
An Introduction to
Quantum Programming in Quipper

Alexander S. Green1†, Peter LeFanu Lumsdaine2†‡, Neil J. Ross1†‡,
Peter Selinger1†‡, and Benôıt Valiron3†

1 Dalhousie University, Halifax, NS, Canada
agreen@mathstat.dal.ca, Neil.JR.Ross@Dal.Ca, selinger@mathstat.dal.ca

2 Institute of Advanced Studies, Princeton, NJ, U.S.A.
p.l.lumsdaine@gmail.com

3 University of Pennsylvania, Philadelphia, PA, U.S.A.
benoit.valiron@monoidal.net

Abstract. Quipper is a recently developed programming language for
expressing quantum computations. This paper gives a brief tutorial in-
troduction to the language, through a demonstration of how to make
use of some of its key features. We illustrate many of Quipper’s language
features by developing a few well known examples of Quantum computa-
tion, including quantum teleportation, the quantum Fourier transform,
and a quantum circuit for addition.

Keywords: Quantum Computation, Programming Languages, Quipper

1 Introduction

1.1 Overview

Quipper [10] is an embedded functional programming language for quantum com-
putation. It has been developed as part of IARPA’s QCS project [13]. The stated
goal of the QCS project is to “accurately estimate and reduce the computational
resources required to implement quantum algorithms on a realistic quantum com-
puter”, with an emphasis on using techniques that have been developed in the
realms of computer science.

In this paper, we will look at how Quipper can be used to implement existing
quantum algorithms, through a close look at some of the language features that
have been added specifically for this task. Quipper’s development was guided
by the goal of implementing seven non-trivial quantum algorithms from the
literature [3,5,11,12,14,17,18]. These algorithms were chosen by the QCS project,
and provided to us in modified form. They cover a broad spectrum of techniques

‡This research was supported by NSERC. †This research was supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via Department of Interior National Business Cen-
ter contract number D12PC00527. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of IARPA, DoI/NBC, or the U.S. Government.

ar
X

iv
:1

30
4.

54
85

v1
 [

cs
.P

L
]

 1
9

A
pr

 2
01

3

used in quantum computation. Each algorithm introduced its own challenges
that helped guide the language features that are now available in Quipper.

We will use simple examples to try to demonstrate the use of Quipper, and to
give insights into the types of problems that the various language features are
useful for. We will consider three main stand-alone examples:

– Quantum teleportation will guide us through: Quipper’s underlying circuit
model, Quipper’s primitive operations, quantum data-types, generic func-
tions, comments, and labels.

– The quantum Fourier transform and quantum addition will help us look at:
recursion, circuit-level operators, boxed circuits, and simulation.

– We will end by looking at Quipper’s features that can be used to implement
quantum oracles, including: automatic generation of circuits from classical
code, synthesis of reversible circuits, and circuit transformations.

We will also have a brief look at how Quipper can be used to estimate the
computational resources required by the algorithms that have been implemented.

In another recent paper [10], we have described in more detail the rationale
behind the various design choices that went into Quipper, including a high-level
overview of, and justification for, its language features. We also gave more back-
ground on general issues affecting quantum programming languages, and on the
implementation of the language itself. By contrast, the aim of this present paper
is to give a tutorial introduction to Quipper from a programmer’s perspective,
using examples that have been chosen to guide readers through some of Quip-
per’s main features.

1.2 Quipper as an embedded language

Quipper has been implemented as an embedded language, using Haskell as the
host language. Therefore, Quipper can be seen as a collection of data types,
combinators, and a library of functions within Haskell, together with an idiom,
i.e., a preferred style of writing embedded programs. In this paper, we present
Quipper as if it were a language in its own right, i.e., without presupposing any
knowledge of Haskell.

While the embedded language approach has many advantages (see [6, Sec. 1.3]
for a general discussion), there are also certain potential pitfalls that program-
mers should be aware of. One of these is the temptation to “escape to the host
language”, i.e., to write general Haskell programs rather than following Quip-
per’s intended idiom. This can break intended abstractions, and make the pro-
grams less portable in case of implementation changes. Another drawback of
the embedded language approach is that compilation errors are often difficult to
decipher, because the compiler presents them in terms of concepts of the host
language, rather than the embedded language. Finally, while Haskell is a good fit
for Quipper in many respects, it does lack two features that would be useful for
a quantum programming language: linear types and dependent types. We must
therefore live with checking certain well-formedness properties of programs at
run-time, although they could in principle be checked by the type-checker in a
dedicated language.

