
ar
X

iv
:2

20
4.

13
04

1v
1

 [
cs

.P
L

]
 2

7
A

pr
 2

02
2

Proto-Quipper with dynamic lifting

Peng Fu, Kohei Kishida, Neil J. Ross, Peter Selinger

April 28, 2022

Abstract

Quipper is a functional programming language for quantum computing. Proto-Quipper is a family of
languages aiming to provide a formal foundation for Quipper. In this paper, we extend Proto-Quipper-
M with a construct called dynamic lifting, which is present in Quipper. By virtue of being a circuit
description language, Proto-Quipper has two separate runtimes: circuit generation time and circuit
execution time. Values that are known at circuit generation time are called parameters, and values that
are known at circuit execution time are called states. Dynamic lifting is an operation that enables a state,
such as the result of a measurement, to be lifted to a parameter, where it can influence the generation of
the next portion of the circuit. As a result, dynamic lifting enables Proto-Quipper programs to interleave
classical and quantum computation. We describe the syntax of a language we call Proto-Quipper-Dyn.
Its type system uses a system of modalities to keep track of the use of dynamic lifting. We also provide an
operational semantics, as well as an abstract categorical semantics for dynamic lifting based on enriched
category theory. We prove that both the type system and the operational semantics are sound with
respect to our categorical semantics. Finally, we give some examples of Proto-Quipper-Dyn programs
that make essential use of dynamic lifting. A concrete categorical model is given in a companion paper
[FKRS22].

1 Introduction

1.1 Quipper and Proto-Quipper

Quipper is a functional programming language for quantum computing [GLR+13b, GLR+13a]. The overall
aim of Quipper is to allow quantum algorithms to be specified at a level of abstraction that is similar
to how the algorithm might be described in a research paper, and to compile this down to the level of
individual quantum gates, producing a logical quantum circuit. Quipper has been used to program a set
of nontrivial algorithms from the quantum computing literature, and it has been used to generate quantum
circuits consisting of trillions of gates. As a circuit description language, Quipper shares some of the traits
of hardware description languages. In particular, it has two notions of runtime: The first of these is circuit
generation time. This is when a Quipper program is run to generate a quantum circuit. The second is circuit
execution time. This is when a quantum circuit is executed by a quantum computer or a simulator.

Quipper is a practical language, implemented as an embedded language in Haskell. As such, it lacks
formal foundations such as operational and denotational semantics. This motivates the development of
Proto-Quipper, a family of experimental languages that aim to provide formal semantics for fragments of
Quipper. In Proto-Quipper-S [Ros15], a linear type system with subtyping as well as a small-step operational
semantics were introduced. Later, Proto-Quipper-M [RS18] gave a linear type system that features a big-
step operational semantics and a sound categorical semantics. Recently, Proto-Quipper-D [FKS20, FKRS20]
proposed a type system with linear dependent types as well as a fibrational categorical semantics.

1.2 Dynamic lifting and the interaction of the two runtimes

Proto-Quipper, like Quipper, distinguishes two runtimes. Moreover, Proto-Quipper gives a formal account
of parameters and states. A parameter is a value that is known at circuit generation time, such as a boolean

1

http://arxiv.org/abs/2204.13041v1

value for an if-then-else expression. A state is a value that is only known at circuit execution time, such
as the actual state of a qubit or classical bit in a circuit. The type system of Proto-Quipper reflects this
distinction. Among the types, there is a subset of parameter types, such as Nat and Bool, whose elements
can be duplicated and discarded. There is also a subset of state types, such as Qubit and Bit, which are
linear so that their elements cannot in general be duplicated or discarded. One of the fundamental design
decisions of Proto-Quipper is that parameter types and state types belong to the same universe of types, so
that one can form compound types that are part parameter and part state. An example of this is the type
Bool⊗Qubit, whose elements are pairs of a boolean (a parameter) and a qubit (a state). Another example
is the type of lists of qubits. Here, the length of the list is a parameter (known at circuit generation time),
but the actual qubits in the list are states (known at circuit execution time). In this way, Proto-Quipper
differs, e.g., from Qwire, an embedded quantum circuit description language in which parameters and states
belong to separate universes [PRZ17].

In Quipper, the two runtimes can interact with each other. A priori, it is clear that states can depend
on parameters. For example, we can initialize a qubit based on a boolean parameter, simply by inserting a
gate at circuit generation time to initialize the qubit in one state or another. The opposite direction is more
complicated. Usually, circuit execution happens after circuit generation, and in this case, it is clear that a
state cannot be converted to a parameter. However, there are some quantum algorithms that require circuit
generation and circuit execution to be interleaved. Here, a state, such as the outcome of a measurement in
a circuit, may be used to inform the generation of the next part of the circuit. To enable such interleaving,
Quipper provides a construct called dynamic lifting, which enables a state to be lifted to a parameter in
certain situations. For example, dynamic lifting permits the result of a measurement, which is a state of
type Bit, to be lifted to a parameter of type Bool. It is important to note that dynamic lifting is an
expensive operation, as it requires control to pass from circuit evaluation time back to circuit generation
time. This requires the real-time quantum computer to put all of its active qubits into long-term storage
while spending an indeterminate amount of time awaiting further instructions from the classical computer
in charge of circuit generation.

Dynamic lifting is important because it can be used to express quantum algorithms that require inter-
leaving circuit execution time and circuit generation time. While there are many quantum algorithms that
do not require such interleaving, there are some that do. An example is magic state distillation [BK05].
Here, the goal is to prepare a qubit in some target state. We start with a large number of qubits, say n of
them, each of which is a rough approximation of the target state. We then apply a probabilistic “distillation”
procedure which yields on average, say, n/4 qubits that are better approximations of the target state; the
remaining qubits are wasted. By repeated distillation steps, we eventually wind up with a small number of
qubits that are excellent approximations of the target state. In such a situation, dynamic lifting is essential
because after each distillation step, we must throw away the wasted qubits, but we do not know ahead of
time which ones (or indeed, how many) there will be. Thus which future gates will be applied depends on
the outcomes of previous measurements. With the help of dynamic lifting, these algorithms can be naturally
expressed as functions in the programming language.

The concept of dynamic lifting is different from measurement, and the two should not be confused.
Measurement is merely a gate in a circuit, turning a quantum bit (a state) into a classical bit (also a state).
Dynamic lifting is an operation of the programming language, turning a classical bit (a state) into a boolean
(a parameter).

1.3 A type system for dynamic lifting

Previous versions of Proto-Quipper lacked dynamic lifting. Modeling dynamic lifting is a challenging problem.
To better understand the issues involved, it is useful to know that there are two things that can be done
with circuits in Proto-Quipper. On the one hand, circuits can be run on a quantum device. On the other
hand, circuits can be boxed, which means, converted to a data structure that can then be inspected and
manipulated. The ability to box circuits is crucial to Quipper’s ability to express algorithms at a natural
level of abstraction, because algorithms are often described in terms of meta-operations on circuits. For
example, a circuit may be constructed by applying gate transformations to an existing circuit, reversing or

2

repeating it, etc.
Now it is clear that dynamic lifting only makes sense in the context of a circuit that is actually being

executed, rather than one that is merely being boxed. We will keep track of this in the programming language
by adding modalities to the type system and a corresponding monad to the semantics.

Before we can describe the operational or denotational semantics of Proto-Quipper-Dyn, we must be
more precise about what we mean by a “circuit”. We must also specify what it means to “execute” a circuit.
There are many different notions of circuits, differing, for example, in which collection of gates is provided.
Rather than specializing to one of these, we take a more general point of view: a circuit is simply a morphism
in a symmetric monoidal category M, which we assume to be given ahead of time, but otherwise arbitrary
(subject to some properties). Similarly, for the execution of circuits, we assume given another symmetric
monoidal category Q of quantum operations. Conceptually, the morphisms of M are syntactic entities; thus,
M is typically a category that is free generated (say by a collection of gates). On the other hand, we think of
the morphisms of Q as physical operations, which can be performed on a quantum computer. The categories
M and Q have the same objects, and there is an interpretation functor J : M → Q.

Operationally, dynamic lifting is an operation that reads the state of a bit in Q, and returns a boolean
value. Since a bit state can be the result of a measurement, the read operation for dynamic lifting is
nondeterministic, i.e., it can return different boolean values with probabilities governed by measurements.
The nondeterministic nature of the dynamic lifting suggests that it should be modeled as a monadic operation
[Mog91].

We therefore conceptualize the types of Proto-Quipper-Dyn as the objects of a single category A, with
a monad T : A → A, called the dynamic lifting monad. This will be done in such a way that M is fully
embedded in A, and Q is fully embedded in the Kleisli category KlT (A), in a way that makes the following
diagram commute.

M A

Q KlT (A)

ψ

J E

φ

Here, J is the given interpretation functor, and E is the canonical functor from A to KlT (A). We then
model dynamic lifting as a map dynlift : Bit → TBool ∈ KlT (A) such that the following diagram commutes.

Bit

Bool TBool

dynlift

η

init

Note that dynamic lifting is a morphism of the Kleisli category; this makes sense because it is essentially
a side-effecting read operation. More generally, any computation that potentially uses dynamic lifting will
have type A→ TB.

As mentioned above, our type system must also distinguish quantum circuits that are being executed
from quantum circuits that are being boxed. Naturally, since the latter may not use dynamic lifting, they
are maps in the category A while the former are maps in the Kleisli category KlT (A). As a practical matter
for programmer convenience, it would be awkward to have T as an explicit type constructor that must be
mentioned everywhere in the program. Instead, we use a system of modalities to keep track of the dynamic
lifting monad T . More specifically, we annotate a typing judgment with a modality, i.e., Γ ⊢α M : A, where
α ∈ {0, 1}. When α = 0, it means that the term M represents a morphism JΓK → T JAK in the Kleisli
category KlT (A). When α = 1, it means that the term M represents a morphism JΓK → JAK in A. An
example of the typing rule for dynamic lifting is the following (where Meas : Qubit → Bit represents the
measurement gate).

ℓ : Qubit ⊢1 Meas(ℓ) : Bit

ℓ : Qubit ⊢0 dynlift(Meas(ℓ)) : Bool

If we have a quantum circuit Qubit → Bit, it can be run by a quantum computer and the measurement
result of type Bit will be lifted to a parameter of type Bool. Note that the dynlift operation sets the modality

3

of the typing judgment to 0, and as a result, we have a map Qubit → TBool in the Kleisli category. The use
of modalities in our type system ensures that the term Meas(ℓ) can be turned into a boxed circuit, whereas
it will be a compile time typing error to try to box the term dynlift(Meas(ℓ)).

1.4 Operational semantics

Next, let us take a look at the operational semantics of Proto-Quipper-Dyn. In previous versions of Proto-
Quipper, the operational semantics used configurations of the form (C,M), where C is the circuit being
currently constructed, and M is a term. On the other hand, in the quantum lambda calculus [SV09], which
is not a circuit construction language but intended to run directly on a quantum computer, the operational
semantics used configurations of the form (Q,M), where Q is the current quantum state and M is a term.

In a sense, Proto-Quipper-Dyn is a combination of these prior languages: it is a language for circuit con-
struction (via the boxing operation), but it is also a language for running quantum operations (as otherwise
dynamic lifting would not be possible). Consequently, our operational semantics uses both kinds of configu-
rations: those of the form (Q,M) are only used for top-level computations that actually run on a quantum
device, and those of the form (C,M) are used during boxing. These two kinds of configurations correspond
closely to the two runtimes, since configuration of the form (C,M) are used for circuit construction and those
of the form (Q,M) are used for circuit execution. They also correspond to the two categories M and Q.

Consequently, the evaluation rules take two different forms. Evaluation at circuit generation time takes
the form (C,M) ⇓ (C′, V), where C is a circuit. The type system ensures that such an evaluation does not
involve dynamic lifting, so it can be done entirely with a classical computer and the evaluation is deterministic.
On the other hand, evaluation at circuit execution time takes the form (Q,M) ⇓ ∑

i pi(Qi, Vi), where Q
represents a quantum state. Since M can use dynamic lifting, the result of such an evaluation rule is
probabilistic, with outcome (Qi, Vi) happening with probability pi.

1.5 Related work

In recent work, Lee et al. [LPVX21] used a different approach to extending Proto-Quipper with dynamic
lifting. Instead of distinguishing circuit generation time and circuit execution time, they work with a single
runtime modeled by a category of quantum channels, which are a generalization of quantum circuits with
a notion of branching for measurement results. As a result, their categorical semantics and type system do
not distinguish quantum circuits from quantum computations that use dynamic lifting.

Another version of Proto-Quipper with a form of dynamic lifting is proposed by Colledan and Dal Lago
[CL22]. Their language uses a very general version of dynamic lifting, even more general than the one
present in the Quipper language, which allows for measurements to be conditional on the outcomes of prior
measurements. As a consequence, the output type of their circuit can depend on the outcomes of the
measurements specified in the computation. While this alternative notion of dynamic lifting is interesting
in its own right, their language does not come equipped with a denotational semantics.

Qwire [PRZ17] is a quantum programming language that also supports dynamic lifting. Qwire has a host
language and a circuit language. The host language describes the computation of the classical computer,
while the circuit language describes the computation of the quantum computer. Qwire has a denotational
semantics for the circuit language, but not for the host language. Dynamic lifting is part of the syntax in
their circuit language. Therefore Qwire’s notion of quantum circuit differs from Proto-Quipper’s notion of
quantum circuit. For example, printing a circuit in Qwire could fail because of dynamic lifting, whereas
circuit printing in Proto-Quipper-Dyn can not fail, because our type system ensures that a value of a circuit
type does not use dynamic lifting.

1.6 Contributions

In this paper, we describe the syntax and type system of an extension of Proto-Quipper with dynamic lifting,
called Proto-Quipper-Dyn. The type system uses a system of modalities to keep track of the use of dynamic
lifting. We also provide an operational semantics, using two different kinds of configurations to model circuit

4

generation time and circuit execution time. We further provide an abstract categorical semantics for this
language, in which dynamic lifting is modeled by a map Bit → TBool, where T is a monad encapsulating
circuit execution. By an “abstract” categorical semantics, we mean that we only state the properties that a
categorical model must satisfy to give a sound interpretation of the language, without constructing an actual
concrete example of such a model. We give such a concrete model in a companion paper [FKRS22].

The rest of the paper is organized as follows: In Section 2, we briefly recall the basics of enriched
category theory, and then we give an axiomatization of a general categorical semantics for dynamic lifting.
In Section 3, we define a type system for dynamic lifting that uses a system of modalities. We then show
how a typing judgment with modalities is interpreted as a morphism in our categorical model. In Section
4, we define a call-by-value big-step operational semantics for our language. We show that the operational
semantics satisfies type preservation and that the type system guarantees error freeness. We also show that
the operational semantics is sound with respect to the enriched categorical semantics. In Section 5, we
give some applications of dynamic lifting in Proto-Quipper-Dyn. We finish the paper with some concluding
remarks in Section 6.

2 An enriched categorical semantics for dynamic lifting

In this section we will give a general categorical semantics for dynamic lifting. Our categorical semantics is
based on enriched categories, which are generalizations of ordinary categories. In enriched categories, instead
of hom-sets, one works with hom-objects, which are objects in a monoidal category.

Definition 2.1. Let V be a monoidal category. A V-enriched category A (or V-category for short) is given
by the following:

• A class of objects, also denoted A.

• For any A,B ∈ A, an object A(A,B) in V .

• For any A ∈ A, a morphism in uA : I → A(A,A) in V , called the identity on A.

• For any A,B,C ∈ A, a morphism cA,B,C : A(A,B)⊗A(B,C) → A(A,C) in V , called composition.

