuits, ProjectQ provides a
complete compilation framework. The ProjectQ compiler meshes decomposition and optimization passes

1



which can result in very efficient implementations of quantum algorithms. Finally, the ProjectQ compilation
framework is compatible with a variety of backends: circuit viewers, resource counters, simulators, and
even IBM’s quantum computer. ProjectQ is therefore a complete programming environment for quantum
computing; one in which it is possible to express, optimize, test, and run quantum algorithms. As such, it
represents an important contribution to the field of practical quantum computing.

References

[1] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt,
J. Black, F. Chong, M. Martonosi, M. Suchara, K. Brown, M. Pedram, and T. Brun. Scaffold: Quantum
Programming Language. 2012.

[2] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: A Scalable Quantum
Programming Language. ACM SIGPLAN Notices, 48(6):333–342, 2013.

[3] IBM Research. Quantum Experience. http://www.research.ibm.com/quantum/. Accessed: 2018-05-20.

[4] E. Knill. Conventions for Quantum Pseudocode. 1996.

[5] P. Selinger. Towards a Quantum Programming Language. Mathematical Structures in Computer Science,
14(4):527–586, Aug. 2004.

[6] D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an open source software framework for quantum
computing. Quantum, 2:49, Jan. 2018.

[7] K. M. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova,
A. Paz, and M. Roetteler. Q#: Enabling Scalable Quantum Computing and Development with a High-
Level Domain-Specific Language. 2018.

[8] D. Wecker and K. Svore. LIQUi |〉: A Software Design Architecture and Domain-Specific Language for
Quantum Computing. 2014.

2

http://www.research.ibm.com/quantum/

