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Abstract

Let n ≥ 8 be an integer divisible by 4. The Clifford-cyclotomic gate set Gn is the universal gate set
obtained by extending the Clifford gates with the z-rotation Tn = diag(1, ζn), where ζn is a primitive
n-th root of unity. In this note, we show that, when n is a power of 2, a multiqubit unitary matrix
U can be exactly represented by a circuit over Gn if and only if the entries of U belong to the ring
Z[1/2, ζn]. We moreover show that log(n) − 2 ancillas are always sufficient to construct a circuit for U .
Our results generalize prior work to an infinite family of gate sets and show that the limitations that
apply to single-qubit unitaries, for which the correspondence between Clifford-cyclotomic operators and
matrices over Z[1/2, ζn] fails for all but finitely many values of n, can be overcome through the use of
ancillas.

1 Introduction

1.1 Background

Let n ≥ 8 be an integer divisible by 4. The single-qubit Clifford-cyclotomic gate set of degree n was
introduced in [7] and consists of the gates

H ′ =
1

2

[
1 + i 1 + i
1 + i −1− i

]
and Tn =

[
1 ·
· ζn

]
,

where ζn = e2πi/n is a primitive n-th root of unity, H ′ = ζ8H is equal to the usual Hadamard gate H up

to a global phase of ζ8, and Tn is a z-rotation gate of order n. The gate S = T
n/4
n is the usual phase gate

and the gate T8 is simply known as the T gate. The single-qubit Clifford-cyclotomic gate set is a universal
extension of the single-qubit Clifford gate set {H ′, S}; it coincides with the well-studied single-qubit
Clifford+T gate set when n = 8.

The entries of H ′ and Tn lie in Z[1/2, ζn], the smallest subring of C containing 1/2 and ζn. As a
consequence, if a 2-dimensional unitary matrix U can be exactly represented by a single-qubit Clifford-
cyclotomic circuit of degree n, then the entries of U belong to Z[1/2, ζn]. In their seminal 2012 paper [14],
Kliuchnikov, Maslov, and Mosca proved that the converse implication holds when n = 8: every 2-dimensional
unitary matrix with entries in Z[1/2, ζ8] can be exactly represented by a Clifford+T circuit. Thus, single-
qubit Clifford+T operators correspond precisely to elements of U2(Z[1/2, ζ8]), the group of 2 × 2 unitary
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matrices over Z[1/2, ζ8]. Forest et al. later showed in [7] that such a correspondence holds when n is one
of 8, 12, 16, or 24, but, disappointingly, that it fails for almost all other values of n. Ingalls et al. put the
nail in this coffin in 2019 by proving that 8, 12, 16, and 24 are in fact the only values of n for which such a
correspondence holds [10], as had been previously conjectured by Sarnak [18].

The multiqubit Clifford-cyclotomic gate set of degree n, which we denote Gn, is obtained by
adding the controlled-NOT gate

CX = I2 ⊕
[
· 1
1 ·

]
to the single-qubit Clifford-cyclotomic gate set of degree n. In other words, Gn is the extension of the multi-
qubit Clifford gate set {H ′, S, CX} by the z-rotation Tn. For convenience, we set G2 = {X,CX,CCX,H⊗
H} and G4 = {X,CX,CCX,S,H ′}, where

X =

[
· 1
1 ·

]
, CCX = I6 ⊕X, and H ⊗H =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
The gates X and CCX are the usual NOT gate and doubly-controlled-NOT gate (or Toffoli gate),
respectively.

In [8], Giles and Selinger extended Kliuchnikov, Maslov, and Mosca’s 2012 result to the multiqubit setting
by proving that a unitary matrix U of dimension 2m can be represented by an m-qubit circuit over G8 if and
only if the entries of U lie in the ring Z[1/2, ζ8]. In [4], some of the present authors showed how to adapt the
methods of Giles and Selinger to a handful of other gate sets, including G2 and G4. In the multiqubit context,
circuits can use ancillary qubits, provided that they are initialized and terminated in the computational basis
state |0⟩. It was shown in [4] and [8] that a single ancilla is always sufficient to construct the desired circuits.