1.3 Quipper’s underlying circuit model

Quipper uses an extended circuit model of quantum computation. We allow for
both quantum and classical wires and operations within a circuit. Quantum
operations can be controlled by a classical wire, but not vice versa. A quantum
wire can be explicitly measured, thus creating a classical wire. Quipper’s circuit
model also incorporates explicitly scoped ancilla wires, allowing for an ancilla
to only come into scope for the part of the circuit in which it is used. This
is achieved by allowing explicit qubit initialization and termination within a
circuit.

Using a circuit model leads to three distinct phases of execution: compile
time, circuit generation time, and circuit execution time. This, in turn, gives
rise to an extra distinction among inputs. Inputs whose value is known at circuit
generation time will be called parameters; whereas inputs whose value is only
known at circuit execution time will be called inputs. To keep this distinction
explicit, Quipper introduces three basic types for bits and qubits. We use the
type Bool for a boolean parameter that is known at circuit generation time, the
type Bit for a classical boolean input to a circuit, and the type Qubit for a
quantum input to a circuit. A parameter of type Bool can easily be converted to
an input of type Bit, but not vice versa. Also, because measurements can only
occur at circuit runtime, the outcome of a measurement is a Bit, not a Bool.

2 Quipper by example

2.1 Quantum teleportation

Quipper’s primitive operations. Although Quipper can be regarded as a lan-
guage for describing quantum circuits, when actually developing computations
within Quipper it is often preferable to think in terms of gates being applied in
real time to qubits (or bits) that are held in variables. This procedural paradigm
is the foundation for developing quantum computations in Quipper, on top of
which more powerful higher-order operators are built.

Computations in Quipper take the form of functions. The following example
shows how we can write a simple quantum function in Quipper.

plus_minus :: Bool -> Circ Qubit

plus_minus b = do

q <- qinit b

r <- hadamard q

return r

The first line corresponds to the type of the function. We see that the input to the
function is a boolean parameter. The output type of the function is Circ Qubit.
The Circ part of the type is actually a type operator, and is used to state that
the function being defined can have a physical side effect when it is evaluated
(Haskell programmers will recognize this as a monad). The Qubit part of the
output type tells us that the function returns a qubit. The body of the function
usually starts with the keyword do, followed by a block of quantum operations to
be evaluated in the given order. The body of the plus_minus function uses three
operations. The qinit operator initializes a new qubit, in the state corresponding

to b. Here, False corresponds to |0〉 and True corresponds to |1〉. The notation
tells us that this newly created qubit is stored in the variable q. The operator
hadamard applies the Hadamard gate to the qubit q, storing the updated qubit
in the variable r. The last line returns the qubit r as the output of the whole
function. In summary, this function introduces a newly initialized qubit in either
of the states |+〉 or |−〉 depending on a boolean parameter. We also note that
variables in the function body are used linearly: each qubit is written exactly
once and read exactly once. This restriction is imposed by the laws of quantum
physics. In Quipper’s syntax, however, it would have been permitted to use the
same name for the two variables q and r, and we will often do so in future
examples.

Circuit generation. After defining a quantum function in Quipper, there are
various things we can do with it. The most basic of these is to evaluate the func-
tion to generate a circuit. When Quipper evaluates a circuit producing function,
the circuit is produced lazily, on-the-fly. This is useful for defining very large
circuits, whereby the whole circuit doesn’t need to be stored in memory. More-
over, circuits can also be consumed lazily, for example by a transformation (see
p. 13), or by passing instructions sequentially to an (actual or simulated) quan-
tum computer (see p. 11).

A useful operation provided by Quipper is a circuit printing function that
enables the circuits produced by Quipper to be exported in various formats. For
example, to produce a PDF document from the circuit defined by the above
plus_minus function, we can use the built-in Quipper operator print_simple.
Note that parameters, but not inputs, must be specified at circuit generation
time. Here, we set the parameter b to False.

print_plus_minus :: IO ()

print_plus_minus = print_simple PDF (plus_minus False)
0 H

The circuit diagrams used throughout the rest of this paper have been created
directly from the given code examples. The next example illustrates how to
control a quantum gate. This function inputs a qubit and returns a pair of
qubits. The qnot operation applies a not-gate to the qubit b. Moreover, the infix
operator ‘controlled‘ causes this operation to be controlled by the qubit a.
The overall effect of the function share is to take a qubit in the state α |0〉+β |1〉
and entangle it with a newly initialized qubit to create the state α |00〉+ β |11〉.
share :: Qubit -> Circ (Qubit, Qubit)

share a = do

b <- qinit False

b <- qnot b ‘controlled‘ a

return (a,b)