• The composition and identity morphisms must satisfy suitable diagrams in V (see [Kel82, Bor94]).

Remarks. • Many concepts from non-enriched category theory can be generalized to the enriched set-
ting. For example, V-functors, V-natural transformations, V-adjunctions and the V-Yoneda embedding
are all straightforward generalizations of their non-enriched counterparts. We refer to [Kel82, Bor94]
for comprehensive introductions.

• In the rest of this paper, when we speak of a map f : A→ B in a V-enriched category A, we mean a
morphism of the form f : I → A(A,B) in V . Furthermore, when g : B → C is another map in A, we
write g ◦ f : A→ C as a shorthand for

I
f⊗g−−−→ A(A,B) ⊗A(B,C)

c−→ A(A,C).

• A V-enriched categoryA gives rise to an ordinary category V (A), called the underlying category1 of A,
where the objects of V (A) are objects ofA and a hom-set is defined as V (A)(A,B) := V(I,A(A,B)) for
any A,B ∈ V (A). Similarly, a V-functor F : A → B gives rise to an ordinary functor V F : V (A) →
V (B) and a V-natural transformation α : F → G gives rise to an ordinary natural transformation
V α : V F → V G.

Ordinary symmetric monoidal categories can be generalized to enriched categories as well.

1
V stands for “underlying” because the letter U serves another purpose in this paper.

5

Definition 2.2. Let V be a symmetric monoidal category. A V-category A is symmetric monoidal if it is
equipped with the following:

• There is an object I ∈ A called the tensor unit. For any A,B ∈ A, there is an object A ⊗ B ∈ A.
Moreover, for any A1, A2, B1, B2 ∈ A, there is a morphism

Tensor : A(A1, B1)⊗A(A2, B2) → A(A1 ⊗A2, B1 ⊗B2)

in V . The tensor product is a bifunctor in the sense that Tensor ◦ (uA ⊗ uB) = uA⊗B for the identity
maps uA, uB, uA⊗B, and the following diagram commutes for any A1, A2, B1, B2, C1, C2 ∈ A.

A(A1, B1)⊗A(A2, B2)⊗A(B1, C1)⊗A(B2, C2) A(A1, C1)⊗A(A2, C2)

A(A1 ⊗A2, B1 ⊗B2)⊗A(B1 ⊗B2, C1 ⊗ C2) A(A1 ⊗A2, C1 ⊗ C2)

c⊗c

Tensor⊗Tensor Tensor

c

• There are the following V-natural isomorphisms in A and they satisfy the same coherence diagrams
for symmetric monoidal categories.

lA : I ⊗A→ A

rA : A⊗ I → A

γA,B : A⊗B → B ⊗A

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

If the V-category A is symmetric monoidal, then its underlying category V (A) is symmetric monoidal.
For any maps f : A1 → B1, g : A2 → B2 in A, we write the map f ⊗ g : A1 ⊗A2 → B1 ⊗B2 as a shorthand
for the following composition.

I
f⊗g−−−→ A(A1, B1)⊗A(A2, B2)

Tensor−−−−→ A(A1 ⊗A2, B1 ⊗B2)

2.1 An axiomatization of enriched categorical models of dynamic lifting

In the following, we assume V to be a cartesian closed category with coproducts. For any A,B ∈ V , we
write A×B for the cartesian product, A⇒ B for the exponential object, and 1 ∈ V for the terminal object.
Since V is cartesian closed, it is self-enriched, i.e., V is a V-category where the hom-objects are defined by
V(A,B) := A⇒ B.

We will now focus on defining a V-enriched category A that models dynamic lifting. We give a sequence
of definitions that specify a sequence of properties (a)-(h), which will culminate in Definition 2.8 of a model
for Proto-Quipper with dynamic lifting.

Definition 2.3. A V-category A is a linear-non-linear programming language model if

(a) A has coproducts and is symmetric monoidal closed, i.e., it is symmetric monoidal and there is a
V-adjunction −⊗A ⊣ A⊸ − for each A ∈ A.

(b) A is equipped with a V-adjunction

p : V → A ⊣ ♭ : A → V

such that p is a strong monoidal V-functor.
Remarks. • The requirement that A has coproducts and is symmetric monoidal closed implies that it

can model function types and sum types in a functional programming language. Moreover, since −⊗A
is a left adjoint V-functor for any A ∈ A, it preserves the coproducts, so the tensor products distribute
over coproducts in A.

6

• The adjunction in (b) is often called a linear-non-linear adjunction [Ben95]. Here, the assumption that
p is a strong monoidal V-functor means that there exist isomorphisms e : I → p1 and m : pX ⊗ pY →
p(X × Y) making some diagrams commute (see Appendix A).

• Since p is strong monoidal and V is cartesian, for any X ∈ V , there are maps discardX : pX → I and
dupX : pX → pX ⊗ pX in A. Moreover, for any map f : X → Y in V , we have the following in A.

dupY ◦ pf = (pf ⊗ pf) ◦ dupX
We call objects of the form pX ∈ A parameter objects, since they can be duplicated and discarded.
For example, Bool := I + I ∼= p1 + p1 ∼= p(1 + 1) is a parameter object.

• For any X ∈ V , B ∈ A, we write δ for the isomorphism δ : A(pX,B) ∼= V(X, ♭B), and forceB for the
counit forceB : p♭B → B.

Definition 2.4. A convex space is a set X equipped with a convex sum operation, which assigns to any
x, y ∈ X and p, q ∈ [0, 1] such that p+ q = 1 an element px+ qy ∈ X , subject to certain standard conditions,
which are detailed in Appendix B. A category is enriched in convex spaces if each hom-set is equipped with
the structure of a convex space, and moreover, composition is bilinear with respect to convex sum, i.e.,
(pf + qg) ◦ h = p(f ◦ h) + q(g ◦ h) and h ◦ (pf + qg) = p(h ◦ f) + q(h ◦ g).

As mentioned in the introduction, Proto-Quipper-Dyn is parameterized by two (ordinary) categories M
and Q of circuits and quantum operations, respectively. We now specify the properties that these categories
must satisfy.

Assumption 2.5. We assume that we are given two symmetric monoidal categories M and Q, satisfying
the following properties:

(1) M and Q have the same objects, including a distinguished object called Bit. The category M has
distinguished morphisms zero, one : I → Bit.

(2) Q has a coproduct Bit = I + I, and the tensor product in Q distributes over this coproduct.

(3) There exists a given strict monoidal functor J : M → Q that is the identity on objects and J(zero) =
inj1 : I → I + I, J(one) = inj2 : I → I + I. We call J the interpretation functor.

(4) The category Q is enriched in convex spaces.

(5) For any A ∈ Q, and f : I → Bit ⊗ A ∈ Q, we have f = p1(inj1 ⊗ f1) + p2(inj2 ⊗ f2), where
inj1, inj2 : I → I + I and p1, p2 ∈ [0, 1] are uniquely determined real numbers such that p1 + p2 = 1.
When pi 6= 0, the map fi is also unique.

The categories M and Q are not only used in the categorical semantics, but also in the operational
semantics of Proto-Quipper-Dyn (i.e., to run the program, we must know what a circuit is and what a
quantum operation is). Therefore, these categories should be regarded as given as part of the language
specification, rather than as a degree of freedom in the semantics. On the other hand, nothing in the
operational or denotational semantics depends on particular properties of M and Q other than properties
(1)–(5) above. Therefore, Proto-Quipper-Dyn can handle a wide variety of possible circuit models and
physical execution models.

In practice, the category M will be a category of quantum circuits and the category Q will be a category
of quantum operations. These categories will typically have additional objects, such as Qubit and perhaps
Qutrit, and additional morphisms, such as H : Qubit → Qubit and Meas : Qubit → Bit. Assumption (5)
means that any morphism with domain I and a bit state in its codomain is a convex sum of two morphisms.
This property is used in the rule for dynamic lifting in the operational semantics.

Definition 2.6. Suppose the V-enriched category A is a linear-non-linear programming model. We say it
supports box-unbox operations if the following hold.

7

(c) There is a fully faithful embedding ψ : M
ψ→֒ V (A) and ψ is strong monoidal.

(d) Let S denote the set of objects in the image of ψ. For any S,U ∈ S, there is an isomorphism

♭(S ⊸ U)
e∼= A(S,U).

Condition (c) implies that there is a circuit subcategory in A. Using condition (d), we define box = p(e)

and unbox = p(e−1), and there is an isomorphism p♭(S ⊸ U)
box / unbox∼= pA(S,U). Elements of pA(S,U)

correspond to boxed circuits with input S and output U .
If a V-enriched category A satisfies (a)–(d), then it is a model for Proto-Quipper without dynamic lifting.

For example, the Set-enriched category M in [RS18] is such a model. To support dynamic lifting, we define
the following monad to account for the category Q.

Definition 2.7. Let A be a symmetric monoidal V-category and let T : A → A be a V-monad on A. We
say T is a dynamic lifting monad if the following hold.

(e) T is a commutative strong V-monad. For any A,B ∈ A, we write tA,B : A⊗ TB → T (A⊗B) for the
strength and sA,B : TA⊗B → T (A⊗B) for the costrength.

(f) Let V (A) be the underlying category of A, let V T be the underlying monad of T , and let KlV T (V (A))
be the Kleisli category of V T . The Kleisli category KlV T (V (A)) is enriched in convex spaces.

(g) There are the following fully faithful embeddings:

M
ψ→֒ V (A),

Q
φ→֒ KlV T (V (A)).

These embedding functors are strong monoidal, and φ preserves the convex sum. Moreover, the
following diagram commutes for any S,U ∈ M.

M(S,U) V (A)(S,U)

Q(S,U) KlV T (V (A))(S,U)

ψS,U

JS,U ES,U

φS,U

Here E : V (A) → KlV T (V (A)) is the the functor such that E(A) = A and E(f) = η ◦ f .

(h) There are maps dynlift : Bit → TBool and init : Bool → Bit in A such that the following diagram
commutes.

Bit

Bool TBool

dynlift

η

init

Remarks. • The objects of the Kleisli category KlV T (V (A)) are the same as the objects of A, and
the hom-set is given by KlV T (V (A))(A,B) := V (A)(A, V TB) = V(1,A(A, TB)) for any A,B ∈ A.
Moreover, V(1,A(A, TB)) = V(1,KlT (A)(A,B)) = V (KlT (A))(A,B).

• Since T is a commutative strong V-monad, V T is a commutative strong (ordinary) monad. Therefore
the Kleisli category KlV T (V (A)) is monoidal. For any f : A1 → V TB1 and g : A2 → V TB2 in
KlV T (V (A)), we define f ⊗ g ∈ KlV T (V (A))(A1 ⊗A2, B1 ⊗B2) to be the following

A1 ⊗A2
f⊗g−−−→ V TB1 ⊗ V TB2

s−→ V T (B1 ⊗ V TB2)
Tt−→ V TV T (B1 ⊗B2)

µ−→ V T (B1 ⊗B2).

8

Modality α, β ::= 0 | 1

Types A,B ::= Unit | Qubit | Bit | Bool | !αA | A ⊸α B | Circ(S,U) | A⊗B

Parameter Types P,R ::= Unit | Nat | !αA | Circ(S,U)

Simple Types S,U ::= Unit | Qubit | Bit | S ⊗ U

Terms M,N ::= c | x | λx.M | M N | Unit | (a, C, b) | apply(M,N) | forceM

| lift M | box U M | (M,N) | let (x, y) = N in M | dynliftM

Simple Terms a, b ::= ℓ | Unit | (a, b)

Contexts Γ ::= · | x : A,Γ | ℓ : Qubit,Γ | ℓ : Bit,Γ

Parameter contexts Φ ::= · | x : P,Φ.

Label Contexts Σ ::= · | ℓ : Qubit,Σ | ℓ : Bit,Σ

Values V ::= x | ℓ | λx.M | lift M | (a, C, b) | (V, V ′) | Unit

Circuits C,D : Σ → Σ′

Figure 1: The syntax for Proto-Quipper-Dyn

• Condition (g) expresses the requirement that the enriched category A must combine both categories
M and Q, i.e., they are subcategories of V (A) and its Kleisli category, respectively. Thus A has both
quantum circuits and quantum operations. The commutative diagram implies that a circuit in A can
be used as a quantum operation.

• Since ψ(S) = φ(S) for any S ∈ M,Q, we define Bit = ψ(Bit) = φ(Bit) ∈ A.

• Condition (h) gives a categorical characterization of dynamic lifting. The map dynlift is not in the
image of φ or ψ, and therefore it is neither a quantum circuit nor a quantum operation.

Definition 2.8. We say a V-enriched category A is a model for Proto-Quipper with dynamic lifting if it
satisfies (a)–(h).

We have now axiomatized a general categorical model for Proto-Quipper with dynamic lifting. In
[FKRS22], we give a construction of a concrete model based on biset-enrichment that satisfies (a)-(h).
In the rest of this paper, we will be focusing on showing this abstract categorical model A is sound with
respect to the type system and the operational semantics.

3 A type system for dynamic lifting

In this section, we present the syntax of Proto-Quipper-Dyn and a type system for dynamic lifting. Our
typing judgments have the form Γ ⊢α M : A, where α ::= 0 | 1 is a modality used to keep track of dynamic
lifting. When α = 1, the term M is guaranteed not to perform any dynamic lifting operations while it is
being reduced to a value. Such computations can therefore be carried out at circuit generation time. When
α = 0, M may invoke dynamic lifting so the evaluation of M needs to be performed at circuit execution
time.

Definition 3.1 (Syntax). The syntax of Proto-Quipper-Dyn is in Figure 1.

The modality α appears in the linear function type A ⊸α B and the linear exponential type !αA. This
is because the values of A⊸α B and !αA are thunks and we use the modality α in the types to keep track of
the dynamic lifting within the thunks. Circ(S,U) denotes a type of circuits with input S and output U . The
values of this type are boxed quantum circuits. They can be further manipulated by meta-operations such
as circuit reversal, circuit iteration, or printing; these operations are treated as constants in the language,
i.e., we do not fix a particular set of such operations, but assume that they would be defined in a standard
library that comes with any particular instance of Proto-Quipper-Dyn.

9

Φ, x : A ⊢1 x : A
var

ℓ : Qubit|Bit ⊢1 ℓ : Qubit|Bit
label

Γ1 ⊢α1
M : A ⊸β B Γ2 ⊢α2

N : A

Γ1 + Γ2 ⊢α1&α2&β MN : B
app

Γ, x : A ⊢α M : B

Γ ⊢1 λx.M : A ⊸α B
lambda

Φ ⊢α M : A

Φ ⊢1 lift M : !αA
lift

Γ ⊢β M : !αA

Γ ⊢α&β force M : A
force

Γ ⊢α M : !1(S ⊸1 U)

Γ ⊢α box S M : Circ(S,U)
box

Γ1 ⊢α M : Circ(S,U) Γ2 ⊢β N : S

Γ1 + Γ2 ⊢α&β apply(M,N) : U
apply

Σ1 ⊢1 a : S Σ2 ⊢1 b : U
C : Σ1 → Σ2

Φ ⊢1 (a, C, b) : Circ(S,U)
circ

Γ ⊢α M : Bit

Γ ⊢0 dynlift M : Bool
dynlift

Γ1 ⊢α1
M : A Γ2 ⊢α2

N : B

Γ1 + Γ2 ⊢α1&α2
(M,N) : A⊗B

pair
Γ1, x : A, y : B ⊢α1

M : C Γ2 ⊢α2
N : A⊗B

Γ1 + Γ2 ⊢α1&α2
let (x, y) = N in M : C

let

Figure 2: The typing rules for Proto-Quipper-Dyn

The terms of our language are similar to the ones from [RS18], with the addition of a term construct
for dynamic lifting dynliftM , which will be evaluated to a boolean value. A term of parameter type can be
duplicated or discarded. A value of simple type corresponds to a state.