Clifford-cyclotomic circuits, and in particular those of degree 2k for some positive integer k, are ubiquitous
in quantum computation; they appear in Shor’s factoring algorithm [19], the study of the Clifford hierarchy
[9], and protocols for state distillation [6].

1.2 Contributions

Let k and m be positive integers. In the present note, we show that a 2m-dimensional unitary matrix U
can be exactly represented by an m-qubit Clifford-cyclotomic circuit of degree 2k if and only if the entries
of U lie in the ring Z[1/2, ζ2k ]. To construct a circuit for U , a single ancilla suffices, when k ≤ 2, and k − 2
ancillas suffice, when k > 2.

Our results extend those of [4] and [8] to an infinite family of multiqubit gate sets, but our proof is
surprisingly simple. It relies on the fact that the root of unity ζ2k can be represented by a 2-dimensional
unitary matrix over Z[1/2, ζ2k−1 ], and that this representation can be used to define a well-behaved function
ϕk : U(Z[1/2, ζ2k ]) → U(Z[1/2, ζ2k−1 ]) mapping unitary matrices over Z[1/2, ζ2k ] to unitary matrices over
Z[1/2, ζ2k−1 ]. The function ϕk generalizes the standard real representation of complex numbers which was
used by Aharonov in [1] to prove the universality of the Toffoli-Hadamard gate set and is an example of
a catalytic embedding [2]. One can think of our results as circumventing the no-go theorems of [7] and
[10] through the use of ancillas: there are elements of U2(Z[1/2, ζ2k ]) that cannot be represented by an
ancilla-free single-qubit circuit over G2k , but every such element becomes representable if sufficiently many
additional qubits are available.

1.3 Contents

The note is organized as follows. In Section 2, we briefly review some important properties of the ring
Z[1/2, ζ2k ]. We introduce catalytic embeddings in Section 3 and define the catalytic embedding ϕk. Section 4
contains the proof of our main result. We discuss future work in Section 5.
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2 Cyclotomic integers

We start by briefly discussing the rings of cyclotomic integers that will be of interest in the rest of the
note. For further details, the reader is encouraged to consult [20].

Let k be a positive integer. The ring Z[ζ2k ] is the smallest subring of C containing ζ2k . Hence, Z[ζ21 ] = Z.
Moreover, when k > 1, we have ζ22k = ζ2k−1 and therefore Z[ζ2k−1 ] ⊆ Z[ζ2k ]. It will be useful for our purposes
to further note that, for k > 1,

Z[ζ2k ] = {a+ bζ2k | a, b ∈ Z[ζ2k−1 ]}. (1)

The linear combinations in Equation (1) are unique. That is, every element of Z[ζ2k ] can be uniquely written
as a+ bζ2k , for some a, b ∈ Z[ζ2k−1 ].

We will be interested in an extension of Z[ζ2k ] obtained by localizing Z[ζ2k ] at 2, i.e., by adding denomi-
nators that are powers of 2. The resulting ring is

Z[1/2, ζ2k ] = {a/2ℓ | a ∈ Z[ζ2k ], ℓ ∈ Z}. (2)

For brevity, and in keeping with prior work (see, e.g., [4, 8]), we denote Z[1/2, ζ2k ] by D[ζ2k ] in what
follows. This notation emphasizes the fact that Z[1/2, ζ2k ] can be seen as the extension by ζ2k of the ring
D = {a/2ℓ | a ∈ Z, ℓ ∈ Z} of dyadic rationals.

Lemma 2.1. Let k ≥ 2. Every element of D[ζ2k ] can be uniquely written as a+bζ2k for some a, b ∈ D[ζ2k−1 ].