0

Previously defined quantum functions can be used as building blocks in other
quantum functions. In fact, they can be used in exactly the same way as Quip-
per’s built-in operators. In the next example, we use our previously defined
functions, plus_minus and share, to produce a pair of qubits in the Bell state
1√
2
(|00〉+ |11〉).

bell00 :: Circ (Qubit, Qubit)

bell00 = do

a <- plus_minus False

(a,b) <- share a

return (a,b)

0 H

0

A teleportation circuit. Let us now consider quantum teleportation (see [15]
for an introduction). This involves two parties Alice and Bob. Alice’s goal is
to teleport a qubit q to Bob. Alice and Bob must each have access to a single
qubit from an entangled Bell pair (a, b), which we can produce with the above
bell00 function. We can think of Alice’s role in terms of a function that inputs
the two qubits q and a. The output of the function will be a pair of classical
bits, produced by Alice by applying some unitary gates and then measuring both
qubits.

alice :: Qubit -> Qubit -> Circ (Bit,Bit)

alice q a = do

a <- qnot a ‘controlled‘ q

q <- hadamard q

(x,y) <- measure (q,a)

return (x,y)

H

meas

meas

Note that the function measure has been applied to a pair of qubits. In Quipper’s
syntax, this is simply an abbreviation for measuring both qubits in the pair.
This abbreviated syntax is possible because the Quipper operator measure is
a generic operator: it can be applied to any data structure containing qubits,
and returns a corresponding data structure containing bits. Another example
of a generic Quipper operator is cdiscard, which can be applied to any data
structure containing classical bits. It is used in Bob’s part of the teleportation
protocol:

bob :: Qubit -> (Bit,Bit) -> Circ Qubit

bob b (x,y) = do

b <- gate_X b ‘controlled‘ y

b <- gate_Z b ‘controlled‘ x

cdiscard (x,y)

return b

X Z

The following function ties all the pieces of the teleportation example together.
We can see that a Bell state is created, which is then used by Alice, along with
the input qubit, to create a pair of classical bits. These are passed to Bob along
with his qubit from the Bell state. The generated circuit diagram shows that
Quipper joined together the various steps as expected.

teleport :: Qubit -> Circ Qubit

teleport q = do

(a,b) <- bell00

(x,y) <- alice q a

b <- bob b (x,y)

return b

0 H

0

H

meas

meas

X Z

Quantum data types and generic functions. Quantum data types are types
that are built up from Qubit by means of data constructors, such as tuples and

lists. For example, (Qubit,[Qubit]) is the type whose elements are pairs of a
qubit and a (variable but finite length) list of qubits. Every quantum data type,
such as qa = (Qubit,[Qubit]), has an associated classical data type, such as
ca = (Bit,[Bit]), and boolean data type, such as ba = (Bool,[Bool]). We
say that qa, ca, and ba have the same shape, but different leaf types. A Quipper
function is called generic if it can act on data types of any shape.

We have already seen several examples of generic built-in Quipper functions,
namely measure, cdiscard, and print_simple. However, what makes generic
functions particularly useful in Quipper is the fact that it is easy to create new
user-defined generic functions. We will now illustrate this feature by defining a
generic version of the teleportation circuit.

In Quipper, the keyword QShape is used to declare that three types qa, ca,
and ba are the quantum, classical, and boolean version of some data type. To
define a generic version of the plus_minus function, we replace Bool and Qubit

in its type by such a pair of related ba and qa:

plus_minus_generic :: (QShape ba qa ca) => ba -> Circ qa

plus_minus_generic a = do

qs <- qinit a

qs <- mapUnary hadamard qs

return qs

We note that the qinit function is already generic. The operator mapUnary maps
a function of type Qubit → Circ Qubit over every qubit in a quantum data
structure. To extend the share function, we use the function qc_false which
generates a boolean data structure of the correct shape, with every boolean set
to False. The mapBinary function is similar to mapUnary, but maps a function
of the type Qubit → Qubit → Circ (Qubit, Qubit) over every corresponding
pair of qubits from two quantum data structures of the same shape. We also use
the built-in controlled_not operation.

share_generic :: (QShape a qa ca) => qa -> Circ (qa, qa)

share_generic qa = do

qb <- qinit (qc_false qa)