We make a distinction between variables and labels. A label ℓ corresponds to a wire in a circuit, or to
an address of a bit or qubit state. Consequently, a label is a value that can only have type Bit or Qubit.
Labels can only be renamed, not substituted. Every label context Σ has an obvious interpretation JΣK in
the category M as a tensor of the appropriate sequence of the objects Qubit and Bit. We write D : Σ → Σ′

to denote a quantum circuit, i.e., a morphism D : JΣK → JΣ′K.

Definition 3.2 (Typing). The typing rules are in Figure 2.

We write α & β for the boolean conjunction of α and β so that, e.g., 0 & 1 = 0. If Γ1 = Φ,Γ′
1 and

Γ2 = Φ,Γ′
2, we write Γ1 + Γ2 for Φ,Γ′

1,Γ
′
2.

In the var rule, we require a parameter context Φ. In the lift and lambda rules, the modality α is moved
to the type and the current modality (i.e., modality in the conclusion) is set to 1. This is because the lift
and lambda terms are values, and values do not perform dynamic lifting. In fact, all values have modality 1.

In elimination rules such as app and force, the modality in the type affects the current modality of the
typing judgment through boolean conjunction. This is related to how the evaluations are performed for these
terms. For example, when evaluating the term MN , we will first evaluate M , then evaluate N and finally
perform a beta-reduction. Thus, the evaluation of MN could perform dynamic lifting of α1 = 0, α2 = 0, or
β = 0. Consequently, the modality for the typing judgment of MN is the boolean conjunction of all these
related modalities.

By the dynlift rule, an application of dynamic lifting sets the current modality to 0, signifying that a
dynamic lifting is performed. In the box rule, a term M can only be boxed into a circuit if it has type
!1(S ⊸1 U). This ensures that the term M does not use dynamic lifting. Thus, when evaluating the term
(boxS M), a dynamic lifting cannot occur. This prevents a class of runtime errors in Quipper that are
caused by boxing functions that use dynamic lifting.

In the apply rule, depending on the modality α1&α2, the term apply(M,N) either appends the quantum
circuit M to N , which is done at circuit generation time, or applies the quantum operation M to N , which
is done at circuit execution time. The circ rule defines a well-typed quantum circuit. In practice, we often

10

assume that a set of well-typed quantum gates is provided as pre-defined constants of the language, so that
the programmer does not need to use the circ rule.

The following lemma shows that a value can only have modality 1 and, in particular, that the free
variables of a parameter must come from a parameter context.

Lemma 3.3. If Γ ⊢α V : B, then α = 1. Moreover, if Γ ⊢α V : P , then α = 1 and Γ = Φ.

The following lemma shows that the type system has the usual substitution property.

Lemma 3.4 (Substitution). If Γ1, x : A,Γ′
1 ⊢α M : B and Γ2 ⊢1 V : A, then Γ1,Γ

′
1,Γ2 ⊢α [V/x]M : B.

3.1 Interpretation of the typing rules

The modality is a syntactic device to track the dynamic lifting monad T . We will interpret Γ ⊢1 M : A as a
map JΓK → JAK in A, and Γ ⊢0 M : A as a map JΓK → T JAK. The modalities in types such as A⊸α B and
!αA also indicate occurrences of the dynamic lifting monad T .

Definition 3.5. We interpret types as objects in A.

JA⊸1 BK = JAK ⊸ JBK

JA⊸0 BK = JAK ⊸ T JBK

JA⊗BK = JAK ⊗ JBK

J!1AK = p♭JAK

J!0AK = p♭T JAK

JCirc(S,U)K = pA(JSK, JUK)

JBoolK = p(1 + 1)

JBitK = Bit

JQubitK = Qubit

For a parameter type P , there exists X ∈ V such that JP K = pX . For a simple type S, there exists
Y ∈ M such that JSK = ψY . We call objects of the form ψY simple objects. We write αJAK to mean T JAK
if α = 0, otherwise it is JAK. We interpret a context Γ as a tensor product of all objects in Γ (denoted by
JΓK). The interpretation of parameter context JΦK is a parameter object and the interpretation of a label
context JΣK is a simple object. Without loss of generality, we assume that if JΣK = JΣ′K, then Σ = Σ′ (this
condition can always be ensured by making additional isomorphic copies of objects, if necessary).

The interpretation of typing judgements is defined as follows.

Definition 3.6 (Interpretation). To each valid typing judgement Γ ⊢α M : A, we associate a map JMK :
JΓK → αJAK in A, called its interpretation. Note that JMK here is an abbreviation for JΓ ⊢α M : AK.

The interpretation is defined by induction on the derivation of Γ ⊢α M : A. Here we show a few cases,
the rest are in Appendix C.

• Case

Γ ⊢α M : Bit

Γ ⊢0 dynliftM : Bool.

By induction hypothesis, we have JMK : JΓK → αJBitK. If α = 1, we define JdynliftMK by

JΓK
JMK−−−→ JBitK

dynlift−−−→ T JBoolK.

If α = 0, we define JdynliftMK by

JΓK
JMK−−−→ T JBitK

T dynlift−−−−−→ TT JBoolK
µ−→ T JBoolK.

11

• Case

Γ, x : A ⊢α M : B

Γ ⊢1 λx.M : A⊸α B.

By induction hypothesis, we have JMK : JΓK ⊗ JAK → αJBK. Using monoidal closedness, we define
Jλx.MK := curry(JMK) : JΓK → JAK ⊸ αJBK.

• Case

Φ,Γ1 ⊢α1
M : A⊸β B Φ,Γ2 ⊢α2

N : A

Φ,Γ1,Γ2 ⊢α1&α2&β MN : B.
app

Here we only consider the case where α1 = α2 = β = 0. The other cases are similar. By induction
hypothesis, we have morphisms JMK : JΦK ⊗ JΓ1K → T (JAK ⊸ T JBK)) and JNK : JΦK ⊗ JΓ2K → T JAK.
Thus we define JMNK to be the following.

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K

JMK⊗JNK−−−−−−→ T (JAK ⊸ T JBK))⊗ T JAK
t−→ T (T (JAK ⊸ T JBK)⊗ JAK)

Ts−−→ TT ((JAK ⊸ T JBK)⊗ JAK)
µ−→ T ((JAK ⊸ T JBK)⊗ JAK)

Tǫ−→ TT JBK
µ−→ T JBK.

• Case

Φ ⊢α M : A

Φ ⊢1 lift M : !αA.

By induction hypothesis, we have JMK : JΦK = pX → αJAK for some X ∈ V . By the V-adjunction
p ⊢ ♭, we have δJMK : X → ♭αJAK. So we define Jlift MK := pδJMK : pX → p♭αJAK.

• Case

Γ ⊢β M : !αA

Γ ⊢α&β force M : A.

We only consider the case where α = β = 0, the other cases are similar. By induction hypothesis, we
have a map JMK : JΓK → Tp♭T JAK. Since there is a V-natural transformation force : p♭T JAK → T JAK,
we define JforceMK by

JΓK
JMK−−−→ Tp♭T JAK

T force−−−−→ TT JAK
µ−→ T JAK.

• Case

Γ ⊢α M : !1(S ⊸1 U)

Γ ⊢α box S M : Circ(S,U).

Here we only consider the case α = 1. By induction hypothesis, we have JMK : JΓK → p♭(JSK ⊸ JUK).
We define JboxSMK by

JΓK
JMK−−−→ p♭(JSK ⊸ JUK)

box−−→ pA(JSK, JUK).

• Case

Φ,Γ1 ⊢α M : Circ(S,U) Φ,Γ2 ⊢β N : S

Φ,Γ1,Γ2 ⊢α&β apply(M,N) : U
apply

12

Here we only consider the case α = β = 0. By induction hypothesis, we have JMK : JΓ1K →
TpA(JSK, JUK) and JNK : JΓ2K → T JSK. Thus we define Japply(M,N)K by

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K
JMK⊗JNK−−−−−−→ TpA(JSK, JUK)⊗ T JSK
t−→ T (TpA(JSK, JUK)⊗ JSK)
Ts−−→ TT (pA(JSK, JUK)⊗ JSK)
µ−→ T (pA(JSK, JUK)⊗ JSK)
T ((force ◦ unbox)⊗ JSK)−−−−−−−−−−−−−−→ T ((JSK ⊸ JUK) ⊗ JSK)
Tǫ−→ T JUK.

Our interpretation of the typing rules satisfies the usual semantics substitution theorem. The details of
the proof are in Appendix D.

Theorem 3.7 (Substitution). If Φ,Γ1, x : A,Γ2 ⊢α M : B and Φ,Γ3 ⊢1 V : A, then

J[V/x]MK = JMK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ2K ⊗ JΓ3K) : JΦ,Γ1,Γ2,Γ3K → αJBK.

The next two theorems show that values of parameter type are in the image of functor p, and that values
of simple types are isomorphisms.

Theorem 3.8. If Φ ⊢1 V : P , then JV K = pf : pX → pY for some f : X → Y ∈ V such that JΦK =
pX, JP K = pY .

Theorem 3.9. Suppose Σ ⊢1 V : S, then JV K : JΣK → JSK is an isomorphism in A.

Since the embedding ψ : M →֒ V (A) is fully faithful, JV K : JΣK → JSK is also an isomorphism in M.

4 Operational semantics and soundness

In this section, we will specify an operational semantics for Proto-Quipper-Dyn and show that it is sound
with respect to the V-enriched categorical model A for dynamic lifting.

We distinguish two kinds of evaluation in order to model Quipper’s two runtimes. The evaluation rules
for circuit generation time will work with morphisms in M, i.e., quantum circuits. On the other hand, the
evaluation rules for circuit execution time will work with morphisms in Q, i.e., quantum operations. Because
of the embeddings ψ : M →֒ V (A) and φ : Q →֒ KlV T (V (A)), we are able to interpret the configurations
for these two runtimes as maps in the V-enriched category A.

4.1 Operational semantics for circuit generation time

First of all, we specify the meaning of appending circuits in the category M.

Definition 4.1 (Circuit append). Suppose C : Σ → Σ1,Σ2 and D : Σ′
1 → Σ3 are morphisms in M and there

are typing judgments Σ1 ⊢1 V : S and Σ′
1 ⊢1 V

′ : S. We define append(D, C, V ′, V) to be the following
morphism in M.

((D ◦ JV ′K−1 ◦ JV K)⊗ JΣ2K) ◦ C : Σ → Σ3,Σ2

Thus append(D, C, V ′, V) is the result of appending the circuit D to C by connecting the interfaces V ′

and V . The following are evaluation rules for circuit generation time, where the underlying states are given
by morphisms in M.

13

Definition 4.2 (Circuit generation time evaluation).

(C1,M) ⇓ (C2, λx.M
′)

(C2, N) ⇓ (C3, V)
(C3, [V/x]M

′) ⇓ (C4, V
′)

(C1,MN) ⇓ (C4, V
′)

(C1,M) ⇓ (C2, (a,D, b))
(C2, N) ⇓ (C3, V)

append(D, C3, a, V) = C′

(C1, apply(M,N)) ⇓ (C′, b)
apply

(C,M) ⇓ (C′, lift M ′)
(C′,M ′) ⇓ (C′′, V)

(C, force M) ⇓ (C′′, V)

(C,M) ⇓ (C′, lift M ′)
gen(S) = a

(IdS ,M
′ a) ⇓ (D, b)

(C,box S M) ⇓ (C′, (a,D, b))
box

(C,N) ⇓ (C′, (V1, V2))
(C′, [V1/x, V2/y]M) ⇓ (C′′, V)

(C, let (x, y) = N in M) ⇓ (C′′, V)

In the rule box, we use gen(S) = a to mean that the a is a fresh simple term of type S. Note that the
evaluation of (C,M) ⇓ (C′, V) does not account for dynamic lifting, and the underlying states are circuits.
So it is the same set of evaluation rules as in [RS18]. The evaluation comes with the following notion of
configuration.

Definition 4.3 (Well-typed circuit configuration). We write Σ ⊢ (C,M) : A; Σ′ to mean there exists Σ′′

such that C : Σ → Σ′,Σ′′ and Σ′′ ⊢1 M : A.

A well-typed circuit configuration requires a typed term with modality 1, i.e., ⊢1 M : A. It is a runtime
error if a term with dynamic lifting is encountered when using the evaluation rules in Definition 4.2. Our
type system and the following type preservation theorem ensures that this can not happen.

Theorem 4.4. If Σ ⊢ (C,M) : A; Σ′ and (C,M) ⇓ (C′, V), then Σ ⊢ (C′, V) : A; Σ′.

In the following we define the interpretation JC,MK as a map in the V-category A.

Definition 4.5. Suppose Σ ⊢ (C,M) : A; Σ′. We have maps ψC : JΣK → JΣ′K⊗ JΣ′′K and JMK : JΣ′′K → JAK
in A. We define JC,MK as follows:

JΣK
ψC−−→ JΣ′K ⊗ JΣ′′K

JΣ′K⊗JMK−−−−−−→ JΣ′K ⊗ JAK.

The following theorem shows that the evaluation rules for circuit generation time are sound with respect
to the categorical model A. Since in this case dynamic lifting cannot occur, the proof is similar to the one
in [RS18].

Theorem 4.6. If Σ ⊢ (C,M) : A; Σ′ and (C,M) ⇓ (C′, V), then JC,MK = JC′, V K.

4.2 Operational semantics for circuit execution time

Since dynamic lifting requires the ability to access the states in Q, we first define the concepts of state and
addresses.

Definition 4.7 (State and addresses). For any object S ∈ Q, a state is a morphism Q : I → S ∈ Q. We
write addr(Q) = Σ if φ(S) = JΣK, we call Σ the addresses of Q. (Recall that we have, for convenience and
without loss of generality, assumed that the interpretation function J−K is one-to-one on label contexts).

We often write Q : I → Σ ∈ Q for Q : I → S, where φ(S) = JΣK. The following read operation will be
used to define the operational semantics for dynamic lifting.

Definition 4.8 (Read operation). Suppose addr(Q) = Σ, ℓ : Bit and Q = p1(Q1 ⊗ inj1) + p2(Q2 ⊗ inj2),
where addr(Q1) = addr(Q2) = Σ and p1, p2 ∈ [0, 1] and p1 + p2 = 1. We define a formal sum read(Q, ℓ) =
p1(Q1,False) + p2(Q2,True), where False,True : Bool.

14

Note that by the last condition in Assumption 2.5, we know that Q = p1(Q1⊗ inj1)+p2(Q2⊗ inj2) : I →
Σ⊗Bit for some essentially uniquely determined Q1, Q2 : I → Σ, and p1, p2 ∈ [0, 1] such that p1 + p2 = 1.
The only time Qi is not uniquely determined is when pi = 0, but in this case, it will turn out that the Qi
does not matter since it corresponds to a branch of computation taken with probability zero. In this case,
we can just make some fixed but arbitrary choice for Qi. So the read operation makes the information of
the probabilities p1, p2 and the states Q1, Q2 available.

In the following, we define the circuit execution time counterpart of Definition 4.1. It specifies the meaning
of updating a quantum state by applying a quantum circuit, where the identity-on-object interpretation
functor J : M → Q is needed for the definition.