Proof. Equations (1) and (2) jointly imply that every element of D[ζ2k ] can be written as a + bζ2k for
some a, b ∈ D[ζ2k−1 ]. To see that this expression is unique, let a, b, a′, b′ ∈ D[ζ2k−1 ] and suppose that
a + bζ2k = a′ + b′ζ2k . By choosing ℓ large enough, 2ℓ(a + bζ2k) = 2ℓ(a′ + b′ζ2k) becomes an equation over
Z[ζ2k ], from which we get a = a′ and b = b′.

3 Catalytic embeddings

We now define catalytic embeddings. The definition introduced below is a special case of the more general
notion of catalytic embedding used in [2], but it suffices for our purposes.

Let U and V be collections of unitaries. An ℓ-dimensional catalytic embedding of U into V is a pair
(ϕ, |λ⟩) consisting of a function ϕ : U → V and a quantum state |λ⟩ ∈ Cℓ such that if U ∈ U has dimension
n then ϕ(U) ∈ V has dimension nℓ, and

ϕ(U)(|u⟩ ⊗ |λ⟩) = (U |u⟩)⊗ |λ⟩ (3)

for every |u⟩ ∈ Cn. We refer to the state |λ⟩ as the catalyst and to Equation (3) as the catalytic
condition. We sometimes write (ϕ, |λ⟩) : U → V to indicate that (ϕ, |λ⟩) is a catalytic embedding of U into
V. If (ϕ, |λ⟩) : U → V and (ψ, |ω⟩) : V → W are catalytic embeddings, then (ψ ◦ ϕ, |λ⟩ ⊗ |ω⟩) is a catalytic
embedding of U into W, since

ψ(ϕ(U))(|u⟩ ⊗ |λ⟩ ⊗ |ω⟩) = (ϕ(U)(|u⟩ ⊗ |λ⟩))⊗ |ω⟩ = (U |u⟩)⊗ |λ⟩ ⊗ |ω⟩ .

We refer to this catalytic embedding as the concatenation of (ϕ, |λ⟩) and (ψ, |ω⟩). The concatenation of
catalytic embeddings is associative and (IU , [1]) : U → U acts as the identity for concatenation.

Now let U(D[ζ2k ]) denote the collection of all unitary matrices over D[ζ2k ]. The rest of this section is
dedicated to constructing, for every k ≥ 2, a 2-dimensional catalytic embedding U(D[ζ2k ]) → U(D[ζ2k−1 ]).
To this end, we define the state |λk⟩ and the matrix Λk as

|λk⟩ =
1√
2

[
1
ζ2k

]
and Λk =

[
0 1

ζ2k−1 0

]
,
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respectively. Note that Λk is a unitary matrix and |λk⟩ is an eigenvector of Λk for eigenvalue ζ2k . To verify
the latter claim, we compute:

Λk |λk⟩ =
[

0 1
ζ2k−1 0

]
1√
2

[
1
ζ2k

]
=

1√
2

[
ζ2k
ζ2k−1

]
=

1√
2

[
ζ2k
ζ22k

]
= ζ2k |λk⟩ . (4)

Note further that ζ†
2k

= ζ†
2k−1ζ2k and that Λ†

k = ζ†
2k−1Λk. In order to define the desired catalytic embedding,

we start by showing that the matrix Λk can be used to define a function U(D[ζ2k ]) → U(D[ζ2k−1 ]).

Lemma 3.1. Let k ≥ 2, let A and B be matrices over D[ζ2k−1 ], and assume that A + Bζ2k ∈ U(D[ζ2k ]).
Then A⊗ I +B ⊗ Λk ∈ U(D[ζ2k−1 ]).

Proof. Let k, A, and B be as stated. Since A+Bζ2k is unitary and ζ†
2k

= ζ†
2k−1ζ2k , we have

I = (A+Bζ2k)
†(A+Bζ2k) = A†A+A†Bζ2k +B†Aζ†

2k
+B†B = (A†A+B†B) + (A†B +B†Aζ†

2k−1)ζ2k .