(qb, qa) <- mapBinary controlled_not qb qa

return (qa, qb)

Updating the bell00 function requires a little more thought, as we now need
to explicitly know the shape of the data being teleported in order to generate
enough Bell pairs. This is achieved by adding a shape argument to the function,
which can then be used by the call to plus_minus_generic.

bell00_generic :: (QShape a qa ca) => a -> Circ (qa, qa)

bell00_generic shape = do

qa <- plus_minus_generic shape

(qa, qb) <- share_generic qa

return (qa, qb)

The changes to Alice’s function are very similar to those we have seen already.

alice_generic :: (QShape a qa ca) => qa -> qa -> Circ (ca,ca)

alice_generic q a = do

(a, q) <- mapBinary controlled_not a q

q <- mapUnary hadamard q

(x,y) <- measure (q,a)

return (x,y)

For Bob’s function, we need a way of mapping classically controlled X- and
Z-rotations over the input bits and qubits. The function mapBinary_c is sim-
ilar to mapBinary, except that it expects a function of type Qubit → Bit →
Circ (Qubit, Bit). Also, whereas the controlled_not function is a built-in op-
erator, the classically controlled X and Z rotations are not. We use a where

clause to define a generic controlled_gate function locally.

bob_generic :: (QShape a qa ca) => qa -> (ca,ca) -> Circ qa

bob_generic b (x,y) = do

(b, y) <- mapBinary_c (controlled_gate gate_X) b y

(b, x) <- mapBinary_c (controlled_gate gate_Z) b x

cdiscard (x,y)

return b

where

controlled_gate gate b x = do

gate b ‘controlled‘ x

return (b,x)

The various parts of the generic teleportation function can now be tied together.

teleport_generic :: (QData qa) => qa -> Circ qa

teleport_generic q = do

(a,b) <- bell00_generic (qc_false q)

(x,y) <- alice_generic q a

b <- bob_generic b (x,y)

return b

Note that a generic Quipper function defines a family of circuits, one for each
data type. To be able to print specific members of this family, we must replace
the print_simple operator by the more general print_generic. The difference
is that print_generic takes additional arguments to determine which instance
of the circuit family to print. We show examples for teleporting a pair of qubits,
and a list of three qubits:

print_generic PDF teleport_generic (qubit, qubit)

0

0

H

H

0

0

H

H

meas

meas

meas

meas

X

X

Z

Z

print_generic PDF teleport_generic [qubit,qubit,qubit]

0

0

0

H

H

H

0

0

0

H

H

H

meas

meas

meas

meas

meas

meas

X

X

X

Z

Z

Z

Comments and labels. When reading very large circuits, it is sometimes hard
to keep track of what each part of the circuit is doing, or which wires certain
variables correspond to. As a convenience to the programmer, Quipper offers a
way of adding comments and labels to a circuit:

teleport_generic_labeled :: (QData qa) => qa -> Circ qa

teleport_generic_labeled q = do

comment_with_label "ENTER: bell00" q "q"

(a,b) <- bell00_generic (qc_false q)

comment_with_label "ENTER: alice" (a,b) ("a","b")

(x,y) <- alice_generic q a

comment_with_label "ENTER: bob" (x,y) ("x","y")

b <- bob_generic b (x,y)

return b

E
N

T
E

R
: b

el
l0

0 q[0]

q[1]

q[2]

q[3]

0

0

0

0

H

H

H

H

0

0

0

0

E
N

T
E

R
: a

lic
e

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

H

H

H

H

meas

meas

meas

meas

meas

meas

meas

meas

E
N

T
E

R
: b

ob

x[0]

x[1]

x[2]

x[3]

y[0]

y[1]

y[2]

y[3]

X

X

X

X

Z

Z

Z

Z

2.2 The quantum Fourier transform and quantum addition

Recursion. In Quipper it is possible to write circuit producing functions that
are recursive over any parameters known at circuit generation time. Notably,
we can write functions that are recursive over the shape of an input, such as a
list of qubits. For example, consider the quantum Fourier transform, or QFT,
which lends itself nicely to a recursive definition. The function qft’ is defined
over a list of qubits. We provide two base cases for the recursion. If the input
list is empty, the circuit itself is empty. If the input is a singleton qubit, then
the QFT is just the Hadamard gate. For the recursive case, the circuit for the
QFT for n+ 1 qubits consists of the circuit for the n qubit QFT, followed by a
set of rotations over all n + 1 qubits. This set of rotations can also be defined

in terms of a recursive function, which we call rotations. Also, rGatem is a
built-in Quipper operator that represents the z-rotation by 2πi