Definition 4.9. Suppose Q : I → Σ1,Σ2 is a morphism in Q, and C : Σ′
1 → Σ3 is a morphism in M, and

there are typing judgements Σ1 ⊢ V : S and Σ′
1 ⊢ V ′ : S. We define operate(C, Q, V ′, V) to be the following

map in Q.
(J(C ◦ JV ′K−1 ◦ JV K)⊗ JΣ2K) ◦Q : I → Σ3,Σ2

We now we define the operational semantics for circuit execution time. The underlying states of the
evaluation are the states in Q. The evaluation is of the form (Q,M) ⇓ ∑

i∈[n] pi(Qi, Vi). Its intuitive meaning

is that the configuration (Q,M) can be reduced to (Qi, Vi) with probability pi. The notation
∑

i∈[n] pi(Qi, Vi)

is a short hand for the formal sum p1(Q1, V1) + ... + pn(Qn, Vn), and we assume
∑

i∈[n] pi = 1. We write

[n] = {1, ..., n}.
Definition 4.10 (Operational semantics for circuit execution time).

(Q,M) ⇓
∑

i∈[n] pi(Qi, λx.M
′
i)

(Qi, N) ⇓
∑

j∈[m] qi,j(Q
′
i,j , Vi,j)

(Q′
i,j , [Vi,j/x]M

′
i) ⇓

∑
k∈[l] si,j,k(Q

′′
i,j,k, V

′
i,j,k)

(Q,MN) ⇓
∑

(i,j,k)∈[n]×[m]×[l] piqi,jsi,j,k(Q
′′
i,j,k, V

′
i,j,k)

(Q,M) ⇓
∑

i∈[n] pi(Qi, liftM
′
i)

(Qi,M
′
i) ⇓

∑
j∈[m] qi,j(Q

′
i,j , Vi,j)

(Q, forceM) ⇓
∑

(i,j)∈[n]×[m] piqi,j(Q
′
i,j , Vi,j)

(Q,M) ⇓
∑

i∈[n] pi(Qi, (ai,Di, bi))

(Qi, N) ⇓
∑

j∈[m] qi,j(Q
′
i,j , Vi,j)

operate(Di, Q
′
i,j , ai, Vi,j) = Q′′

i,j

(Q, apply(M,N)) ⇓
∑

(i,j)∈[n]×[m] piqi,j(Q
′′
i,j , bi)

apply

(Q,M) ⇓
∑

i∈[n] pi(Qi, lift M
′
i)

gen(S) = a
(IdS ,M

′
i a) ⇓ (Di, bi)

(Q, box S M) ⇓
∑

i∈[n] pi(Qi, (a,Di, bi))
box

(Q,M) ⇓ ∑
i∈[n] pi(Qi, ℓi)

read(Qi, ℓi) = qi,1(Q
′
i,1, ai,1) + qi,2(Q

′
i,2, ai,2)

(Q, dynliftM) ⇓ ∑
(i,j)∈[n]×[2] piqi,j(Q

′
i,j , ai,j)

dynlift

(Q,N) ⇓ ∑
i∈[n] pi(Q

′
i, (Vi, V

′
i)) (Q′

i, [Vi/x, V
′
i /y]M) ⇓ ∑

j∈m(Q′′
i,j , V

′′
i,j)

(Q, let (x, y) = N in M) ⇓ ∑
(i,j)∈[n]×[m](Q

′′
i,j , V

′′
i,j)

In the apply rule, we use operate instead of append, which allows a quantum circuit to be applied as a
quantum operation. In the dynlift rule, for each (Qi, ℓi), we apply the operation read(Qi, ℓi), which gives
rise to two possible outcomes (Q′

i,1, ai,1), (Q
′
i,2, ai,2) with probabilities qi,1, qi,2, where ai,1, ai,2 : Bool and

ai,1 6= ai,2. This is the only rule that gives rise to probabilistic results in the evaluation. In the box rule,
the evaluation of (IdS ,M

′
ia) uses the rules defined in Definition 4.2, so it is performed at circuit generation

time.
We now define a well-typed configuration for evaluating a term under a quantum state.

Definition 4.11 (Well-typed configuration). We write ⊢α (Q,M) : A; Σ′ to mean there exists Σ′′ such that
Σ′′ ⊢α M : A, and addr(Q) = Σ′′,Σ′.

Since the evaluation rules in Definition 4.10 account for dynamic lifting, the above configuration allows
the term M to have modality 0. The operational semantics defined in Definition 4.10 is type-safe in the
following sense.

15

Theorem 4.12. If ⊢α (Q,M) : A; Σ′ and (Q,M) ⇓ ∑
i∈[n] pi(Qi, Vi), then ⊢1 (Qi, Vi) : A; Σ

′ for all i ∈ [n].

Theorem 4.13. If ⊢1 (Q,M) : A; Σ′ and (Q,M) ⇓ ∑
i∈[n] pi(Qi, Vi), then n = 1. In other words, we

actually have (Q,M) ⇓ (Q′, V).

In the following we interpret a well-typed configuration ⊢α (Q,M) : A; Σ′ as a map in the Kleisli category
KlT (A).

Definition 4.14. Suppose ⊢α (Q,M) : A; Σ′. We have φQ : I → T (JΣ′
1K ⊗ JΣ′′K ⊗ JΣ′

2K) and JMK : JΣ′′K →
αJAK in A. We define JQ,MK by:

• If α = 1, then

I
φQ−−→ T (JΣ′

1K ⊗ JΣ′′K ⊗ JΣ′
2K)

T (JΣ′

1
K⊗JMK⊗JΣ′

2
K)−−−−−−−−−−−−−→ T (JΣ′

1K ⊗ JAK ⊗ JΣ′
2K).

• If α = 0, then

I
φQ−−→ T (JΣ′

1K ⊗ JΣ′′K ⊗ JΣ′
2K)

T (JΣ′

1
K⊗JMK⊗JΣ′

2
K)−−−−−−−−−−−−−→ T (JΣ′

1K ⊗ T JAK ⊗ JΣ′
2K)

T (t⊗JΣ′

2
K)−−−−−−−→ T (T (JΣ′

1K ⊗ JAK) ⊗ JΣ′
2K)

Ts−−→ TT (JΣ′
1K ⊗ JAK ⊗ JΣ′

2K)
µ−→ T (JΣ′

1K ⊗ JAK ⊗ JΣ′
2K).

The following theorem shows that the operational semantics in Definition 4.10 is sound with respect to
the semantic model A.

Theorem 4.15 (Soundness). If ⊢α (Q,M) : A; Σ′, and (Q,M) ⇓ ∑
i∈[n] pi(Qi, Vi), then

JQ,MK =
∑

i∈[n]

piJQi, ViK : I → T (JAK ⊗ JΣ′K).

Proof sketch. The proof is by induction on the evaluation rules. Here we focus on the case for dynamic
lifting. Please see Appendix E for the proofs of the other cases.

Suppose addr(Q) = Σ′′,Σ′, and Σ′′ ⊢0 M : A, and

Σ′′ ⊢1 M : Bit

Σ′′ ⊢0 dynliftM : Bool.

Consider the following.
(Q,M) ⇓ (Q′, ℓ)

read(Q′, ℓ) = q1(Q
′
1,False) + q2(Q

′
2,True)

(Q, dynliftM) ⇓ q1(Q′
1,False) + q2(Q

′
2,True)

Since read(Q′, ℓ) = q1(Q
′
1,False) + q2(Q

′
2,True) implies that Q′ = q1(Q

′
1 ⊗ inj1) + q2(Q

′
2 ⊗ inj2) in Q, we

have the following in A.

φQ′ = q1(µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1))) + q2(µ ◦ T t ◦ s ◦ (φQ′

2 ⊗ φ(inj2))),

where φQ′ : I → T (Bit⊗ JΣ′K), and φQ′
1, φQ

′
2 : I → T JΣ′K, and φ(inj1), φ(inj2) : I → TBit. Note that by

condition (g), we have φ(inj1) = η ◦ init ◦ JFalseK and φ(inj2) = η ◦ init ◦ JTrueK. We need to show that

JQ, dynliftMK = q1(T (JFalseK ⊗ JΣ′K) ◦ φQ′
1) + q2(T (JTrueK ⊗ JΣ′K) ◦ φQ′

2).

By induction hypothesis, we have JQ,MK = JQ′, ℓK, i.e., T (JMK ⊗ JΣ′K) ◦ φQ = φQ′. Thus

JQ, dynliftMK = µ ◦ Ts ◦ T ((dynlift ◦JMK)⊗ JΣ′K) ◦ φQ

16

I

T JΣ′K

I ⊗ T JΣ′K T (I ⊗ JΣ′K)

Bool⊗ T JΣ′K T (Bool⊗ JΣ′K) T (Bool⊗ JΣ′K)

Bit⊗ T JΣ′K T (Bit⊗ JΣ′K) T (TBool⊗ JΣ′K) TT (Bool⊗ JΣ′K)

TBit⊗ T JΣ′K

T (TBit⊗ JΣ′K)

TT (Bit⊗ JΣ′K) T (Bit⊗ JΣ′K)

φQ′

1

λ−1
Tλ−1

t

JFalseK⊗T JΣ′K T (JFalseK⊗JΣ′K)

t

init⊗T JΣ′K

Id

T (init⊗JΣ′K)
T (η⊗JΣ′K)

η

t

η⊗T JΣ′K T (η⊗JΣ′K)

η

T (dynlift⊗JΣ′K)

Ts

µ

t

Ts

µ

Id

Figure 3: A commutative diagram from the proof of Theorem 4.15

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ T (JMK ⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ φQ′

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K)

◦(q1(µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1))) + q2(µ ◦ T t ◦ s ◦ (φQ′

2 ⊗ φ(inj2))))

= q1(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1)))

+q2(µ ◦ Tσ ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ σ ◦ (φQ′
2 ⊗ φ(inj2))).

We just need to show

T (JFalseK ⊗ JΣ′K) ◦ φQ′
1 = µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′

1 ⊗ φ(inj1))

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ (η ◦ init ◦ JFalseK))

This is true because of the commutative diagram in Figure 3.

Remark. In practice, a closed term M is always evaluated with the initial configuration (IdI ,M), where
IdI : I → I is a state in Q. WhenM has modality 0, we would need access to a quantum computer/simulator
in order to evaluate (IdI ,M) and each run of (IdI ,M) could give a different value. When M has modality
1, the evaluation of (IdI ,M) is deterministic, i.e., the top-level quantum state is updated in a deterministic
fashion. In this case, instead of performing the quantum operations, we could also just generate a list of
gates, which can be done entirely in a classical computer.

17

5 Dynamic lifting in Proto-Quipper

While typing judgments and certain types (A ⊸α B and !αA) are annotated with a modality, information
about this modality is meant to be hidden from the programmer unless an error occurs. For example, if
one attempt to box a function which uses dynamic lifting, the type checker will raise a modality error. As
a result, such programming errors are caught at compile time in Proto-Quipper-Dyn, whereas they are only
caught at runtime in Quipper.

The modality inference can be readily integrated into bi-directional type checking [PT00], which features
a pair of recursively defined functions for type checking and type inference. To work with modalities, the
type checking function not only takes a term and a type as inputs, but also the current modality of the
typing judgment. For example, when checking a term λx.M against a type A⊸α B with current modality
β, the type checking function first ensures that the current modality β is 1, then extends the current typing
environment with x : A and recursively checks the term M against the type B, with the modality α. The
type inference function takes a term as input and outputs the inferred type as well as the inferred modality.
For example, when inferring the type for a term MN , the type inference function first infers a type A⊸α B
and a modality β for M , and then it infers a type A and a modality γ for the term N , so the type inference
function will return the type B and the inferred modality α& β & γ.

We now discuss several Proto-Quipper-Dyn programs that make use of dynamic lifting.

5.1 Quantum teleportation

The following circuit implements a one-qubit quantum teleportation protocol.

0

0

H

H

Meas

Meas

X Z

This circuit is generated by the following Proto-Quipper-Dyn programs.

Listing 1: Alice and Bob circuits

alice1 : !(Qubit -> Qubit -> Bit * Bit)

alice1 a q =

let (a, q) = CNot a q

q = H q

in (Meas a, Meas q)

bob1 : !(Qubit -> Bit -> Bit -> Qubit)

bob1 q x y =

let (q, x) = C_X q x

(q, y) = C_Z q y

_ = Discard x

_ = Discard y

in q

Listing 2: Teleportation circuit

bell00 : !(Unit -> Qubit * Qubit)

bell00 =

let a = Init0 ()

b = Init0 ()

in CNot b (H a)

tele1 : !(Qubit -> Qubit)

tele1 q =

let (b, a) = bell00 ()

(x, y) = alice1 a q

z = bob1 b x y

in z

boxTele : Circ(Qubit , Qubit)

boxTele = box Qubit tele1

As can be seen in Listings 1 and 2, the modality information is not visible to the programmer. Because
the programs in Listings 1 and 2 do not use dynamic lifting, the modalities in the fully annotated types are
all 1. For example, the fully annotated type of tele1 is !1(Qubit ⊸1 Qubit). We can therefore box tele1

into a quantum circuit. The evaluation of boxTele occurs on a classical computer and generates the circuit
diagram above.

For comparison, let us consider the following Proto-Quipper-Dyn programs that implement quantum
teleportation using dynamic lifting.

18

Listing 3: Alice and Bob functions

alice2 : !(Qubit -> Qubit -> Bool * Bool)

alice2 a q =

let (a, q) = CNot a q

q = H q

in (dynlift (Meas a), dynlift (Meas q))

bob2 : !(Qubit -> Bool -> Bool -> Qubit)

bob2 q x y =

let q = if x then QNot q else q

q = if y then ZGate q else q

in q

Listing 4: Teleportation function

tele2 : !(Qubit -> Qubit)

tele2 q =

let (b, a) = bell00 ()

(x, y) = alice2 a q

z = bob2 b x y

in z

-- The following will raise an error

boxAttempt : Circ(Qubit , Qubit)

boxAttempt = box Qubit tele2

test : Bool

test =

dynlift (Meas (tele2 (Init0 ())))

As before, the code in Listings 3 and 4 contains no modality annotations. In the alice2 function, dynamic
lifting is used right after the measurement gate Meas : Qubit → Bit. Accordingly, the fully annotated type
of alice2 is !1(Qubit ⊸1 Qubit ⊸0 Bool ∗Bool). The bob2 function then uses if-then-else expressions to
decide whether to apply the gates QNot and ZGate, rather than applying the bit-controlled gates C X and
C Z, as in the bob1 function in Listing 1.

The tele2 function calls the bob2 function with the booleans provided by the alice2 function. Hence, the
tele2 function implicitly uses dynamic lifting. Its fully annotated type is !1(Qubit ⊸0 Qubit). Because of
the modality inference, the type checker will issue a typing error for the boxAttempt function. According to
the typing rule for box, the box Qubit function requires an argument of type !1(Qubit ⊸1 Qubit), which
is distinct from the type of tele2. This error is sensible because the tele2 function does not correspond to a
circuit.

The test function applies tele2 to an input qubit in the |0〉 state. The output value of test should then
be False with probability 1. Note that the evaluation of test requires access to a quantum computer or a
simulator.

5.2 Magic state distillation

Magic states are quantum states that can be used, in conjunction with Clifford gates, to perform universal
quantum computing fault tolerantly [BK05]. For example, there is a standard method to implement a T

gate using the magic state (|0〉 + e
πi
4 |1〉)/

√
2, along with Clifford gates and measurements. This enables

the application of any operation from the Clifford+T gate set, a well-known universal set of quantum gates
[NC02].