This implies that A†A+B†B = I and that A†B +B†Aζ†
2k−1 = 0. Now consider A⊗ I +B ⊗ Λk. Since Λk

is unitary and Λ†
k = ζ†

2k−1Λk , we have

(A⊗ I +B ⊗ Λk)
†(A⊗ I +B ⊗ Λk) = A†A⊗ I +A†B ⊗ Λk +B†A⊗ Λ†

k +B†B ⊗ I

= (A†A+B†B)⊗ I + (A†B +B†Aζ†
2k−1)⊗ Λk

= I.

By reasoning analogously, one can also show that (A⊗ I +B⊗Λk)(A⊗ I +B⊗Λk)
† = I, which proves that

A⊗ I +B ⊗ Λk is indeed unitary.

Proposition 3.2. Let k ≥ 2 and let ϕk : U(D[ζ2k ]) → U(D[ζ2k−1 ]) be the function defined by

ϕk : A+Bζ2k 7→ A⊗ I +B ⊗ Λk.

Then the pair (ϕk, |λk⟩) is a 2-dimensional catalytic embedding of U(D[ζ2k ]) into U(D[ζ2k−1 ]).

Proof. Every element U of U(D[ζ2k ]) can be uniquely written U = A + ζ2kB, where A and B are matrices
over D[ζ2k−1 ]. Hence, Lemma 3.1 implies that ϕk : U(D[ζ2k ]) → U(D[ζ2k−1 ]) is indeed a function. Moreover,
by construction, ϕk(U) ∈ U(D[ζ2k−1 ]) has dimension 2n, if U ∈ U(D[ζ2k ]) has dimension n. Now let |u⟩ ∈ Cn.
Then

ϕk(U)(|u⟩ ⊗ |λk⟩) = (A⊗ I +B ⊗ Λk)(|u⟩ ⊗ |λk⟩)
= (A⊗ I)(|u⟩ ⊗ |λk⟩) + (B ⊗ Λk)(|u⟩ ⊗ |λk⟩)
= A |u⟩ ⊗ I |λk⟩+B |u⟩ ⊗ Λk |λk⟩
= A |u⟩ ⊗ |λk⟩+B |u⟩ ⊗ ζ2k |λk⟩
= A |u⟩ ⊗ |λk⟩+Bζ2k |u⟩ ⊗ |λk⟩
= (A |u⟩+Bζ2k |u⟩)⊗ |λk⟩
= (U |u⟩)⊗ |λk⟩ .

Hence, (ϕk, |λk⟩) is a 2-dimensional catalytic embedding of U(D[ζ2k ]) into U(D[ζ2k−1 ]).

Remark 3.3. The catalytic embedding of Proposition 3.2 is an example of what is called a standard cat-
alytic embedding in [2]. At the heart of this construction lies the fact that ζ2k can be represented by
the matrix Λk, whose characteristic polynomial is also the minimal polynomial of ζk over Q[ζ2k−1 ]. A more
general description of this construction can be found in [2].
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D

|u⟩
C

U |u⟩

|0⟩ H Tk T †
k H |0⟩

Figure 1: The circuit constructed in the proof of Theorem 4.1.

4 Exact synthesis

We now prove our main result. While it is clear that if a unitary U can be represented by a circuit over G2k

then it is an element of U(D[ζ2k ]), the challenge is to show that the converse implication is also true. The
main idea behind the proof is to use Proposition 3.2 to inductively reduce the problem for U(D[ζ2k ]) to the
problem for U(D[ζ2k−1 ]), and so on until one reaches a case for which the result is known, such as U(D[ζ23 ]),
U(D[ζ22 ]), or U(D[ζ21 ]). We formalize this intuition in the proposition below.

Theorem 4.1. Let k and m be positive integers. A 2m × 2m unitary matrix U can be exactly represented by
an m-qubit circuit over G2k if and only if U ∈ U2m(D[ζ2k ]). Moreover, to construct a circuit for U , a single
ancilla suffices, when k ≤ 2, and k − 2 ancillas suffice, when k > 2.