2m .

qft’ :: [Qubit] -> Circ [Qubit]

qft’ [] = return []

qft’ [x] = do

hadamard x

return [x]

qft’ (x:xs) = do

xs’ <- qft’ xs

xs’’ <- rotations x xs’ (length xs’)

x’ <- hadamard x

return (x’:xs’’)

where

rotations :: Qubit -> [Qubit] -> Int -> Circ [Qubit]

rotations _ [] _ = return []

rotations c (q:qs) n = do

qs’ <- rotations c qs n

let m = ((n + 1) - length qs)

q’ <- rGate m q ‘controlled‘ c

return (q’:qs’)

The function qft’ expects its list of input qubits in little-endian order, but
returns the output in big-endian order. Because this is confusing, we wrap it
in another function qft_big_endian, which simply reverses the order of the
input qubits. In Quipper, this is done not by swapping wires in a circuit, but
by reordering references to wires; Quipper will attach the rest of the circuit
appropriately.

qft_big_endian :: [Qubit] -> Circ [Qubit]

qft_big_endian qs = do

comment_with_label "ENTER: qft_big_endian" qs "qs"

qs <- qft’ (reverse qs)

comment_with_label "EXIT: qft_big_endian" qs "qs"

return qs

E
N

T
E

R
: q

ft
_b

ig
_e

nd
ia

n qs[0]

qs[1]

qs[2]

qs[3]

H R(2pi/4)

H

R(2pi/8)

R(2pi/4)

H

R(2pi/16)

R(2pi/8)

R(2pi/4)

H E
X

IT
: q

ft
_b

ig
_e

nd
ia

n qs[3]

qs[2]

qs[1]

qs[0]

Circuit-level operations. Most operators we have seen so far work at the
level of gates, i.e., their effect is to append gates one by one to a circuit under
construction. Quipper also has the idiom of circuit-level operations, which are
operations that can be applied to circuits as a whole. One example is the printing
of circuits, but there are also circuit-level operations that can be used while
constructing circuits. These often take a circuit generating function as input,
and produce a new circuit generating function as an output, which can then
be used just like any other circuit generating function. A useful example is the

operator reverse_generic_endo, which reverses a whole circuit. The following
function computes the inverse of the QFT.

inverse_qft_big_endian :: [Qubit] -> Circ [Qubit]

inverse_qft_big_endian = reverse_generic_endo qft_big_endian

E
X

IT
: q

ft
_b

ig
_e

nd
ia

n*

qs[3]

qs[2]

qs[1]

qs[0]
H

R(2pi/4)*

R(2pi/8)*

R(2pi/16)*

H

R(2pi/4)*

R(2pi/8)*

H

R(2pi/4)* H

E
N

T
E

R
: q

ft
_b

ig
_e

nd
ia

n*

qs[0]

qs[1]

qs[2]

qs[3]

A quantum adder. As an application of the QFT, we look at a quantum
circuit that performs addition [7], without the use of ancilla qubits. The circuit
uses a QFT as a basis change. The inverse QFT is then applied at the end to
change back to the computational basis. The part of the circuit that performs
the actual addition, between the two uses of the QFT, once again lends itself to
a recursive definition.
qft_adder :: [Qubit] -> [Qubit] -> Circ ()

qft_adder _ [] = return ()

qft_adder as (b:bs) = do

qft_adder’ as b 1

qft_adder (tail as) bs

where

qft_adder’ :: [Qubit] -> Qubit -> Int -> Circ [Qubit]

qft_adder’ [] _ _ = return []

qft_adder’ (a:as) b n = do

b <- rGate n b ‘controlled‘ a

qft_adder’ as b (n+1)

The pattern of applying an initial computation, followed by some operation,
followed by the inverse of the initial computation, is quite common in quan-
tum computation. For this reason, Quipper provides a circuit-level operator
with_computed, which automatically takes care of applying the inverse com-
putation at the end. We use this here to complete the quantum addition circuit,
using the QFT as the initial computation to be inverted at the end.

qft_add_in_place :: [Qubit] -> [Qubit] -> Circ ([Qubit], [Qubit])

qft_add_in_place a b = do

label (a,b) ("a","b")

with_computed (qft_big_endian b) $ \b’ -> do

qft_adder a (reverse b’)

label (a,b) ("a","b")

return (a,b)