The process of producing a magic state such as (|0〉+ e
πi
4 |1〉)/

√
2 from several imperfect states is called

magic state distillation [BK05]. In order to distill a magic state |M〉, one first prepares several qubits in a
state that approximates |M〉 up to an error rate ǫ. A carefully designed quantum circuit is then applied to
these qubits and some of them are measured. If all of the measurement results are 0, then the remaining
qubits are guaranteed to be in a state that approximates |M〉 up to an improved error rate ǫ′ < ǫ. If any
one of the measurement results is 1, then all of the qubits are discarded and the entire process is restarted.
In practice, several rounds of distillation are required to obtain a state that approximates |M〉 up to an
acceptable error rate.

A Proto-Quipper-Dyn implementation of Bravyi and Kitaev’s distillation algorithm is given in Listing 5.
In the distill function, we first apply a five-qubit error correction circuit fiveQubits to the inputs, then measure
the qubits and, through dynamic lifting, promote the resulting bits to booleans. If all of the booleans are
False, the distillation was successful and we return the remaining qubit. Otherwise the distillation failed,
so we discard the unmeasured qubit and return nothing. Dynamic lifting is essential for defining the distill

function because in this case the if-then-else expression cannot be implemented as a circuit.

19

Listing 5: Bravyi and Kitaev’s algorithm

distill : ! (Qubit * Qubit * Qubit * Qubit * Qubit -> Maybe Qubit)

distill input =

let (a1 , a2, a3 , a4, a5) = fiveQubits input

a1 ’ = dynlift (Meas a1)

a2 ’ = dynlift (Meas a2)

a3 ’ = dynlift (Meas a3)

a4 ’ = dynlift (Meas a4)

in if a1’ || a2 ’ || a3’ || a4 ’

then let a = dynlift (Meas a5) in Nothing

else Just a5

distillation : ! (Nat -> Qubit)

distillation n =

case n of

Z -> prepMixedState ()

S n’ ->

let q1 = distillation n’

q2 = distillation n’

q3 = distillation n’

q4 = distillation n’

q5 = distillation n’

in

case distill (q1, q2 , q3 , q4, q5) of

Nothing -> distillation n

Just q -> q

The distillation function performs n rounds of magic state distillation. The function prepMixedState

prepares an initial imperfect state. The distillation function is a recursive function that assumes five successful
distillations from the previous round and then applies the distill function to the resulting qubits. If that
function returns a qubit, the n-th round of distillation was successful, otherwise it will restart the whole
process.

5.3 Repeat-Until-Success

The repeat-until-success paradigm provides a technique to apply a unitary that cannot be implemented
exactly, at the cost of potentially running the same circuit multiple times. In order to apply a non-Clifford+T
gate N to a target qubit |φ〉, one first initializes several ancillary qubits before applying a well-chosen
Clifford+T circuit C to the target and the ancillas and measuring the ancillas. If all of the measurement
results are 0, the target qubit is guaranteed to be in the state N |φ〉. Otherwise, a correction is applied to
the target to return it to its initial state and the process is repeated.

Consider the following circuit used in [PS13] to illustrate the implementation of the gate V3 = I+2iZ√
5

using the repeat-until-success method.

0 H T*

0 H

T H Meas

T Z

T H Meas

The top wire is the target qubit, while the wires below it are the ancillas. We apply a sequence of gates
(H , H , T ∗, CNOT , T , and H) to the ancillas before measuring the first ancilla. If, as we assume here, the
measurement result is 0, then we apply a sequence of gates (T , Z, CNOT , T , and H) to the target qubit and
the second ancilla before measuring the second ancilla. Assuming, again, that the measurement result is 0,
we then know that the target qubit is in the desired state. Note that the circuit above is not a representation
of the entire repeat-until-success protocol. Instead, it is the circuit constructed in the event that both

20

measurement results are 0 (which can be shown to occur with probability 5/8). If the measurements yield
different results, the circuit constructed by the repeat-until-success protocol is different. For example, if the
result of the second measurement is 1, a Z gate must be applied to the target qubit to return it to its initial
state.

Listing 6 gives a precise description of the implementation of V3 in Proto-Quipper-Dyn.

Listing 6: A repeat-until-success example

v3 : !(Qubit -> Qubit)

v3 q =

let a1 = tgate_inv (H (Init0 ()))

a2 = H (Init0 ())

(a1 , a2) = CNot a1 a2

a1 = H (TGate a1)

in if dynlift (Meas a1)

then

let _ = Discard (Meas a2)

in v3 q

else let q = ZGate (TGate q)

(a2 , q) = CNot a2 q

a2 = H (TGate a2)

in if dynlift (Meas a2)

then v3 (ZGate q)

else q

Once again, dynamic lifting plays an essential role here. Note that the v3 function has type !1(Qubit ⊸0

Qubit); it is a quantum computation, rather than a quantum circuit.

6 Conclusion

We have given an axiomatization of an enriched categorical semantics for Proto-Quipper with dynamic lifting.
We defined a type system with a modality to keep track of functions that use dynamic lifting. The main
benefit of our type system is that it statically prevents a class of run-time errors caused by applying the
boxing operation to a function that uses dynamic lifting. We also gave an operational semantics for dynamic
lifting. The operational semantics models both circuit generation and circuit execution. We also defined
an abstract categorical semantics for this language and proved that the type system and the operational
semantics are sound with respect to it. Lastly, we gave some examples of quantum algorithms that rely on
dynamic lifting.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
and by the Air Force Office of Scientific Research under Award No. FA9550-21-1-0041.

References

[Ben95] Nick Benton. A mixed linear and non-linear logic: proofs, terms and models (extended ab-
stract). In Proceedings of the 8th Workshop on Computer Science Logic, CSL’94, Selected
Papers, Springer Lecture Notes in Computer Science 933, pages 121–135, 1995.

[BK05] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates and
noisy ancillas. Physical Review A, 71(2):022316, 2005.

21

[Bor94] Francis Borceux. Handbook of Categorical Algebra, Volume 2: Categories and Structures. Cam-
bridge University Press, 1994.

[CL22] Andrea Colledan and Ugo Dal Lago. On dynamic lifting and effect typing in circuit description
languages (extended version). Available from arXiv:2202.07636, 2022.

[FKRS20] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. A tutorial introduction to quantum cir-
cuit programming in dependently typed Proto-Quipper. In Proceedings of the 12th International
Conference on Reversible Computation, RC 2020, Oslo, Norway, volume 12227 of Lecture Notes
in Computer Science, pages 153–168. Springer, 2020. Also available from arXiv:2005.08396.

[FKRS22] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. A biset-enriched categorical model
for Proto-Quipper with dynamic lifting. Preprint available from arXiv, 2022.

[FKS20] Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quantum pro-
gramming languages. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2020, Saarbrücken, Germany, pages 440–453, 2020. Also available
from arXiv:2004.13472.

[GLR+13a] Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benôıt Valiron.
An introduction to quantum programming in Quipper. In Proceedings of the 5th International
Conference on Reversible Computation, RC 2013, Victoria, British Columbia, volume 7948
of Lecture Notes in Computer Science, pages 110–124. Springer, 2013. Also available from
arXiv:1304.5485.

[GLR+13b] Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benôıt Valiron.
Quipper: a scalable quantum programming language. In Proceedings of the 34th Annual ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013, Seat-
tle, volume 48(6) of ACM SIGPLAN Notices, pages 333–342, June 2013. Also available from
arXiv:1304.3390.

[Kel82] G. M. Kelly. Basic concepts of enriched category theory, volume 64 of Lecture Notes of the
London Mathematical Society. Cambridge University Press, 1982.

[LPVX21] Dongho Lee, Valentin Perrelle, Benôıt Valiron, and Zhaowei Xu. Concrete categorical model of
a quantum circuit description language with measurement. In Mikolaj Bojanczyk and Chandra
Chekuri, editors, 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2021, volume 213 of LIPIcs, pages 51:1–51:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991.

[NC02] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2002.

[PRZ17] Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core language for quantum
circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, volume 52 of ACM SIGPLAN Notices, pages 846–858. ACM, 2017.

[PS13] Adam Paetznick and Krysta M. Svore. Repeat-until-success: Non-deterministic decomposition
of single-qubit unitaries. Available from arXiv:1311.1074, 2013.

[PT00] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

22

http://arxiv.org/abs/2202.07636
http://arxiv.org/abs/2005.08396
http://arxiv.org/abs/2004.13472
http://arxiv.org/abs/1304.5485
http://arxiv.org/abs/1304.3390
http://arxiv.org/abs/1311.1074

[Ros15] Neil J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis, Dalhousie
University, Department of Mathematics and Statistics, 2015. Available from arXiv:1510.02198.

[RS18] Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description lan-
guage. Extended abstract. In Proceedings of the 14th International Conference on Quantum
Physics and Logic, QPL 2017, Nijmegen, volume 266 of Electronic Proceedings in Theoretical
Computer Science, pages 164–178, 2018. Also available from arXiv:1706.02630.

[SV09] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Simon Gay and Ian Mackie,
editors, Semantic Techniques in Quantum Computation, chapter 4, pages 135–172. Cambridge
University Press, 2009.

A Diagrams for strong monoidal V-functors
Definition A.1. Suppose A,B are V-categories. A V-functor F : A → B is strong monoidal if the following
hold.

• In B, there is an isomorphism e : I → FI and a V-natural isomorphism m : FA⊗ FB → F (A⊗B).

• For all A,B,C ∈ A, the following diagrams commute.

(FA⊗ FB)⊗ FC FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC FA⊗ F (B ⊗ C)

F ((A⊗B)⊗ C) F (A⊗ (B ⊗ C)

α

m⊗FC FA⊗m

m m

Fα

I ⊗ FA FI ⊗ FA

FA F (I ⊗A)

e⊗FA

l m

Fl

FA⊗ I FA⊗ FI

FA F (A⊗ I)

FA⊗e

r m

Fr

B Convexity

Let [0, 1] denote the real unit interval.

Definition B.1. A convexity structure on a set X is an operation that assigns to all p, q ∈ [0, 1] with
p + q = 1 and all x, y ∈ X an element px + qy ∈ X , subject to the following properties. Throughout, we
assume p+ q = 1.

(a) px+ qx = x for all x ∈ X .

(b) px+ qy = qy + px for all x, y ∈ X .

(c) 0x+ 1y = y for all x, y ∈ X .

23

http://arxiv.org/abs/1510.02198
http://arxiv.org/abs/1706.02630

(d) (a+ b)(a
a+bx+ b

a+by) + (c+ d)(c
c+dz +

d
c+dw) = (a+ c)(a

a+cx+
c

a+cz) + (b+ d)(b
b+dy +

d
b+dw), where

a, b, c, d ∈ [0, 1] with a+ b+ c+ d = 1 and all denominators are non-zero.

Remark. Property (d) can best be understood by realizing that both sides of the equation are equal
to ax + by + cz + dw, decomposed in two different ways into convex sums of two elements at a time.
In the literature, we sometimes find a different, but equivalent condition of the form s(px + qy) + rz =
spx+ (qs+ r)(qs

qs+ry +
r

qs+r z). The latter axiom is arguably shorter, but harder to read.

We often expand the binary + operation to a multi-arity operation, i.e.,
∑

i pixi, where
∑

i pi = 1 and
xi ∈ X for all i.

C Details of Definition 3.6

Definition C.1. To each valid typing judgement Γ ⊢α M : A, we associate a map JMK : JΓK → αJAK in
A, called its interpretation. Note that JMK here is an abbreviation for JΓ ⊢α M : AK. The interpretation is
defined by induction on the derivation of Γ ⊢α M : A. We show a few non-trivial cases.

• Case

Φ, x : A ⊢1 x : A.

We define JxK as

JΦK ⊗ JAK JAK.
discard⊗JAK

• Case
Φ,Γ1 ⊢α1

M : A Φ,Γ2 ⊢α2
N : B

Φ,Γ1,Γ2 ⊢α1&α2
(M,N) : A⊗B.

Suppose α1 = α2 = 0. The other cases are similar. By induction hypothesis, we have JMK : JΦK ⊗
JΓ1K → T JAK and JNK : JΦK ⊗ JΓ2K → T JBK. So we define JM,NK as the following composition

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K

JMK⊗JNK−−−−−−→ T JAK ⊗ T JBK

t−→ T (T JAK ⊗ JBK)
Ts−−→ TT (JAK ⊗ JBK)

µ−→ T (JAK ⊗ JBK).

• Case

Σ1 ⊢1 a : S Σ2 ⊢1 b : U
C : Σ1 → Σ2

Φ ⊢1 (a, C, b) : Circ(S,U)

Note that JaK : JΣ1K → JSK and JbK : JΣ2K → JUK are isomorphisms. Moreover, C : JΣ1K → JΣ2K is a
morphism in A. We write θC = JbK ◦ C ◦ JaK−1 : JSK → JUK. Thus we have curry(θC) : I → JSK ⊸ JUK,
and δ(curry(θC)) : 1 → ♭(JSK ⊸ JUK) for the adjunct mate of curry(θC). Thus we define J(a, C, b)K as

JΦK
discard−−−−→ I = p1

pδ(curry(θC))−−−−−−−−→ p♭(JSK ⊸ JUK)
box−−→ pA(JSK, JUK).

• Case “let”. We only consider the following; the other cases are similar.

Φ,Γ1, x : P, y : B ⊢0 M : C Φ,Γ2 ⊢0 N : P ⊗B

Φ,Γ1,Γ2 ⊢0 let (x, y) = N in M : C
let

24

By induction hypothesis, we have JMK : JΦK ⊗ JΓ1K ⊗ JP K ⊗ JBK → T JCK and JNK : JΦK ⊗ JΓ2K →
T (JP K ⊗ JBK). Thus we define Jlet (x, y) = N in MK as the following composition.

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K

JΦK⊗JΓ1K⊗JNK−−−−−−−−−−→ JΦK ⊗ JΓ1K ⊗ T (JP K ⊗ JBK)
t−→

T (JΦK ⊗ JΓ1K ⊗ JP K ⊗ JBK)
T JMK−−−−→ TT JCK

µ−→ T JCK.

D Proof of Theorem 3.7

Theorem D.1 (Substitution). If Φ,Γ1, x : A,Γ2 ⊢α M : B and Φ,Γ3 ⊢1 V : A, then

J[V/x]MK = JMK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ2K ⊗ JΓ3K) : JΦ,Γ1,Γ2,Γ3K → αJBK.

Proof. By induction on Φ,Γ1, x : A,Γ2 ⊢α M : B. Here we show a few nontrivial cases.

• Case

Φ,Γ1, x : A,Γ′
1 ⊢α M : Bit

Φ,Γ1, x : A,Γ′
1 ⊢0 dynliftM : Bool.

Suppose Φ,Γ2 ⊢1 V : A and α = 0. By induction hypothesis, we have

J[V/x]MK = JMK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ′
1K ⊗ JΓ2K)

: JΦK ⊗ JΓ1K ⊗ JΓ2K ⊗ JΓ′
1K → T JBitK.

Since Φ,Γ1,Γ2,Γ
′
1 ⊢0 dynlift[V/x]M : Bool, we have

Jdynlift[V/x]MK = µ ◦ T dynlift ◦J[V/x]MK

= (µ ◦ T dynlift ◦JMK) ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ′
1K ⊗ JΓ2K)

: JΦK ⊗ JΓ1K ⊗ JΓ2K ⊗ JΓ′
1K → T JBoolK.

• Case

Φ, x : P,Φ′ ⊢α M : A

Φ, x : P,Φ′ ⊢1 lift M : !αA.

By Lemma 3.3, we have Φ ⊢1 V : P . Since Φ,Φ′ ⊢α [V/x]M : A, by induction hypothesis, we have

J[V/x]MK = JMK ◦ (JΦK ⊗ JV K ⊗ JΦ′K) ◦ (dup⊗ JΦ′K) : JΦK ⊗ JΦ′K → αJAK.