Proof. The left-to-right direction is an immediate consequence of the fact that the elements of G2k have
entries in D[ζ2k ]. For the right-to-left direction, we proceed by induction on k. The cases of k = 1, 2, 3 follow
from [4, Corollary 5.6], [4, Corollary 5.27], and [8, Theorem 1], respectively. Now suppose that k > 3, let
U ∈ U2m(D[ζ2k ]), and let (ϕk, |λk⟩) : U(D[ζ2k ]) → U(D[ζ2k−1 ]) be the catalytic embedding of Proposition 3.2.
Then

ϕk(U) ∈ U2m+1(D[ζ2k−1 ]).

Thus, by the induction hypothesis, there exists an (m+1)-qubit circuit C for ϕk(U) over G2k−1 that uses no
more than k − 3 ancillas. For every state |u⟩, we then have

C(|u⟩ ⊗ |λk⟩) = ϕk(U)(|u⟩ ⊗ |λk⟩) = (U |u⟩)⊗ |λk⟩ . (5)

Now let D be the circuit defined by D = (I ⊗ (T2kH))† ◦ C ◦ (I ⊗ (T2kH)). This is a circuit over G2k , since
H can be expressed as

H = H ′S2H ′T 2k−3

2k H ′S2H ′T 2k−3

2k H ′

when k ≥ 3. By Equation (5), and since |λk⟩ = T2kH |0⟩, we then have

D(|u⟩ ⊗ |0⟩) = (I ⊗ (T2kH))† ◦ C ◦ (I ⊗ (T2kH))(|u⟩ ⊗ |0⟩)
= (I ⊗ (T2kH))† ◦ C(|u⟩ ⊗ |λk⟩)
= (I ⊗ (T2kH))†((U |u⟩)⊗ |λk⟩)
= (U |u⟩)⊗ |0⟩ .

That is, D represents U exactly and uses no more than k − 2 ancillas, which completes the proof.

The circuit constructed in the inductive step of Theorem 4.1 is depicted in Figure 1. The ancillary qubits
used by C are not represented in Figure 1 (just as they are kept implicit in the proof of the theorem).

The construction of Theorem 4.1 can be used to give an alternative proof of [4, Corollary 5.27] and [8,
Theorem 1], albeit one that uses more ancillas than is necessary. In the proof of Theorem 4.1, the cases of
k = 1, k = 2, and k = 3 are all treated as base cases. Instead, one could use only the case of k = 1 as
the base case and establish the cases of k = 2 and k = 3 inductively. The resulting circuit would then use
k ancillas to represent an element of U(D[ζ2k ]) for all k, rather than k − 2 ancillas when k > 2, as in the
current proof.
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5 Conclusion

We showed that a unitary matrix can be represented by a Clifford-cyclotomic circuit of degree 2k if and
only if its entries belong to the ring D[ζ2k ]. We also showed that k − 2 ancillas are always sufficient for this
purpose.

Several questions arise from this work. Firstly, can the proof Theorem 4.1 be modified so as to produce
smaller circuits? The size of the circuits produced by Theorem 4.1 depends on the exact synthesis algorithm
applied in the base case, but the produced circuits remain large, even if improved synthesis methods such
as [3, 12, 15, 17] are used. Indeed, representing an element of U2m(D[ζ2k ]) using the algorithm of [12]
in the base case of Theorem 4.1 currently yields a circuit containing O(4m+k(m + k)) gates and using
k − 2 ancillas. Lowering this cost is an important avenue for future work. Secondly, can Theorem 4.1
be generalized to Clifford-cyclotomic gate sets of degree n ̸= 2k or can such an extension be shown to be
impossible? Preliminary research indicates that arbitrary roots of unity can be represented using circuits over
{X,CX,CCX,H ⊗H} in the presence of appropriate catalysts, but the construction is more intricate than
the one presented here. Finally, and further afield, can Theorem 4.1 be used to develop algorithms for the
approximation of unitaries using Clifford-cyclotomic circuits, following prior work such as [5, Appendix A],
[13], or [16]?
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