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

E
N

T
E

R
: q

ft
_b

ig
_e

nd
ia

n

qs[0]

qs[1]

qs[2]

H R(2pi/4)

H

R(2pi/8)

R(2pi/4)

H E
X

IT
: q

ft
_b

ig
_e

nd
ia

n

qs[2]

qs[1]

qs[0]

R(2pi/2) R(2pi/4) R(2pi/8)

R(2pi/2) R(2pi/4)

R(2pi/2) E
X

IT
: q

ft
_b

ig
_e

nd
ia

n*

qs[2]

qs[1]

qs[0]
H

R(2pi/4)*

R(2pi/8)*

H

R(2pi/4)* H

E
N

T
E

R
: q

ft
_b

ig
_e

nd
ia

n*

qs[0]

qs[1]

qs[2]

a[0]

a[1]

a[2]

b[0]

b[1]

b[2]

Boxed subcircuits. In many quantum algorithms, the same subcircuit is
reused multiple times, which can cause a lot of duplication in circuits. Quipper
helps alleviate such duplication by providing a hierarchical model of circuits, in
the form of boxed subcircuits. A circuit can be boxed, and then reused multiple
times as a subcircuit in a larger circuit. This means that the boxed subcircuit
only needs to be generated once, and then a call to the boxed subcircuit is placed
in the main circuit, whenever the subcircuit would appear. Quipper also permits
an iteration count to be attached to a boxed subcircuit call.

A subcircuit can be boxed by using the box operator, which takes as its ar-
guments a name and a function to be boxed. Here, we replicate the previous
example, but with the QFT boxed.

qft_add_in_place_boxed :: [Qubit] -> [Qubit] -> Circ ([Qubit], [Qubit])

qft_add_in_place_boxed a b = do

label (a,b) ("a","b")

with_computed (box "QFT" qft_big_endian b) $ \b’ -> do

qft_adder a (reverse b’)

label (a,b) ("a","b")

return (a,b)

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

QFT 1

QFT 2

QFT 3

QFT 4

R(2pi/2) R(2pi/4) R(2pi/8) R(2pi/16)

R(2pi/2) R(2pi/4) R(2pi/8)

R(2pi/2) R(2pi/4)

R(2pi/2) QFT 1*

QFT 2*

QFT 3*

QFT 4*

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

Subroutine QFT, shape ([Q,Q,Q,Q],()):

E
N

T
E

R
: q

ft
_b

ig
_e

nd
ia

n qs[0]

qs[1]

qs[2]

qs[3]

H R(2pi/4)

H

R(2pi/8)

R(2pi/4)

H

R(2pi/16)

R(2pi/8)

R(2pi/4)

H E
X

IT
: q

ft
_b

ig
_e

nd
ia

n qs[3]

qs[2]

qs[1]

qs[0]

1

2

3

4 1

2

3

4

Simulation of circuits. Unlike many quantum programming languages in the
literature, Quipper was not designed as a front-end language for a quantum sim-
ulator; rather, it was designed to control an actual (future) quantum computer.
Therefore, non-physical operations are not provided in Quipper. Nevertheless,
during development and testing (and in the absence of an actual quantum com-
puter), it is useful to be able to run simulations. Quipper provides three different
simulators, which can be used depending on which gates are used within a circuit.

– Classical simulation - efficiently simulates classical circuits.
– Stabilizer simulation - efficiently simulates Clifford group circuits [1].
– Quantum simulation - simulates any circuit (with exponential overhead).

The simulators are generic: they take any circuit producing function and convert
it into a function acting on the boolean counterparts to the quantum data types
used in the circuit. Both the stabilizer simulator, and the quantum simulator are
probabilistic.

2.3 Quantum circuits from classical functions

Generating circuits from classical code. A notable feature of Quipper is
the ability to automatically generate reversible circuits from ordinary functional
programs. This is achieved by inserting the Quipper keyword build_circuit

right before the classical function definition. This causes Quipper to define a new
circuit generating function, with the same name as the given classical function,
preceded by template_, where any Bool arguments in the type are changed to
Qubit. We found that this language feature is useful when defining many of
the oracles that appear in quantum algorithms, as they are often of a classical
nature, but need to be applied to a quantum register. We have used this feature,
for example, to implement a quantum library for real fixed-point arithmetic.
The following example shows a single-bit full adder. A quantum function named
template_adder will be automatically generated.