Since Φ,Φ′ ⊢1 lift[V/x]M : !αA, we have

Jlift[V/x]MK = pδJ[V/x]MK : JΦK ⊗ JΦ′K → p♭αJAK.

Note that δJ[V/x]MK is the unique morphism such that force ◦ pδJ[V/x]MK = J[V/x]MK. On the other
hand, we have

force ◦ pδJMK ◦ (JΦK ⊗ JV K ⊗ JΦ′K) ◦ (dup⊗ JΦ′K)

= JMK ◦ (JΦK ⊗ JV K ⊗ JΦ′K) ◦ (dup⊗ JΦ′K) = J[V/x]MK.

Thus
Jlift[V/x]MK = pδJ[V/x]MK = pδJMK ◦ (JΦK ⊗ JV K ⊗ JΦ′K) ◦ (dup⊗ JΦ′K)

= JliftMK ◦ (JΦK ⊗ JV K ⊗ JΦ′K) ◦ (dup⊗ JΦ′K).

25

• Case

Γ1, x : C,Γ′
1, y : A ⊢α M : B

Γ1, x : C,Γ′
1 ⊢1 λy.M : A⊸α B.

Suppose Γ2 ⊢1 V : C. By induction hypothesis, we have

J[V/x]MK = JMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1, y : AK)

: JΓ1K ⊗ JΓ2K ⊗ JΓ′
1, y : AK → αJBK.

Since Γ1,Γ2,Γ
′
1 ⊢1 λy.[V/x]M : A⊸α B, we have

Jλy.[V/x]MK = curryJ[V/x]MK : JΓ1K ⊗ JΓ2K ⊗ JΓ′
1K → JAK ⊸ αJBK,

which is the unique morphism such that

ǫ ◦ (curryJ[V/x]MK ⊗ JAK) = J[V/x]MK.

On the other hand, we have

ǫ ◦ ((curryJMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1, y : AK))⊗ JAK)

= ǫ ◦ (curryJMK ⊗ JAK) ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1, y : AK)

= JMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1, y : AK) = J[V/x]MK.

Thus Jλy.[V/x]MK = curryJMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1, y : AK) = Jλy.MK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′

1, y : AK).

• Case

Φ,Γ1, x : C,Γ′
1 ⊢α1

M : A⊸β B Φ,Γ2 ⊢α2
N : A

Φ,Γ1, x : C,Γ′
1,Γ2 ⊢α1&α2&β MN : B

Suppose Φ,Γ3 ⊢1 V : C and α1 = α2 = β = 0. By induction hypothesis, we have

J[V/x]MK = JMK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ′
1K) ◦ (dup⊗ JΓ1K ⊗ JΓ′

1K ⊗ JΓ3K)

: JΦK ⊗ JΓ1K ⊗ JΓ3K ⊗ JΓ′
1K → T (JAK ⊸ T JBK).

Moreover,

J[V/x]MNK = µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (J[V/x]MK ⊗ JNK) = µ ◦ T ǫ ◦ µ ◦ Ts ◦ t◦

((JMK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ′
1K) ◦ (dup⊗ JΓ1K ⊗ JΓ′

1K ⊗ JΓ3K))⊗ JNK).

On the other hand,

JMNK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ′
1K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ′

1K ⊗ JΓ2K ⊗ JΓ3K)

= µ ◦ T ǫ ◦ µ ◦ Tσ ◦ t ◦ (JMK ⊗ JNK)

◦(JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ′
1K ⊗ JΓ2K) ◦ (dup⊗ JΓ1K ⊗ JΓ′

1K ⊗ JΓ2K ⊗ JΓ3K).

Thus
J[V/x]MNK = JMNK ◦ (JΦK ⊗ JΓ1K ⊗ JV K ⊗ JΓ′

1K ⊗ JΓ2K)

◦(dup⊗ JΓ1K ⊗ JΓ′
1K ⊗ JΓ2K ⊗ JΓ3K).

26

• Case

Γ1, x : C,Γ′
1 ⊢β M : !αA

Γ1, x : C,Γ′
1 ⊢α&β force M : A.

Suppose Γ2 ⊢1 V : C and α = β = 0. By induction hypothesis, we have

J[V/x]MK = JMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1K)

: JΓ1K ⊗ JΓ2K ⊗ JΓ′
1K → Tp♭T JAK.

Since Γ1,Γ2,Γ1′ ⊢0 force[V/x]M : A, we have

Jforce[V/x]MK = µ ◦ T force ◦ J[V/x]MK = µ ◦ T force ◦ JMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1K)

: JΓ1K ⊗ JΓ2K ⊗ JΓ′
1K → T JAK.

On the other hand, we have
JforceMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′

1K)

= µ ◦ T force ◦ JMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1K).

So Jforce[V/x]MK = JforceMK ◦ (JΓ1K ⊗ JV K ⊗ JΓ′
1K).

• Case
Φ, x : P ⊢0 M : A Φ, x : P ⊢0 N : B

Φ, x : P ⊢0 (M,N) : A⊗B

Suppose Φ ⊢1 V : P . By induction hypothesis, we have J[V/x]MK = JMK ◦ (JΦK ⊗ JV K) ◦ dup : JΦK →
T JAK and J[V/x]NK = JNK ◦ (JΦK ⊗ JV K) ◦ dup : JΦK → T JBK. We have

J([V/x]M, [V/x]N)K = µ ◦ Tσ ◦ t ◦ (J[V/x]MK ⊗ J[V/x]NK) ◦ dup

= µ ◦ Tσ ◦ t ◦ ((JMK ◦ (JΦK ⊗ JV K) ◦ dup)⊗ (JNK ◦ (JΦK ⊗ JV K) ◦ dup) ◦ dup.

On the other hand,
J(M,N)K ◦ (JΦK ⊗ JV K) ◦ dup

= µ ◦ Tσ ◦ t ◦ (JMK ⊗ JNK) ◦ dupJΦK⊗JP K ◦ (JΦK ⊗ JV K) ◦ dupJΦK

= µ ◦ Tσ ◦ t ◦ (JMK ⊗ JNK) ◦ ((JΦK ⊗ JV K)⊗ (JΦK ⊗ JV K)) ◦ dupJΦK⊗JΦK ◦ dupJΦK

= µ ◦ Tσ ◦ t ◦ ((JMK ◦ (JΦK ⊗ JV K) ◦ dupJΦK)⊗ (JNK ◦ (JΦK ⊗ JV K) ◦ dupJΦK)) ◦ dupJΦK.

Thus J([V/x]M, [V/x]N)K = J(M,N)K ◦ (JΦK ⊗ JV K) ◦ dup.

E Proof of Theorem 4.15

Theorem E.1 (Soundness). If ⊢α (Q,M) : A; Σ′, and (Q,M) ⇓ ∑
i∈[n] pi(Qi, Vi), then

JQ,MK =
∑

i∈[n]

piJQi, ViK : I → T (JAK ⊗ JΣ′K).

27

Proof. In the case where α = 1, there is no dynamic lifting, and therefore the proof is mostly similar to the
proof of Theorem 4.6. We consider just one typical case:

(Q,M) ⇓ (Q1, λx.M
′
1)

(Q1, N) ⇓ (Q′
1, V1)

(Q′
1, [V1/x]M

′
1) ⇓ (Q′′

1 , V
′
1)

(Q,MN) ⇓ (Q′′
1 , V

′
1)

Suppose addr(Q) = Σ′′,Σ′ and Σ′′ ⊢1 MN : A. By the typing rule for MN , we have

Σ′′
1 ⊢1 M : B ⊸1 A Σ′′

2 ⊢1 N : B

Σ′′ ⊢1 MN : A,

where Σ′′ = Σ′′
1 ,Σ

′′
2 . By Theorem 4.12, we have addr(Q1) = Σ′′′

1 ,Σ
′′
2 ,Σ

′, and Σ′′′
1 ⊢1 λx.M

′
1 : B ⊸1 A, and

addr(Q′
1) = Σ′′′

1 ,Σ
′′′
2 ,Σ

′, and Σ′′′
2 ⊢1 V1 : B, and addr(Q′′

1) = Σ′′′′,Σ′, and Σ′′′′ ⊢ V ′
1 : B.

By induction hypothesis, we have

JQ,MK = T (JMK ⊗ JΣ′′
2K ⊗ JΣ′K) ◦ φQ = T (Jλx.M ′

1K ⊗ JΣ′′
2K ⊗ JΣ′K) ◦ φQ1

: I → T (JB ⊸ AK ⊗ JΣ′′
2K ⊗ JΣ′K)

and
JQ1, NK = T (JΣ′′′

1 K ⊗ JNK ⊗ JΣ′K) ◦ φQ1 = T (JΣ′′′
1 K ⊗ JV1K ⊗ JΣ′K) ◦ φQ′

1

: I → T (JΣ′′′
1 K ⊗ JBK ⊗ JΣ′K)

and
JQ′

1, [V1/x]M
′
1K = T (J[V1/x]M

′
1K ⊗ JΣ′K) ◦ φQ′

1

= T ((JM ′
1K ◦ (JΣ′′′

1 K ⊗ JV1K))⊗ JΣ′K) ◦ φQ′
1

= T (JV ′
1K ⊗ JΣ′K) ◦ φQ′′

1 : I → T (JAK ⊗ JΣ′K).

We need to show that
JQ,MNK = T (JMNK ⊗ JΣ′K) ◦ φQ
= T ((ǫ ◦ (JMK ⊗ JNK)) ⊗ JΣ′K) ◦ φQ

= T ((JM ′
1K ◦ (JV1K ⊗ JΣ′′′

1 K)) ⊗ JΣ′K) ◦ φQ′
1.

This is the case because
JQ,MNK = T (JMNK ⊗ JΣ′K) ◦ φQ
= T ((ǫ ◦ (JMK ⊗ JNK)) ⊗ JΣ′K) ◦ φQ

= T (ǫ⊗ JΣ′K) ◦ T (JB ⊸1 AK ⊗ JNK ⊗ JΣ′K) ◦ T (JMK ⊗ JΣ′′
2K ⊗ JΣ′K) ◦ φQ

= T (ǫ⊗ JΣ′K) ◦ T (JB ⊸1 AK ⊗ JNK ⊗ JΣ′K) ◦ T (Jλx.M ′
1K ⊗ JΣ′′

2K ⊗ JΣ′K) ◦ φQ1

= T (ǫ⊗ JΣ′K) ◦ T (Jλx.M ′
1K ⊗ JNK ⊗ JΣ′K) ◦ φQ1

= T (ǫ⊗ JΣ′K) ◦ T (Jλx.M ′
1K ⊗ JBK ⊗ JΣ′K) ◦ T (JΣ′′′

1 K ⊗ JNK ⊗ JΣ′K) ◦ φQ1

= T (ǫ⊗ JΣ′K) ◦ T (Jλx.M ′
1K ⊗ JBK ⊗ JΣ′K) ◦ T (JΣ′′′

1 K ⊗ JV1K ⊗ JΣ′K) ◦ φQ′
1

= T (JM ′
1K ⊗ JΣ′K) ◦ T (JΣ′′′

1 K ⊗ JV1K ⊗ JΣ′K) ◦ φQ′
1

= T ((JM ′
1K ◦ (JΣ′′′

1 K ⊗ JV1K))⊗ JΣ′K) ◦ φQ′
1

Now we consider the case where α = 0. Suppose addr(Q) = Σ′′,Σ′ and Σ′′ ⊢0 M : A. We proceed by
induction on (Q,M) ⇓ ∑

i∈[n] pi(Qi, Vi).

28

• Case
(Q,M) ⇓ ∑

i∈[n] pi(Qi, ℓi)

read(Qi, ℓi) =
∑

j∈[2] qi,j(Q
′
i,j , ai,j)

(Q, dynliftM) ⇓ ∑
(i,j)∈[n]×[2] piqi,j(Q

′
i,j , ai,j).

– Suppose we have
Σ′′ ⊢1 M : Bit

Σ′′ ⊢0 dynliftM : Bool.

In this case we have the following derivation.

(Q,M) ⇓ (Q′, ℓ)
read(Q′, ℓ) = q1(Q

′
1,False) + q2(Q

′
2,True)

(Q, dynliftM) ⇓ q1(Q′
1,False) + q2(Q

′
2,True)

Since read(Q′, ℓ) = q1(Q
′
1,False) + q2(Q

′
2,True), we have that Q′ = q1(Q

′
1 ⊗ inj1) + q2(Q

′
2 ⊗ inj2)

in Q. So in A, we have

φQ′ = q1(µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1))) + q2(µ ◦ T t ◦ s ◦ (φQ′

2 ⊗ φ(inj2))),

where φQ′ : I → T (Bit⊗ JΣ′K), and φQ′
1, φQ

′
2 : I → T JΣ′K, and φ(inj1), φ(inj2) : I → TBit. Note

that by condition g, we have φ(inj1) = η ◦ init ◦ JFalseK and φ(inj2) = η ◦ init ◦ JTrueK. We need to
show that

JQ, dynliftMK = q1(T (JFalseK ⊗ JΣ′K) ◦ φQ′
1) + q2(T (JTrueK ⊗ JΣ′K) ◦ φQ′

2).

By induction hypothesis, we have JQ,MK = JQ′, ℓK, i.e., T (JMK ⊗ JΣ′K) ◦ φQ = φQ′. Thus

JQ, dynliftMK = µ ◦ Ts ◦ T ((dynlift ◦JMK)⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ T (JMK ⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ φQ′

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K)

◦(q1(µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1))) + q2(µ ◦ T t ◦ s ◦ (φQ′

2 ⊗ φ(inj2))))

= q1(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ φ(inj1)))

+q2(µ ◦ Tσ ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ σ ◦ (φQ′
2 ⊗ φ(inj2))).

We just need to show

T (JFalseK ⊗ JΣ′K) ◦ φQ′
1 = µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′

1 ⊗ φ(inj1))

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
1 ⊗ (η ◦ init ◦ JFalseK)).

This is true because of the following commutative diagram.

29

I

T JΣ′K

I ⊗ T JΣ′K T (I ⊗ JΣ′K)

Bool⊗ T JΣ′K T (Bool⊗ JΣ′K) T (Bool⊗ JΣ′K)

Bit⊗ T JΣ′K T (Bit⊗ JΣ′K) T (TBool⊗ JΣ′K) TT (Bool⊗ JΣ′K)

TBit⊗ T JΣ′K

T (TBit⊗ JΣ′K)

TT (Bit⊗ JΣ′K) T (Bit⊗ JΣ′K)

φQ′

1

λ−1
Tλ−1

t

JFalseK⊗TJΣ′K T (JFalseK⊗JΣ′K)

t

init⊗TJΣ′K

Id

T (init⊗JΣ′K)
T (η⊗JΣ′K)

η

t

η⊗TJΣ′K T (η⊗JΣ′K)

η

T (dynlift⊗JΣ′K)

Ts

µ

t

Ts

µ

Id

– Suppose we have
Σ′′ ⊢0 M : Bit

Σ′′ ⊢0 dynliftM : Bool.

In this case (Q,M) ⇓ ∑
i∈[n] pi(Qi, ℓi) and read(Qi, ℓi) = qi,1(Q

′
i,1,False)+ qi,2(Q

′
i,2,True), where

addr(Qi) = Σ′, ℓi : Bit and addr(Q′
i,1) = addr(Q′

i,1) = Σ′. Thus we have the following in
A: φQi = qi,1(µ ◦ T t ◦ s ◦ (φQ′

i,1 ⊗ φ(inj1))) + qi,2(µ ◦ T t ◦ s ◦ (φQ′
i,2 ⊗ φ(inj2))). Note that

φ(inj1) = η ◦ init ◦ JFalseK and φ(inj2) = η ◦ init ◦ JTrueK.