build_circuit

adder :: (Bool,Bool,Bool) -> (Bool,Bool)

adder (a,b,carry_in) = (s,carry_out)

where

s = bool_xor (bool_xor a b) carry_in

carry_out = (a && b) || (a && carry_in) || (b && carry_in)

The helper function unpack is used to tidy up the type of any circuit produced
using the build_circuit keyword, by removing some unnecessary occurrences
of the Circ operator.

adder_circ :: (Qubit,Qubit,Qubit)

-> Circ (Qubit,Qubit)

adder_circ = unpack template_adder

0

0

0

0

0

1

1

The build_circuit feature is implemented using a Haskell extension known
as Template Haskell ; this gives programs access to their own syntax tree in
parsed form. Because of this generality, essentially arbitrary Haskell functions
can be used with the build_circuit keyword. However, the programmer must
supply quantum templates for any library functions that are used, unless they
are among the standard templates already predefined by Quipper.

Synthesis of reversible circuits. The circuit produced by adder_circ is not
a self-contained reversible circuit, as the automatic transformation introduces
ancilla qubits that may be left in an indeterminate state, possibly entangled
with the outputs. The Quipper operator classical_to_reversible turns a
circuit f :: a→ Circ b into a reversible circuit f ′ :: (a, b)→ Circ (a, b), ensuring
that any ancillas are suitably un-computed and terminated, provided that f uses
only reversible primitives.

adder_reversible :: ((Qubit,Qubit,Qubit),(Qubit,Qubit))

-> Circ ((Qubit,Qubit,Qubit),(Qubit,Qubit))

adder_reversible = classical_to_reversible adder_circ

0

0

0

0

0

1

1 1

1

0

0

0

0

0

Circuit transformations. Quipper provides a means for transforming circuits,
on-the-fly, at circuit generation time. This allows for transformations such as
gate decompositions, or adding certain types of error-correcting codes. Quipper
provides some pre-defined transformers, as well as an extensible framework for
user-defined transformers. Example transformers include the simulators, as well
as a transformer to decompose circuits to only binary gates, or binary gates plus
the Toffoli gate. In the following example, we apply the binary gate decomposi-
tion transformer to the adder circuit.

adder_circ_b :: (Qubit,Qubit,Qubit) -> Circ (Qubit,Qubit)

adder_circ_b = decompose_generic Binary adder_circ

0

0

0 V V* V

0 V V* V

0 V V* V

1 V V* V

1 V V* V

3 Final remarks

3.1 Scalability and resource estimation

As we have seen, there are various things that Quipper can do with a generated
circuit. However, when defining large circuits, it isn’t always feasible to generate
the circuit in its entirety. Quipper provides a mechanism by which one can count
the resources associated with a circuit (e.g., number of gates, number of qubits,
number of ancillas). Combining this feature with boxed subcircuits, we have
been able to do resource estimation for some very large circuits. For example,
our Quipper implementation of the triangle finding algorithm [14] produces a
circuit containing over 30 trillion gates, which can be counted in under two
minutes on a 1.2GHz laptop.

3.2 Prior art

There have been a number of quantum programming languages introduced in the
literature (see [8]). Among the languages that have actually been implemented
are Ömer’s QCL [16], a C-style language optimized for quantum simulation;
the Quantum IO Monad [2], which is a quantum programming language also

embedded in Haskell; and Giles’s LQPL [9], a functional quantum programming
language with linear types. However, most of the languages that can be found
in the literature are not shown to be scalable to large problem sizes.

The problem of generating circuit descriptions from functional programs has
also been studied outside of the realm of quantum computing; see, e.g., [4,6].

3.3 Conclusion

Quipper has many language features, and only a selection of them have been
discussed in this introductory paper. The Quipper distribution also includes
some libraries of commonly used quantum functions. For example, we provide an
extensive library of arithmetic functions, both for integer arithmetic and fixed-
point real arithmetic; and functions for random access to a quantum register
using a quantum index. Although Quipper is still in active development, we feel
that the current stable release is a full-featured and scalable language. Many of
the improvements that we are hoping to make are to the type system, such as
introducing linear types, which will allow for more type errors to be caught at
the initial compilation stage, as opposed to at circuit generation time.

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70(5), 052328 (Nov 2004), arXiv:quant-ph/0406196

2. Altenkirch, T., Green, A.S.: The Quantum IO Monad. In: Gay, S., Mackie, I.
(eds.) Semantic Techniques in Quantum Computation, pp. 173–205. Cambridge
University Press (2009)

3. Ambainis, A., Childs, A.M., Reichardt, B.W., Spalek, R., Zhang, S.: Any AND-OR

formula of size n can be evaluated in time n
1
2
+o(1) on a quantum computer. SIAM

J. Comput. 39, 2513–2530 (2010)

4. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: hardware design in Haskell.
In: Proceedings of the third ACM SIGPLAN international conference on Functional
programming. pp. 174–184. ICFP ’98, ACM, New York, NY, USA (1998), doi:
10.1145/289423.289440

5. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Ex-
ponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th
Annual ACM Symposium on Theory of Computing. pp. 59–68 (2003)

6. Claessen, K.: Embedded Languages for Describing and Verifying Hardware. Ph.D.
thesis, Chalmers University of Technology and Göteborg University (2001)

7. Draper, T.G.: Addition on a Quantum Computer (Aug 2000), arXiv:quant-ph/
0008033

8. Gay, S.J.: Quantum programming languages: Survey and bibliography. Mathemat-
ical Structures in Computer Science 16(4) (2006), http://www.dcs.gla.ac.uk/

~simon/publications/QPLsurvey.pdf

9. Giles, B.: Programming with a Quantum Stack. Master’s thesis, Department
of Computer Science, University of Calgary (Apr 2007), http://pages.cpsc.

ucalgary.ca/~gilesb/research/lqpl.html

10. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: A
scalable quantum programming language (2012), to appear in PLDI 2013, arXiv:
1304.3390

http://arxiv.org/abs/quant-ph/0406196
http://dx.doi.org/10.1145/289423.289440
http://dx.doi.org/10.1145/289423.289440
http://arxiv.org/abs/quant-ph/0008033
http://arxiv.org/abs/quant-ph/0008033
http://www.dcs.gla.ac.uk/~simon/publications/QPLsurvey.pdf
http://www.dcs.gla.ac.uk/~simon/publications/QPLsurvey.pdf
http://pages.cpsc.ucalgary.ca/~gilesb/research/lqpl.html
http://pages.cpsc.ucalgary.ca/~gilesb/research/lqpl.html
http://arxiv.org/abs/1304.3390
http://arxiv.org/abs/1304.3390

11. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem. J. ACM 54(1), 4:1–4:19 (Mar 2007), doi:10.1145/1206035.
1206039

12. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15), 150502 (2009)

13. IARPA Quantum Computer Science Program: Broad Agency Announce-
ment IARPA-BAA-10-02 (April 2010), https://www.fbo.gov/notices/

637e87ac1274d030ce2ab69339ccf93c

14. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle prob-
lem (Nov 2003), arXiv:quant-ph/0310134

15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2002)

16. Ömer, B.: A Procedural Formalism for Quantum Computing. Master’s thesis, Dept.
of Theoretical Physics, Tech. Univ. Vienna (Jul 1998), http://tph.tuwien.ac.at/

~oemer/qcl.html

17. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33(3),
738–760 (2004)

18. Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure
hamiltonians using quantum computers. Molecular Physics 109(5), 735–750 (2011)

http://dx.doi.org/10.1145/1206035.1206039
http://dx.doi.org/10.1145/1206035.1206039
https://www.fbo.gov/notices/637e87ac1274d030ce2ab69339ccf93c
https://www.fbo.gov/notices/637e87ac1274d030ce2ab69339ccf93c
http://arxiv.org/abs/quant-ph/0310134
http://tph.tuwien.ac.at/~oemer/qcl.html
http://tph.tuwien.ac.at/~oemer/qcl.html

	An Introduction to Quantum Programming in Quipper
	1 Introduction
	1.1 Overview
	1.2 Quipper as an embedded language
	1.3 Quipper's underlying circuit model

	2 Quipper by example
	2.1 Quantum teleportation
	Quipper's primitive operations.
	Circuit generation.
	A teleportation circuit.
	Quantum data types and generic functions.
	Comments and labels.

	2.2 The quantum Fourier transform and quantum addition
	Recursion.
	Circuit-level operations.
	A quantum adder.
	Boxed subcircuits.
	Simulation of circuits.

	2.3 Quantum circuits from classical functions
	Generating circuits from classical code.
	Synthesis of reversible circuits.
	Circuit transformations.

	3 Final remarks
	3.1 Scalability and resource estimation
	3.2 Prior art
	3.3 Conclusion