We need to show that
JQ, dynliftMK

=
∑

i∈[n]

piqi,1(T (JFalseK ⊗ JΣ′K) ⊗ φQ′
i,1) + piqi,2(T (JTrueK ⊗ JΣ′K)⊗ φQ′

i,2).

By induction hypothesis, we have

JQ,MK = µ ◦ Ts ◦ T (JMK ⊗ JΣ′K) ◦ φQ

=
∑

i∈[n]

pi(T (JℓiK ⊗ JΣ′K) ◦ φQi) =
∑

i∈[n]

piφQi.

Thus
JQ, dynliftMK = µ ◦ Ts ◦ T ((µ ◦ T dynlift ◦JMK)⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T ((µ ◦ T dynlift)⊗ JΣ′K) ◦ T (JMK ⊗ JΣ′K) ◦ φQ
(∗)
= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ Ts ◦ T (JMK ⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ (
∑

i∈[n]

piφQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ (qi,1(µ ◦ T t ◦ s ◦ (φQ′
i,1 ⊗ φ(inj1)))

30

+qi,2(µ ◦ T t ◦ s ◦ (φQ′
i,2 ⊗ φ(inj2)))))

=
∑

i∈[n]

piqi,1(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
i,1 ⊗ φ(inj1)))

+piqi,2(µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
i,2 ⊗ φ(inj2))).

So we just need to show
T (JFalseK ⊗ JΣ′K)⊗ φQ′

i,1

= µ ◦ Ts ◦ T (dynlift⊗JΣ′K) ◦ µ ◦ T t ◦ s ◦ (φQ′
i,1 ⊗ φ(inj1)).

We already showed this in the previous case.

The equality of (∗) is by the following commutative diagram.

T (TBit⊗ JΣ′K)

TT (Bit⊗ JΣ′K) T (TTBool⊗ JΣ′K)

T (Bit⊗ JΣ′K) TT (TBool⊗ JΣ′K) T (TBool⊗ JΣ′K)

T (TBool⊗ JΣ′K) TTT (Bool⊗ JΣ′K) TT (Bool⊗ JΣ′K)

TT (Bool⊗ JΣ′K) T (Bool⊗ JΣ′K)

T (T dynlift⊗JΣ′K)

Ts

µ

TT (dynlift⊗JΣ′K) T (µ⊗JΣ′K)

Ts

T (dynlift⊗JΣ′K)

µ TTs Ts

Ts

µ

µ µ
µ

• Case

(Q,M) ⇓ ∑
i∈[n] pi(Qi, λx.M

′
i)

(Qi, N) ⇓ ∑
j∈[m] qi,j(Q

′
i,j , Vi,j)

(Q′
i,j , [Vi,j/x]M

′
i) ⇓

∑
k∈[l] si,j,k(Q

′′
i,j,k, V

′
i,j,k)

(Q,MN) ⇓ ∑
(i,j,k)∈[n]×[m]×[l] piqi,jsi,j,k(Q

′′
i,j,k, V

′
i,j,k).

Here we only consider the following typing judgment (the other cases are proved similarly).

Σ1 ⊢0 M : A⊸0 B Σ2 ⊢0 N : A

Σ1,Σ2 ⊢0 MN : B

We assume that addr(Q) = Σ1,Σ2,Σ
′.

By induction hypothesis, we have

JQ,MK = µ ◦ Ts ◦ T (s⊗ JΣ′K) ◦ T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ

=
∑

i∈[n]

piJQi, λx.M
′
iK =

∑

i∈[n]

pi(T (Jλx.M
′
iK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQi),

where φQi : I → T (JΣ′
iK ⊗ JΣ2K ⊗ JΣ′K) and Σ′

i ⊢1 λx.M
′
i : A ⊸0 B. The induction hypothesis also

gives
JQi, NK = µ ◦ Ts ◦ T (t⊗ JΣ′K) ◦ T (JΣ′

iK ⊗ JNK ⊗ JΣ′K) ◦ φQi
=

∑

j∈[m]

qi,jJQ
′
i,j , Vi,jK =

∑

j∈[m]

qi,j(T (JΣ
′
iK ⊗ JVi,jK ⊗ JΣ′K) ◦ φQ′

i,j),

31

where Q′
i,j : I → T (JΣ′

iK ⊗ JΣ′′
i,jK ⊗ JΣ′K) and Σ′′

i,j ⊢1 Vi,j : A. Moreover,

JQ′
i,j , [Vi,j/x]M

′
iK = µ ◦ Ts ◦ T (J[Vi,j/x]M ′

iK ⊗ JΣ′K) ◦ φQ′
i,j

= µ ◦ Ts ◦ T ((JM ′
iK ◦ (JΣ′

iK ⊗ JVi,jK)) ⊗ JΣ′K) ◦ φQ′
i,j

=
∑

k∈[l]

si,j,kJQ
′′
i,j,k, V

′
i,j,kK =

∑

k∈[l]

si,j,k(T (JV
′
i,j,kK ⊗ JΣ′K) ◦ φQ′′

i,j,k),

where φQ′′
i,j,k : I → T (JΣ′′′

i,j,kK ⊗ JΣ′K) and Σ′′′
i,j,k ⊢1 V

′
i,j,k : B.

We need to show
JQ,MNK = µ ◦ Ts ◦ T (JMNK ⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (JMK ⊗ JNK)) ⊗ JΣ′K) ◦ φQ

=
∑

i,j,k∈[n]×[m]×[l]

piqi,jsi,j,k(T (JV
′
i,j,kK ⊗ JΣ′K) ◦ φQ′′

i,j,k).

On the right hand side, we have

RHS =
∑

i,j,k∈[n]×[m]×[l]

piqi,jsi,j,k(T (JV
′
i,j,kK ⊗ JΣ′K) ◦ φQ′′

i,j,k)

=
∑

i,j∈[n]×[m]

piqi,j
∑

k∈[l]

si,j,k(T (JV
′
i,j,kK ⊗ JΣ′K) ◦ φQ′′

i,j,k)

IH
=

∑

i,j∈[n]×[m]

piqi,j(µ ◦ Ts ◦ T ((JM ′
iK ◦ (JΣ′

iK ⊗ JVi,jK))⊗ JΣ′K) ◦ φQ′
i,j).

On the left hand side, we have

LHS = µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (JMK ⊗ JNK))⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (T (JAK ⊸ T JBK)⊗ JNK) ◦ (JMK ⊗ JΣ2K))⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T (µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (T (JAK ⊸ T JBK)⊗ JNK)⊗ JΣ′K) ◦ T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ
(1)
= µ ◦ Ts ◦ T (µ⊗ JΣ′K) ◦ T (T ǫ⊗ JΣ′K) ◦ T (t⊗ JΣ′K) ◦ T (JAK ⊸ T JBK ⊗ JNK ⊗ JΣ′K)

◦µ ◦ Ts ◦ T (s⊗ JΣ′K) ◦ T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ
IH
= µ ◦ Ts ◦ T (µ⊗ JΣ′K) ◦ T (T ǫ⊗ JΣ′K) ◦ T (t⊗ JΣ′K) ◦ T (JAK ⊸ T JBK ⊗ JNK ⊗ JΣ′K)◦

∑

i∈[n]

pi(T (Jλx.M
′
iK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (µ⊗ JΣ′K) ◦ T (T ǫ⊗ JΣ′K) ◦ T (t⊗ JΣ′K) ◦ T (JAK ⊸ T JBK ⊗ JNK ⊗ JΣ′K)◦

T (Jλx.M ′
iK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ t ◦ ((JAK ⊸ T JBK)⊗ JNK) ◦ (Jλx.M ′
iK ⊗ JΣ2K))⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ t ◦ (Jλx.M ′
i K ⊗ JNK)) ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ t ◦ (Jλx.M ′
iK ⊗ T JAK) ◦ (JΣ′

iK ⊗ JNK))⊗ JΣ′K) ◦ φQi)

32

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((µ ◦ T ǫ ◦ t ◦ (Jλx.M ′
i K ⊗ T JAK))⊗ JΣ′K) ◦ T (JΣ′

iK ⊗ JNK ⊗ JΣ′K) ◦ φQi)

(2)
=

∑

i∈[n]

pi(µ◦Ts◦T (ǫ⊗JΣ′K)◦T (Jλx.M ′
iK⊗JAK⊗JΣ′K)◦µ◦Ts◦T (t⊗JΣ′K)◦T (JΣ′

iK⊗JNK⊗JΣ′K)◦φQi)

IH
=

∑

i∈[n]

pi(µ ◦ Ts ◦ T (ǫ⊗ JΣ′K) ◦ T (Jλx.M ′
iK ⊗ JAK ⊗ JΣ′K) ◦

∑

j∈[m]

qi,j(T (JΣ
′
iK ⊗ JVi,jK ⊗ JΣ′K) ◦ φQ′

i,j))

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (JM ′
iK ⊗ JΣ′K) ◦

∑

j∈[m]

qi,j(T (JΣ
′
iK ⊗ JVi,jK ⊗ JΣ′K) ◦ φQ′

i,j))

=
∑

i,j∈[n]×[m]

piqi,j(µ ◦ Ts ◦ T ((JM ′
iK ◦ (JΣ′

iK ⊗ JVi,jK))⊗ JΣ′K) ◦ φQ′
i,j).

To show (1) holds, we just need to show

T ((µ ◦ T ǫ ◦ µ ◦ Ts ◦ t ◦ (T (JAK ⊸ T JBK)⊗ JNK)⊗ JΣ′K)

= T (µ⊗ JΣ′K) ◦ T (T ǫ⊗ JΣ′K) ◦ T (t⊗ JΣ′K) ◦ T (JAK ⊸ T JBK ⊗ JNK ⊗ JΣ′K) ◦ µ ◦ Ts ◦ T (s⊗ JΣ′K).

This is true because the following diagram commutes.

T ((T (JAK ⊸ T JBK)⊗ JΣ2K)⊗ JΣ′K)

T (T ((JAK ⊸ T JBK)⊗ JΣ2K)⊗ JΣ′K) T ((T (JAK ⊸ T JBK)⊗ T JAK)⊗ JΣ′K)

TT (((JAK ⊸ T JBK)⊗ JΣ2K) ⊗ JΣ′K) T (T ((JAK ⊸ T JBK)⊗ T JAK)⊗ JΣ′K) T (T (T (JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K)

T (((JAK ⊸ T JBK)⊗ JΣ2K)⊗ JΣ′K) TT (((JAK ⊸ T JBK)⊗ T JAK)⊗ JΣ′K) T (TT ((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K)

T (((JAK ⊸ T JBK)⊗ T JAK)⊗ JΣ′K) TT (T ((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K) T (T ((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K)

T (s⊗JΣ′K)

T ((T (JAK⊸T JBK)⊗JNK)⊗JΣ′K)

Ts

T (T ((JAK⊸T JBK)⊗JNK)⊗JΣ′K) T (s⊗JΣ′K) T (t⊗JΣ′K)

TT (((JAK⊸T JBK)⊗JNK)⊗JΣ′K)

µ

T (Tt⊗JΣ′K)

Ts T (Ts⊗JΣ′K)

T (((JAK⊸T JBK)⊗JNK)⊗JΣ′K) µ TT (t⊗JΣ′K)

Ts

T (µ⊗JΣ′K)

T (t⊗JΣ′K)

µ

To show (2) holds, we need to show

T ((µ ◦ T ǫ ◦ t ◦ (Jλx.M ′
iK ⊗ T JAK))⊗ JΣ′K)

= T (ǫ⊗ JΣ′K) ◦ T (Jλx.M ′
iK ⊗ JAK ⊗ JΣ′K) ◦ µ ◦ Ts ◦ T (t⊗ JΣ′K).

This is true because the following diagram commutes.

T (JΣ′
iK ⊗ T JAK ⊗ JΣ′K)

T (T (JΣ′
iK ⊗ JAK) ⊗ JΣ′K) T ((JAK ⊸ T JBK)⊗ T JAK ⊗ JΣ′K)

TT ((JΣ′
iK ⊗ JAK) ⊗ JΣ′K) T (T ((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K)

T ((JΣ′
iK ⊗ JAK) ⊗ JΣ′K) TT (((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K) T (TT JBK⊗ JΣ′K)

T (((JAK ⊸ T JBK)⊗ JAK) ⊗ JΣ′K) TT (T JBK⊗ JΣ′K)

T (T JBK ⊗ JΣ′K)

T (Jλx.MiK⊗T JAK⊗JΣ′K)

T (t⊗JΣ′K)

Ts

T (T (Jλx.MiK⊗JAK)⊗JΣ′K)

T (t⊗JΣ′K)

TT ((Jλx.M ′

iK⊗JAK)⊗JΣ′K)

µ Ts

T (Tǫ⊗JΣ′K)

T ((Jλx.M ′

iK⊗JAK)⊗JΣ′K)

µ

TT (ǫ⊗JΣ′K)

Ts

T (µ⊗JΣ′K)

T (ǫ⊗JΣ′K)

µ

33

• Case
(Q,M) ⇓ ∑

i∈[n] pi(Qi, lift M
′
i)

gen(S) = a
(IdΣa

,M ′
i a) ⇓ (Di, bi)

(Q, box S M) ⇓ ∑
i∈[n] pi(Qi, (a,Di, bi)).

Suppose addr(Q) = Σ1,Σ
′. Consider the following.

Σ1 ⊢0 M : !1(S ⊸1 U)

Σ1 ⊢0 box S M : Circ(S,U)

By induction hypothesis, we have

JQ,MK = µ ◦ Ts ◦ T (JMK ⊗ JΣ′K) ◦ φQ =
∑

i∈[n]

piJQi, liftM
′
iK

=
∑

i∈[n]

piT (JliftM
′
iK ⊗ JΣ′K) ◦ φQi

where φQi : I → T JΣ′K and ⊢1 liftM ′
i : !1(S ⊸1 U). Note that Σa ⊢ a : S. By Theorem 4.6, we have

JIdΣa
,M ′

iaK = ǫ ◦ (JM ′
iK ⊗ JaK) = JbiK ◦ Di : JΣaK → JUK.

We need to show
JQ, boxSMK = µ ◦ Ts ◦ T (JboxSMK ⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T ((Tbox ◦ JMK) ⊗ JΣ′K) ◦ φQ
=

∑

i∈[n]

pnJQi, (a,Di, b)K

=
∑

i∈[n]

pn(T ((box ◦ pδcurry(θDi
))⊗ JΣ′K) ◦ φQi),

where θDi
= JbiK ◦ Di ◦ JaK−1 : JSK → JUK, and curry(θDi

) : I → JSK ⊸ JUK and δcurry(θDi
) : 1 →

♭(JSK ⊸ JUK).

This is true because we have the following.

µ ◦ Ts ◦ T ((Tbox ◦ JMK) ⊗ JΣ′K) ◦ φQ

= T (box⊗ JΣ′K) ◦ µ ◦ Ts ◦ T (JMK ⊗ JΣ′K) ◦ φQ
IH
= T (box⊗ JΣ′K) ◦

∑

i∈[n]

pi(T (JliftM
′
iK ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(T (box⊗ JΣ′K) ◦ T (JliftM ′
iK ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pn(T ((box ◦ pδJM ′
iK)⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pn(T ((box ◦ pδcurry(θDi
))⊗ JΣ′K) ◦ φQi).

The last equality holds because

curry(θDi
) = curry(JbiK ◦ Di ◦ JaK−1)

= curry((ǫ ◦ (JM ′
iK ⊗ JaK)) ◦ JaK−1) = curry(ǫ ◦ (JM ′

iK ⊗ JSK)) = JM ′
iK.

34

• Case
(Q,M) ⇓ ∑

i∈[n] pi(Qi, liftM
′
i)

(Qi,M
′
i) ⇓

∑
j∈[m] qi,j(Q

′
i,j , Vi,j)

(Q, forceM) ⇓ ∑
(i,j)∈[n]×[m] piqi,j(Q

′
i,j , Vi,j).

Suppose addr(Q) = Σ1,Σ
′ and

Σ1 ⊢0 M : !0A

Σ1 ⊢0 force M : A.

By induction hypothesis, we have

JQ,MK = µ ◦ Ts ◦ (JMK ⊗ JΣ′K) ◦ φQ =
∑

i∈[n]

piJQi, liftM
′
iK

=
∑

i∈[n]

pi(T (JliftM
′
iK ⊗ JΣ′K) ◦ φQi),

where φQi : I → T JΣ′K and ∅ ⊢1 liftMi : !0A.

Also by induction hypothesis, we have

JQi,M
′
iK = µ ◦ Ts ◦ (JM ′

iK ⊗ JΣ′K) ◦ φQi =
∑

j∈[m]

qi,jJQ
′
i,j , Vi,jK

=
∑

j∈[m]

qi,j(T (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j),

where φQ′
i,j : I → T (JΣ2K ⊗ JΣ′K) and Σ2 ⊢1 Vi,j : A.

We need to show
JQ, forceMK = µ ◦ Ts ◦ T ((µ ◦ T force ◦ JMK)⊗ JΣ′K) ◦ φQ

=
∑

i,j∈[n]×[m]

piqi,jJQ
′
i,j , Vi,jK =

∑

i,j∈[n]×[m]

piqi,jT (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j .

This is true because
µ ◦ Ts ◦ T ((µ ◦ T force ◦ JMK)⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T ((µ ◦ T force)⊗ JΣ′K) ◦ T (JMK ⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T (force⊗ JΣ′K) ◦ µ ◦ Ts ◦ T (JMK ⊗ JΣ′K) ◦ φQ

IH
= µ ◦ Ts ◦ T (force⊗ JΣ′K) ◦

∑

i∈[n]

pi(T (JliftM
′
iK ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (force⊗ JΣ′K) ◦ T (JliftM ′
iK ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T (JM ′
iK ⊗ JΣ′K) ◦ φQi)

IH
=

∑

i∈[n]

pi
∑

j∈[m]

qi,j(T (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j)

=
∑

i,j∈[n]×[m]

piqi,j(T (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j).

35

• Case
(Q,M) ⇓ ∑

i∈[n] pi(Qi, (ai,Di, bi))
(Qi, N) ⇓ ∑

j∈[m] qi,j(Q
′
i,j , Vi,j)

operate(Di, Q′
i,j , ai, Vi,j) = Q′′

i,j

(Q, apply(M,N)) ⇓ ∑
(i,j)∈[n]×[m] piqi,j(Q

′′
i,j , bi).

Suppose addr(Q) = Σ1,Σ2,Σ
′ and

Σ1 ⊢0 M : Circ(S,U) Σ2 ⊢0 N : S

Σ1,Σ2 ⊢0 apply(M,N) : U.

By induction hypothesis, we have

JQ,MK = µ ◦ Ts ◦ T (s⊗ JΣ′K) ◦ T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ

=
∑

i∈[n]

piJQi, (ai,Di, bi)K =
∑

i∈[n]

piT (Jai,Di, biK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQi

=
∑

i∈[n]

piT ((box ◦pδcurry(θDi
))⊗ JΣ2K ⊗ JΣ′K) ◦ φQi,

where φQi : I → T (JΣ2K⊗ JΣ′K), and θDi
= JbiK ◦Di ◦ JaiK

−1 : JSK → JUK, and Di : JΣaiK → JΣbiK, and
Σai ⊢1 ai : S and Σbi ⊢1 bi : U .

Moreover, by induction hypothesis we also have

JQi, NK = µ ◦ Ts ◦ T (JNK ⊗ JΣ′K) ◦ φQi

=
∑

j∈[m]

qi,jJQ
′
i,j , Vi,jK =

∑

j∈[m]

qi,jT (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j ,

where φQ′
i,j : I → T (JΣ′

2K ⊗ JΣ′K) and Σ′
2 ⊢1 Vi,j : S.

Since operate(Di, Q′
i,j , ai, Vi,j) = Q′′

i,j , we have the following in Q.

Q′′
i,j = ((JDi ◦ JJaiK

−1 ◦ JJVi,jK) ⊗ JΣ′K) ◦Q′
i,j : I → Σbi ,Σ

′.

Thus in A, we have
φQ′′

i,j = φ((JDi ◦ JJaiK
−1 ◦ JJVi,jK)⊗ JΣ′K) ◦Q′

i,j)

= µ ◦ Tφ((JDi ◦ JJaiK
−1 ◦ JJVi,jK)⊗ JΣ′K) ◦ φQ′

i,j

= µ ◦ T (µ ◦ T t ◦ s ◦ φ(JDi ◦ JJaiK
−1 ◦ JJVi,jK)⊗ ηJΣ′K) ◦ φQ′

i,j

(∗)
= µ ◦ T (µ ◦ Ts ◦ t ◦ (ηJΣbi

K ◦ Di ◦ JaiK
−1 ◦ JVi,jK)⊗ ηJΣ′K) ◦ φQ′

i,j

= µ ◦ T (s ◦ (ηJΣbi
K ◦ Di ◦ JaiK

−1 ◦ JVi,jK)⊗ JΣ′K) ◦ φQ′
i,j

= µ ◦ T (ηJΣ′

2
K⊗JΣ′K ◦ ((Di ◦ JaiK

−1 ◦ JVi,jK)⊗ JΣ′K)) ◦ φQ′
i,j

= T ((Di ◦ JaiK
−1 ◦ JVi,jK)⊗ JΣ′K) ◦ φQ′

i,j

: I → T (JΣbiK ⊗ JΣ′K).

Note that (∗) is by φ ◦ J = E ◦ ψ in condition g.

36

We need to show
JQ, apply(M,N)K = µ ◦ Ts ◦ T (Japply(M,N)K ⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ µ ◦ Ts ◦ t ◦ (JMK ⊗ JNK)) ⊗ JΣ′K) ◦ φQ

=
∑

i,j∈[n]×[m]

piqi,jJQ
′′
i,j , biK =

∑

i,j∈[n]×[m]

piqi,j(T (JbiK ⊗ JΣ′K) ◦ φQ′′
i,j)

=
∑

i,j∈[n]×[m]

piqi,j(T (JbiK ⊗ JΣ′K) ◦ T ((Di ◦ JaiK
−1 ◦ JVi,jK)⊗ JΣ′K) ◦ φQ′

i,j)

=
∑

i,j∈[n]×[m]

piqi,j(T ((JbiK ◦ Di ◦ JaiK
−1 ◦ JVi,jK)⊗ JΣ′K) ◦ φQ′

i,j).

This is true because

µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ µ ◦ Ts ◦ t ◦ (JMK ⊗ JNK))⊗ JΣ′K) ◦ φQ

= µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ µ ◦ Ts ◦ t)⊗ JΣ′K) ◦ T ((JMK ⊗ JNK)⊗ JΣ′K) ◦ φQ
= µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ µ ◦ Ts ◦ t)⊗ JΣ′K) ◦ T (T Circ(S,U)⊗ JNK ⊗ JΣ′K)

◦T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ
(1)
= µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ t)⊗ JΣ′K) ◦ T (Circ(S,U)⊗ JNK ⊗ JΣ′K)

◦µ ◦ Ts ◦ T (σ ⊗ JΣ′K) ◦ T (JMK ⊗ JΣ2K ⊗ JΣ′K) ◦ φQ
IH
= µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ t)⊗ JΣ′K) ◦ T (Circ(S,U)⊗ JNK ⊗ JΣ′K)

◦
∑

i∈[n]

pi(T ((box ◦pδcurry(θDi
))⊗ JΣ2K ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ t)⊗ JΣ′K) ◦ T (Circ(S,U)⊗ JNK ⊗ JΣ′K)

◦T ((box ◦pδcurry(θDi
))⊗ JΣ2K ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(µ ◦ Ts ◦ T ((T ǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ t)⊗ JΣ′K) ◦ T ((box ◦pδcurry(θDi
))⊗ T JSK ⊗ JΣ′K)

◦T (JNK ⊗ JΣ′K) ◦ φQi)
(2)
=

∑

i∈[n]

pi(T (ǫ⊗ JΣ′K) ◦ T ((force ◦ unbox)⊗ JΣ′K) ◦ T ((box ◦pδcurry(θDi
))⊗ JSK ⊗ JΣ′K) ◦ T (λ−1 ⊗ JΣ′K)

◦µ ◦ Ts ◦ T (JNK ⊗ JΣ′K) ◦ φQi)

=
∑

i∈[n]

pi(T (ǫ⊗ JΣ′K) ◦ T (curry(θDi
)⊗ JSK ⊗ JΣ′K) ◦ T (λ−1 ⊗ JΣ′K) ◦

∑

j∈[m]

qi,j(T (JVi,jK ⊗ JΣ′K) ◦ φQ′
i,j))

=
∑

i,j∈[n]×[m]

piqi,j(T (θDi
⊗ JΣ′K) ◦ T (JVi,jK ⊗ JΣ′K) ◦ φQ′

i,j)

=
∑

i,j∈[n]×[m]

piqi,j(T ((JbiK ◦ Di ◦ JaiK
−1)⊗ JΣ′K) ◦ T (JVi,jK ⊗ JΣ′K) ◦ φQ′

i,j)

37

=
∑

i,j∈[n]×[m]

piqi,j(T ((JbiK ◦ Di ◦ JaiK
−1 ◦ JVi,jK)⊗ JΣ′K) ◦ φQ′

i,j).

To prove (1), we just need to prove

T ((µ ◦ Ts ◦ t)⊗ JΣ′K) ◦ T (T Circ(S,U)⊗ JNK ⊗ JΣ′K)

= T ((t⊗ JΣ′K) ◦ T (Circ(S,U)⊗ JNK ⊗ JΣ′K) ◦ µ ◦ Ts ◦ T (s⊗ JΣ′K).

This is true because the following diagram commutes.

T ((T JCirc(S,U)K ⊗ JΣ2K)⊗ JΣ′K)

T (T (JCirc(S,U)K ⊗ JΣ2K) ⊗ JΣ′K) T ((T JCirc(S,U)K ⊗ T JSK)⊗ JΣ′K)

TT ((JCirc(S,U)K ⊗ JΣ2K)⊗ JΣ′K) T (T (JCirc(S,U)K ⊗ T JSK)⊗ JΣ′K) T (T (T JCirc(S,U)K ⊗ JSK)⊗ JΣ′K)

T ((JCirc(S,U)K ⊗ JΣ2K)⊗ JΣ′K) TT ((JCirc(S,U)K ⊗ T JSK)⊗ JΣ′K) T (TT (JCirc(S,U)K ⊗ JSK)⊗ JΣ′K)

T ((JCirc(S,U)K ⊗ T JSK)⊗ JΣ′K) TT (T (JCirc(S,U)K ⊗ JSK)⊗ JΣ′K) T (T (JCirc(S,U)K ⊗ JSK)⊗ JΣ′K)

T (s⊗JΣ′K)

T ((T JCirc(S,U)K⊗JNK)⊗JΣ′K)

Ts

T (T (JCirc(S,U)K⊗JNK)⊗JΣ′K) T (s⊗JΣ′K) T (t⊗JΣ′K)

TT ((JCirc(S,U)K⊗JNK)⊗JΣ′K)

µ

T (Tt⊗JΣ′K)

Ts T (Ts⊗JΣ′K)

T ((JCirc(S,U)K⊗JNK)⊗JΣ′K) µ TT (t⊗JΣ′K)

Ts

T (µ⊗JΣ′K)

T (t⊗JΣ′K)

µ

To prove (2), we just need to show

µ ◦ Ts ◦ T ((Tǫ ◦ T ((force ◦ unbox)⊗ JSK) ◦ t)⊗ JΣ′K) ◦ T ((box ◦pδcurry(θDi
))⊗ T JSK ⊗ JΣ′K)

= T (ǫ⊗ JΣ′K) ◦ T ((force ◦ unbox)⊗ JΣ′K) ◦ T ((box ◦pδcurry(θDi
))⊗ JSK ⊗ JΣ′K) ◦ T (λ−1 ⊗ JΣ′K) ◦ µ ◦ Ts.

This is true because the following diagram commutes.

T (T JSK⊗ JΣ′K) T (I ⊗ T JSK ⊗ JΣ′K)

TT (JSK⊗ JΣ′K) T (T (I ⊗ JSK)⊗ JΣ′K) T (JCirc(S,U)K ⊗ T JSK ⊗ JΣ′K)

T (JSK ⊗ JΣ′K) TT (I ⊗ JSK ⊗ JΣ′K) T (T (JCirc(S,U)K ⊗ JSK) ⊗ JΣ′K)

T (I ⊗ JSK ⊗ JΣ′K) TT (JCirc(S,U)K ⊗ JSK ⊗ JΣ′K) T (T ((JSK ⊸ JUK)⊗ JSK)⊗ JΣ′K)

T (JCirc(S,U)K ⊗ JSK ⊗ JΣ′K) TT (((JSK ⊸ JUK)⊗ JSK)⊗ JΣ′K) T (T JUK ⊗ JΣ′K)

T ((JSK ⊸ JUK)⊗ JSK ⊗ JΣ′K) TT (JUK⊗ JΣ′K)

T (JUK ⊗ JΣ′K)

T (λ−1⊗JΣ′K)

Ts

T (Tλ−1⊗JΣ′K)

T (t⊗JΣ′K)

T ((box ◦pδcurry(θ))⊗T JSK⊗JΣ′K)

TT (λ−1⊗JΣ′K)

µ Ts T (t⊗JΣ′K)

T (λ−1⊗JΣ′K)

µ

TT ((box ◦pδcurry(θ))⊗JSK⊗JΣ′K)

Ts

T (T ((force◦unbox)⊗JSK)⊗JΣ′K)

T ((box ◦pδcurry(θ))⊗JSK⊗JΣ′K)

µ

TT (((force◦unbox)⊗JSK)⊗JΣ′K) T (Tǫ⊗JΣ′K)

Ts

T ((force◦unbox)⊗JSK⊗JΣ′K)

µ Ts

T (ǫ⊗JΣ′K)

µ

38

	1 Introduction
	1.1 Quipper and Proto-Quipper
	1.2 Dynamic lifting and the interaction of the two runtimes
	1.3 A type system for dynamic lifting
	1.4 Operational semantics
	1.5 Related work
	1.6 Contributions

	2 An enriched categorical semantics for dynamic lifting
	2.1 An axiomatization of enriched categorical models of dynamic lifting

	3 A type system for dynamic lifting
	3.1 Interpretation of the typing rules

	4 Operational semantics and soundness
	4.1 Operational semantics for circuit generation time
	4.2 Operational semantics for circuit execution time

	5 Dynamic lifting in Proto-Quipper
	5.1 Quantum teleportation
	5.2 Magic state distillation
	5.3 Repeat-Until-Success

	6 Conclusion
	A Diagrams for strong monoidal V-functors
	B Convexity
	C Details of Definition 3.6
	D Proof of Theorem 3.7
	E Proof of Theorem 4.15

